云南省玉溪市2021届中考数学检测试题
玉溪市2021年中考数学试卷B卷

玉溪市2021年中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共12小题,满分36分) (共12题;共36分)1. (3分)(2011·盐城) ﹣2的绝对值是()A . ﹣2B . ﹣C . 2D .2. (3分)下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A . 菱形B . 矩形C . 等腰梯形D . 正五边形3. (3分) (2018七上·彝良期末) 餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易.舌尖上的浪费让人触目惊心,据统计,中国每年浪费食物总量折合成粮食约500亿千克,这个数据用科学记数法表示为()A . 50x109千克B . 5x1010千克C . 5x109千克D . 0.5x1011千克4. (3分)想一想:将左边的图形折成一个立方体,那么这个立方体是()A .B .C .D .5. (3分) (2019九下·江都月考) 某学校足球队23人年龄情况如下表:年龄/岁1213141516人数13685则下列结论正确的是()A . 极差为3B . 众数为15C . 中位数为14D . 平均数为146. (3分)下列计算正确的是()A . m3﹣m2=mB . m3﹣m2=m5C . (m+n)2=m2+n2D . (m3)2=m67. (3分)(2019·梧州模拟) 如图,DE∥BC,CD平分∠ACB,∠AED=50°,则∠EDC的度数是()A . 50°B . 40°C . 30°D . 25°8. (3分)已知MN是线段AB的垂直平分线,C,D是MN上任意两点,则∠CAD和∠CBD之间的大小关系是()A . ∠CAD<∠CBDB . ∠CAD=∠CBDC . ∠CAD>∠CBDD . 无法确定9. (3分) (2016九上·和平期中) 已知二次函数y=x2﹣x+a(a>0),当自变量x取p时的函数值小于0,那么当自变量x取p﹣1时的函数值()A . 小于0B . 大于0C . 等于0D . 与0的大小关系不确定10. (3分)在下列命题中,属于假命题的是()A . 对角线相等的梯形是等腰梯形;B . 两腰相等的梯形是等腰梯形;C . 底角相等的梯形是等腰梯形;D . 等腰三角形被平行于底边的直线截成两部分,所截得的四边形是等腰梯形.11. (3分)现规定一种运算:a※b=ab+a-b,其中a、b为有理数,则2※(-3)的值是()A . -6B . -1C . 5D . 1112. (3分) (2016八下·高安期中) 已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥AB交BC 于点E,AD=6cm,则OE的长为()A . 6cmB . 4cmC . 3cmD . 2cm二、填空题(每小题3分,共4小题,满分12分) (共4题;共12分)13. (3分) (2020九上·南岗期末) 把多项式分解因式的结果是________.14. (3分)某电视台综艺节目接到热线电话500个,现从中抽取“幸运观众”10名,小明打通了一次热线电话,他成为“幸运观众”的概率是________ .15. (3分)(2012·河南) 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E.若AD=BE,则△A′DE的面积是________.16. (3分)如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于________ 度.三、解答题(第17题5分,第18题6分,第19题7分,第20题8 (共7题;共52分)17. (5分)计算:(4﹣π)0+()﹣1﹣2cos60°+|﹣3|18. (6分)(2017·雁塔模拟) 先化简,再求值:÷(1﹣),其中a=﹣.19. (7.0分) (2018九下·鄞州月考) 我区积极开展“体育大课间”活动,引导学生坚持体育锻炼,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步.D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调査,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充完整;(3)己知该校有2000人,请根据样本估计全校最喜欢足球的人数是多少?20. (8分)(2016·北区模拟) 如图所示,两个建筑物AB和CD的水平距离为51m,某同学住在建筑物AB内10楼M室,他观测建筑物CD楼的顶部D处的仰角为30°,测得底部C处的俯角为45°,求建筑物CD的高度.(取1.73,结果保留整数)21. (8分)(2018·濮阳模拟) 每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购. 经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月.若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.22. (9分)(2017·游仙模拟) 如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM//OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR//MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.23. (9.0分)(2017·杭锦旗模拟) 如图,在平面直角坐标系中,圆M经过原点O,直线y=﹣ x﹣6与x 轴、y轴分别相交于A,B两点.(1)求出A,B两点的坐标;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE= S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共12小题,满分36分) (共12题;共36分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题(每小题3分,共4小题,满分12分) (共4题;共12分)13-1、14-1、15-1、16-1、三、解答题(第17题5分,第18题6分,第19题7分,第20题8 (共7题;共52分) 17-1、18-1、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、23-1、23-2、23-3、。
玉溪市2021年中考数学试卷(II)卷

玉溪市2021年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题. (共12题;共24分)1. (2分)若=3-a,则a与3的大小关系是()A . a<3B . a≤3C . a>3D . a≥32. (2分)如图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是()A .B .C .D .3. (2分)下列多项式在有理数范围内能用平方差公式进行因式分解的是()A . x2+y2B . ﹣x2+y2C . ﹣x2﹣y2D . x2﹣3y4. (2分)计算(﹣0.125)10×811的结果是()A . ﹣B .C . ﹣8D . 85. (2分)(2019·婺城模拟) 2019年3月初,全国“两会”在北京人民大会堂隆重召开,李克强总理在《政府工作报告》中指出,过去的一年,我国为企业和个人减税降费约1300000000000元,数1300000000000用科学记数法表示为()A . 13×108B . 0.13×1013C . 1.3×1012D . 1.3×10136. (2分)如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A . 70°B . 80°C . 90°D . 100°7. (2分) (2016九上·仙游期末) 下列汽车标志中,既是轴对称图形又是中心对称图形的是()A .B .C .D .8. (2分)反比例函数的图像经过点(-2,-3)则k的值是()A . 7B . 6C . -7D . 上述答案都不对9. (2分)已知方程x2+kx-6=0的一个根是2,则它的另一个根为()A . 1B . -2C . 3D . -310. (2分)数据1,1,2,2,3,3,3 的极差是()A . 1B . 2C . 3D . 611. (2分) (2019七下·电白期末) 如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有()对.A . 5对B . 4对C . 3对D . 2对12. (2分)(2019·乐陵模拟) 如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG 的边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2019八上·榆树期中) 的相反数是 ________ 。
云南省玉溪市2021版中考数学试卷A卷(新版)

云南省玉溪市2021版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列说法不正确的是()A . 倒数是它本身的数是±1B . 相反数是它本身的数是0C . 绝对值是它本身的数是0D . 平方是它本身的数是0和12. (2分) (2017九上·黄岛期末) 下面四个几何体中,其主视图为圆形的是()A .B .C .D .3. (2分)第29届北京奥运会火炬接力活动历时130天,传递行程约为137 000km.用科学记数法表示137 000是()A . 1.37×105B . 13.7×104C . 1.37×104D . 1.37×1034. (2分)下列语句正确的是()A . 线段绕着它的中点旋转180°后与原线段重合,那么线段是中心对称图形B . 正三角形绕着它的三边中线的交点旋转120°后与原图形重合,那么正三角形是中心对称图形C . 正方形绕着它的对角线交点旋转90°后与原图形重合,则正方形是中心对称图形D . 正五角星绕着它的中心旋转72°后与原图形重合,则正五角星是中心对称图形5. (2分)如图,已知直线AB、CD相交于点O,∠1=80°,如果DE∥AB,那么∠D的度数是()A . 80°B . 90°C . 100°D . 110°6. (2分) (2019八上·江岸期中) 点P(-3,2)关于轴对称的点的坐标是()A . (3,2)B . (-3,-2)C . (3,-2)D . (2,-3).7. (2分)分式方程的解是()A . x=﹣9B . x=9C . x=3D .8. (2分)一组数据4,5,6,7,7,8的中位数和众数分别是()A . 7,7B . 7,6.5C . 5.5,7D . 6.5,79. (2分) (2020九上·南岗期末) 抛物线的对称轴是()A . 直线B . 直线C . 直线D . 直线10. (2分)如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=()A . 35°B . 70°C . 110°D . 140°二、填空题 (共9题;共10分)11. (2分) (2019七上·泰安月考) 的相反数是________,绝对值是________.12. (1分) (2020八上·嘉兴月考) 如图,已知AC=BD,要使△ABC≌△DCB,只需增加的一个条件是________.13. (1分) (2017八下·海淀期末) 已知一次函数的图象过点和点 . 若,则x的取值范围是________14. (1分) (2017九下·杭州开学考) 如图所示,已知A点从(1,0)点出发,以每秒1个单位长的速度沿着x轴的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B、C点都在第一象限内,且∠AOC=60°,又以P(0,4)为圆心,PC为半径的圆恰好与OA所在的直线相切,则t=________.15. (1分) (2018八上·大石桥期末) 若,则的值为________.16. (1分)(2019·冷水江模拟) 已知关于x的一元二次方程x2+ax+nb=0(1≤n≤3,n为整数),其中a 是从2、4、6三个数中任取的一个数,b是从1、3、5三个数中任取的一个数,定义“方程有实数根”为事件An(n =1,2,3),当An的概率最小时,n的所有可能值为________.17. (1分) (2019八上·大通月考) 等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于________.18. (1分)(2018·安徽) 如图,正比例函数y=kx与反比例函数y= 的图象有一个交点A(2,m),AB⊥x 轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是________ .19. (1分) (2018九上·浙江月考) ⊙O是△ABC的外接圆,OD⊥BC于D,且∠BOD=48°,∠BAC=________.三、解答题 (共9题;共96分)20. (5分) (2019八上·临洮期末) 计算21. (5分)已知:关于x的方程(a-1)x2-(a+1)x+2=0.(1)当a取何值时,方程(a-1)x2-(a+1)x+2=0有两个不相等的实数根;(2)当整数a取何值时,方程(a-1)x2-(a+1)x+2=0的根都是正整数.22. (5分)(2017·揭西模拟) 如图,某校数学兴趣小组为测得大厦AB的高度,在大厦前的平地上选择一点C,测得大厦顶端A的仰角为30°,再向大厦方向前进80米,到达点D处(C,D,B三点在同一直线上),又测得大厦顶端A的仰角为45°,请你计算该大厦的高度.(精确到0.1米,参考数据:≈1.414,≈1.732)23. (11分)(2017·萍乡模拟) 体育中考前,抽样调查了九年级学生的“1分钟跳绳”成绩,并绘制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.(1)补全频数分布直方图;(2)扇形图中m=________;(3)若“1分钟跳绳”成绩大于或等于140次为优秀,则估计全市九年级5900名学生中“1分钟跳绳”成绩为优秀的大约有多少人?24. (10分) (2020八上·南京期末) 如图,一次函数的图像经过点P(1,3),Q(0,4).(1)求该函数的表达式;(2)该图像怎样平移后经过原点?25. (15分)(2019·安徽) 如图,R t△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°(1)求证:△PAB∽△PBC(2)求证:PA=2PC(3)若点P到三角形的边AB,BC,CA的距离分别为h1 , h2 , h3 ,求证h12=h2·h326. (15分) (2019九上·张家港期末) 小丽老师家有一片80棵桃树的桃园,现准备多种一些桃树提高桃园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该桃园每棵桃树产桃 (千克)与增种桃树 (棵)之间的函数关系如图所示.(1)求与之间的函数关系式;(2)在投入成本最低的情况下,增种桃树多少棵时,桃园的总产量可以达到6750千克?(3)如果增种的桃树 (棵)满足: ,请你帮小丽老师家计算一下,桃园的总产量最少是多少千克,最多又是多少千克?27. (10分)如图,在菱形ABCD中,∠ABC=60°,对角线AC、BD交于点O,过A作AE⊥BC交BD于F.(1)如图1,已知AB=3,求线段BF的长度;(2)如图2,在OD上任取一点M,连接AM,以AM为边作等边△AMN,连接BN交AE于点H,求证:BH=HN.28. (20分) (2017九上·陆丰月考) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题.(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共9题;共96分)20-1、21-1、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、27-1、第11 页共13 页第12 页共13 页27-2、28-1、28-2、28-3、28-4、第13 页共13 页。
玉溪市2021年中考数学试卷D卷

玉溪市2021年中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·上饶模拟) 在- 、- 、-|-2|、- 这四个数中,最大的数是()A .B .C .D .2. (2分)(2020·铁西模拟) 据报道,2020年全国硕士研究生招生规模比去年增加18.9万左右,数据“18.9万”用科学记数法表示为()A . 1.89×103B . 1.89×104C . 1.89×105D . 18.9×1033. (2分) (2016·襄阳) 如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为()A . 50°B . 40°C . 30°D . 20°4. (2分)某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为()A . 11元/千克B . 11.5元/千克C . 12元/千克D . 12.5元/千克5. (2分) (2018八上·罗湖期末) 若 + = (b为整数),则a的值可以是()A .B . 27C . 24D . 206. (2分)如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF ,点P沿直线AB从右向左移动,当出现:点P与正六边形六个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有()A . 9个B . 10个C . 11个D . 12个7. (2分)某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家()A . 亏损8元B . 赚了12元C . 亏损了12元D . 不亏不损8. (2分)如图所示,一矩形公园中有一圆形湖,湖心O恰在矩形的中心位置,若测得AB=600m,BC=800m,则湖心O到四个顶点的距离为()A . 300mB . 400mC . 500mD . 600m9. (2分)(2017·武汉) 某物体的主视图如图所示,则该物体可能为()A .B .C .D .10. (2分) (2017九上·黑龙江开学考) 如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D.下列四个命题:①当x>0时,y>0;②若a=﹣1,则b=3;③抛物线上有两点P(x1 , y1)和Q(x2 , y2),若x1<1<x2 ,且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6 .其中正确的命题有()个.A . 1B . 2C . 3D . 4二、填空题 (共8题;共13分)11. (1分)(2020·宁德模拟) 计算: =________.12. (1分)(2020·邓州模拟) 计算: ________.13. (1分) (2017八下·东台期中) 关于x的分式方程 =﹣2解为正数,则m的取值范围是________.14. (2分) (2019七下·北京期中) 设圆上有n个不同的点,连接任两点所得线段,将圆分成若干个互不重合的区域,记为区域数的最大值,则 f(5)=________ , f(6)=________ .15. (1分)把直线y=2x向上平移两个单位长度,再向右平移一个单位长度,则得到的直线是________.16. (1分)(2020·西安模拟) 菱形的边,,则菱形的面积为________.17. (5分) (2016八上·苏州期中) 尺规作图:如左图,在四边形ABCD内找一点P,使得点P到AB、AD的距离相等,并且点P到点B、C的距离也相等.(不写作法,保留作图痕迹).18. (1分) (2017八下·蒙阴期中) 如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为________.三、解答题 (共7题;共71分)19. (10分)解方程组:(1)(2).20. (10分) (2020八下·鄞州期末) 如图,在矩形ABCD中,对角线BD的垂直平分线MN分别与AD、BC相交于点M、N,与BD相交于点O,连结BM,DN.(1)求证:四边形BMDN是菱形;(2)若MD=2AM,BD=8,求矩形ABCD的周长.21. (10分)(2019·连云港) 现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球.(1)从A盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.22. (5分)一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)23. (10分) (2016九上·江夏期中) 已知:关于x的方程x2+(8﹣4m)x+4m2=0(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;(2)是否存在实数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由.24. (11分)(2017·宝坻模拟) 两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=________cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.25. (15分)如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连结BE、BF。
云南省玉溪市2021版中考数学试卷A卷(精编)

云南省玉溪市2021版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)木工师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉的木板条(即图中的AB 和CD),这样做的根据是()A . 矩形的对称性B . 矩形的四个角都是直角C . 三角形的稳定性D . 两点之间线段最短2. (2分)(2014·内江) 一种微粒的半径是0.00004米,这个数据用科学记数法表示为()A . 4×106B . 4×10﹣6C . 4×10﹣5D . 4×1053. (2分) (2017九上·满洲里期末) 下列汉字或字母中既是中心对称图形又是轴对称图形的是()A .B .C .D .4. (2分)先观察下列各式:①32﹣12=4×2;②42﹣22=4×3;③52﹣32=4×4;④62﹣42=4×5;…下列选项成立的是()A . n2﹣(n﹣1)2=4nB . (n+1)2﹣n2=4(n+1)C . (n+2)2﹣n2=4(n+1)D . (n+2)2﹣n2=4(n﹣1)5. (2分)如图,是由一些相同的小正方体构成的立体图形的三视图,这些相同的小正方体的个数是()A . 4B . 5C . 6D . 76. (2分)(2018·河北) 尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A . ①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB . ①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC . ①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD . ①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7. (2分)若甲数为x,乙数为y,则“甲数的3倍比乙数的一半少2”列成方程是()A . 3x+ y=2B . 3x﹣ y=2C . ﹣3x+ y=2D . 3x= y+28. (2分)(2020·温州模拟) 如图,△ABC中,AB=AC,∠BAC=100°,D是BA延长线上一点,BD=BC,点E,F分别是BC,AC边上两点,且BE=CF,若∠AFB=56°,则∠D的度数为()度A . 10B . 34C . 15D . 169. (2分)下列说法不正确的是()A . 为了反映雅安市七县一区人口分布多少情况,通常选择条形统计图B . 为了反映我市连续五年来中国民生产总值增长情况,通常选择折线统计图C . 为了反映本校中学生人数占全市中学学生人数的比例情况,应选择扇形统计图D . 以上三种统计图都可以直接找到所需数目10. (2分) (2017七上·抚顺期中) 下列各对数中,相等的一对数是()A . (﹣2)3与﹣23B . ﹣22与(﹣2)2C . ﹣(﹣3)与﹣|﹣3|D . 与() 211. (2分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A . 1B . 2C . 3D . 412. (2分) m个人a天完成一件工作,当增加n个人时,完成这件工作所要的天数是()A . a(m-n)B .C .D .13. (2分) (2016八上·长泰期中) 下列运算式中,正确的是()A . a2•a3=a6B . (a3)3=a9C . (2a2)2=2a4D . a6÷a3=a214. (2分)计算()•()÷(﹣)的结果是()A .B . ﹣C .D . ﹣15. (2分)如图,将直线沿着AB的方向平移得到直线,若∠1=50°,则∠2的度数是()A . 40°B . 50°C . 90°D . 130°16. (2分)(2019·宁江模拟) 若关于x的一元二次方程(m-1)x2-2x-1=0有两个实数根,则实数m的取值范围是()A . m≥0B . m>0C . m≥0且m≠1D . m>0且m≠1二、填空题 (共3题;共3分)17. (1分) (2019八下·白水期末) 已知是整数,则正整数n的最小值为________.18. (1分) (2020八上·汽开区期末) 分解因式: ________.19. (1分) (2018九下·夏津模拟) 以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是________。
2021年云南省中考数学试卷及答案(Word最新版)

2021年云南省中考数学试卷及答案通过整理的2021年云南省中考数学试卷及答案相关文档,希望对大家有所帮助,谢谢观看!2021年云南省中考数学试卷一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的绝对值是.2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab= .3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为.4.(3.00分)分解因式:x2﹣4= .5.(3.00分)如图,已知AB∥CD,若=,则= .6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥1 8.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥9.(4.00分)一个五边形的内角和为()A.540° B.450° C.360° D.180° 10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.an B.﹣an C.(﹣1)n+1an D.(﹣1)nan 11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A 的正切值为()A.3 B.C.D.13.(4.00分)2021年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2021一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12% C.a=72° D.全校“不了解”的人数估计有428人14.(4.00分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32 三、解答题(共9小题,满分70分)15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0 16.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.17.(8.00分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:评委评委1 评委2 评委3 评委4 评委5 评委6 评委7 打分6 8 7 8 5 7 8 (1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c 的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)A商品3 2 120 B商品2.5 3.5 200 设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?22.(9.00分)如图,已知AB是⊙O 上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.23.(12.00分)如图,在平行四边形ABCD中,点E 是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD 的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE 的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.2021年云南省中考数学试卷参考答案与试题解析一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的绝对值是1.【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab=2.【分析】接把点P(a,b)代入反比例函数y=即可得出结论.【解答】解:∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2.[来源:学#科#网] 故答案为:2 【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为3.451×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3451=3.451×103,故答案为:3.451×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)分解因式:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.5.(3.00分)如图,已知A B∥CD,若=,则=.【分析】利用相似三角形的性质即可解决问题;【解答】解:∵AB∥CD,∴△AOB∽△CO D,∴==,故答案为.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为9或1.【分析】△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.【解答】解:有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD===5,CD===4,∴BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,∴BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥1 【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:∵1﹣x≥0,∴x≤1,即函数y=的自变量x的取值范围是x≤1,故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()[来源:] A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】由三视图及题设条件知,此几何体为一个的圆锥.【解答】解:此几何体是一个圆锥,故选:D.【点评】考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.9.(4.00分)一个五边形的内角和为()A.540° B.450° C.360° D.180° 【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:解:根据正多边形内角和公式:180°×(5﹣2)=540°,答:一个五边形的内角和是540度,故选:A.【点评】此题主要考查了正多边形内角和,关键是掌握内角和的计算公式.10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.an B.﹣an C.(﹣1)n+1an D.(﹣1)nan 【分析】观察字母a的系数、次数的规律即可写出第n个单项式.【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•an.故选:C.【点评】考查了单项式,数字的变化类,注意字母a的系数为奇数时,符号为正;系数字母a的系数为偶数时,符号为负.11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角不一定是轴对称图形和中心对称图形,故本选项错误;D、平行四边形不一定是轴对称图形和中心对称图形,故本选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.【分析】根据锐角三角函数的定义求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为==3,故选:A.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.13.(4.00分)2021年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2021一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12% C.a=72°[来源:Z|xx|] D.全校“不了解”的人数估计有428人【分析】利用图中信息一一判断即可解决问题;【解答】解:抽取的总人数为6+10+16+18=50(人),故A正确,[来源:学,科,网] “非常了解”的人数占抽取的学生人数的=12%,故B正确,α=360°×=72°,故正确,全校“不了解”的人数估计有1300×=468(人),故D错误,故选:D.【点评】本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.14.(4.00分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32 【分析】把x+=6两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把x+=6两边平方得:(x+)2=x2++2=36,则x2+=34,故选:C.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.三、解答题(共9小题,满分70分)15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0 【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3﹣2×﹣3﹣1 =2﹣4 【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点.16.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【分析】根据角平分线的定义得到∠BAC=∠DAC,利用SAS定理判断即可.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△A BC 和△ADC中,,∴△ABC≌△ADC.【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的SAS定理是解题的关键.17.(8.00分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:评委评委1 评委2 评委3 评委4 评委5 评委6 评委7 打分6 8 7 8 5 7 8 (1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数【分析】(1)根据众数与中位数的定义求解即可;(2)根据平均数的定义求解即可.【解答】解:(1)从小到大排列此数据为:5,6,7,7,8,8,8,数据8出现了三次最多为众数,7处在第4位为中位数;(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据工作时间=总工作量÷工作效率结合甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据题意得:﹣=3,解得:x=50,经检验,x=50是分式方程的解.答:乙工程队每小时能完成50平方米的绿化面积.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.【分析】(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果,∴取出的两张卡片上的数字之和为偶数的概率P==.【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8 ∴公共点的坐标是(﹣2,0)或(8,0).【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)A商品3 2 120 B 商品2.5 3.5 200 设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x 取何值时,总成本y最小?【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.22.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O 的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出影响部分面积【解答】解:(1)连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°[来源:学科网ZXXK] ∴∠OCD=90° ∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60° ∴r+2=2r,∴r=2,∠AOC=120° ∴BC=2,∴由勾股定理可知:AC=2 易求S△AOC=×2×1= S扇形OAC== ∴阴影部分面积为﹣【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识.23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.【分析】(1)作EG⊥AB 于点G,由S△ABE=×AB×EG=30得AB•EG=60,即可得出答案;(2)延长AE交BC延长线于点H,先证△ADE≌△HCE得AD=HC、AE=HE 及AD+FC=HC+FC,结合AF=AD+FC得∠FAE=∠CHE,根据∠DAE=∠CHE即可得证;(3)先证∠ABF=90°得出AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,据此求得FC的长,从而得出AF的长度,再由AE=HE、AF=FH知FE⊥AH,即AF是△AEF的外接圆直径,从而得出答案.【解答】解:(1)如图,作EG⊥AB于点G,则S△ABE=×AB×EG=30,则AB•EG=60,∴平行四边形ABCD的面积为60;(2)延长AE交BC延长线于点H,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠HCE,∠DAE=∠CHE,∵E为CD的中点,∴CE=ED,∴△ADE≌△HCE,∴AD=HC、AE=HE,∴AD+FC=HC+FC,由AF=AD+FC和FH=HC+FC得AF=FH,∴∠FAE=∠CHE,又∵∠DAE=∠CHE,∴∠DAE=∠FAE,∴AE平分∠DAF;(3)连接EF,∵AE=BE、AE=HE,∴AE=BE=HE,∴∠BAE=∠ABE,∠HBE=∠BHE,∵∠DAE=∠CHE,∴∠BAE+∠DAE=∠ABE+∠H BE,即∠DAB=∠CBA,由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,∴∠CBA=90°,∴AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,解得:FC=,∴AF=FC+CH=,∵AE=HE、AF=FH,∴FE⊥AH,∴AF是△AEF的外接圆直径,∴△AEF的外接圆的周长t=π.【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点.。
云南省玉溪市2021年中考数学二模试卷(II)卷

云南省玉溪市2021年中考数学二模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·桐乡期中) 某种食品保存的温度是-18±2℃,以下几个温度中,不适合储存这种食品的是()A .B .C .D .2. (2分)(2017·河北模拟) 下列图形中,不是中心对称图形的是()A .B .C .D .3. (2分)(2017·宝坻模拟) 如图所示的几何体的俯视图是()A .B .C .D .4. (2分)化简的结果是()A .B .C .D .5. (2分)如图,BE 平分∠ABC,DE∥BC,图中相等的角共有()A . 3对B . 4对C . 5对D . 6对6. (2分)(2019·百色模拟) 一组数据按从小到大排列为2,4,8,x,10,14.若这组数据的中位数为9,则x是()A . 6B . 8C . 9D . 107. (2分)下列命题中,错误的是()A . 矩形的对角线互相平分且相等B . 对角线互相垂直的四边形是菱形C . 正方形的对角线互相垂直平分D . 等腰三角形底边上的中点到两腰的距离相等8. (2分) (2015九上·丛台期末) 已知关于x的方程ax2+bx+c=0(a>0,b>0)有两个不相等的实数根,则抛物线y=ax2+bx+c的顶点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分)(2017·枣阳模拟) 如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD,BE,CE,若∠CBD=32°,则∠BEC的度数为()A . 128°B . 126°C . 122°D . 120°10. (2分)函数y=x2-x+m(m为常数)的图象如图,如果x=a时,y<0;那么x=a-1时,函数值()A . y<0B . 0<y<mC . y=mD . y>m二、填空题 (共8题;共8分)11. (1分)(2018·赤峰) 分解因式: ________.12. (1分)(2016·齐齐哈尔) 在函数y= 中,自变量x的取值范围是________.13. (1分)(2018·江油模拟) 若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程 =2有非负数解,则满足条件的整数a的值是________.14. (1分) (2018七上·建昌期末) 地球的平均半径为6 371 000m.数6 371 000用科学记数法表示为________15. (1分) (2018九上·安陆月考) 在平面直角坐标系xOy中,将抛物线平移后得到抛物线 .请你写出一种平移方法. 答:________.16. (1分)(2017·邓州模拟) 如图,矩形纸片ABCD中,AB=6,AD=10,点P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是________.17. (1分) (2018九上·郴州月考) 我们知道,比较两个数的大小有很多方法,其中的图象法也非常巧妙,比如,通过图中的信息,我们可以得出的解是________.18. (1分)(2017·玉环模拟) 以A为圆心,半径为9的四分之一圆,与以C为圆心,半径为4的四分之一圆如图所示放置,且∠ABC=90°,则图中阴影部分的面积为________.三、解答题 (共10题;共115分)19. (5分)(2016·临沂) 计算:|﹣3|+ tan30°﹣﹣(2016﹣π)0 .20. (10分)如图,图中小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点G为位似中心的位似图形,它们的顶点都在小正方形顶点上.(1)画出位似中心点G;(2)若点A、B在平面直角坐标系中的坐标分别为(﹣6,0),(-3,2),点P(m,n)是线段AC上任意一点,求点P在△A′B′C′上的对应点P′的坐标.21. (10分)某农场要建一个长方形的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.(1)若养鸡场面积为200m2,求鸡场靠墙的一边长.(2)养鸡场面积能达到250m2吗?如果能,请给出设计方案;如果不能,请说明理由.22. (10分)(2017·天津模拟) 如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B,C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)23. (15分)(2017·襄州模拟) 某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).24. (15分)(2016·丽水) 为了帮助九年级学生做好体育考试项目的选考工作,某校统计了本县上届九年级毕业生体育考试各个项目参加的男、女生人数及平均成绩,并绘制成如图两个统计图,请结合统计图信息解决问题.(1)“掷实心球”项目男、女生总人数是“跳绳”项目男、女生总人数的2倍,求“跳绳”项目的女生人数;(2)若一个考试项目的男、女生总平均成绩不小于9分为“优秀”,试判断该县上届毕业生的考试项目中达到“优秀”的有哪些项目,并说明理由;(3)请结合统计图信息和实际情况,给该校九年级学生体育考试项目的选择提出合理化建议.25. (10分)(2017·武汉模拟) 如图,直线y=﹣x+b与反比例函数的图象相交于点A(a,3),且与x轴相交于点B.(1)求a、b的值;(2)若点P在x轴上,且△AOP的面积是△AOB的面积的,求点P的坐标.26. (10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)若CE=8,CF=6,求OC的长;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.27. (10分)(2018·毕节模拟) 如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC 于G,延长BA交圆于E.(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;(2)在(1)的条件不变的情况下,若GC=CD,求∠C.28. (20分) (2017九上·台州月考) 如图,在平面直角坐标系xOy中,抛物线与X轴的交点为A,与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x 轴于点F.设动点P,Q移动的时间为t(单位:秒).(1)求A,B,C三点的坐标和抛物线的顶点的坐标;(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;(3)当时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共115分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、28-1、28-2、28-3、28-4、。
云南省玉溪市2021版中考数学二模试卷(II)卷

云南省玉溪市2021版中考数学二模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017九上·云阳期中) -2017的相反数为()A . 2017B . -2017C .D .2. (2分)(2018·义乌) 绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为()A .B .C .D .3. (2分)(2019·拱墅模拟) 下列各式正确的是()A . x6•x﹣2=x﹣12=B . x5÷x﹣2=x﹣3=C . (xy﹣2)3=x3y﹣2=D . ()﹣1=4. (2分)下列说法中正确的是()A . 在同一平面内,两条不平行的线段必相交B . 在同一平面内,不相交的两条线段是平行线C . 两条射线或线段平行是指它们所在的直线平行D . 一条直线有可能同时与两条相交直线平行5. (2分)(2017·杭州模拟) 若一个直六棱柱的三视图如图所示,则这个直六棱柱的体积为()A . 4B . 4.5C . 5D . 5.56. (2分) (2016八下·安庆期中) 某市2004年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2006年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A . 300(1+x)=363B . 300(1+x)2=363C . 300(1+2x)=363D . 363(1﹣x)2=3007. (2分)等腰三角形边长分别为a , b , 2,且a , b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为().A . 9B . 10C . 9或10D . 8或108. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()A . 3个B . 2个C . 1个D . 0个9. (2分) (2018八上·翁牛特旗期末) 一个多边形内角和是1080°,则这个多边形是()A . 五边形B . 六边形C . 七边形D . 八边形10. (2分)下列各点:①(0,0);②(1, 1);③( 1, 1);④( 1,1),其中在函数的图像上的点()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共8分)11. (1分)在实数范围内分解因式 ________12. (1分)(2017·大石桥模拟) 如图,已知△ABC中,AB=AC=1,∠BAC=120°,将△ABC绕点C顺时针旋转90°,得到△A′B′C,则点B运动的路径长为________(结果保留π)13. (1分)已知单项式3amb2与﹣ a4bn﹣1的和是单项式,那么2m﹣n=________.14. (1分)计算:(ab2)3÷(﹣ab)2=________15. (1分)等腰三角形的底边长为5,一腰上中线把这个三角形周长分为两部分,它们的差为3,则腰长为________16. (1分)(2016·娄底) 如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是________.17. (1分)(2017·开封模拟) 在矩形ABCD中,AD=8,AB=6,点E为射线DC上一个动点,把△ADE沿AE折叠,使点D落在点F处,若△CEF为直角三角形时,DE的长为________.18. (1分)(2017·巨野模拟) 如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有________根小棒.三、解答题 (共10题;共90分)19. (5分)(2016·呼伦贝尔) (2016•呼伦贝尔)计算:3tan30°﹣ +(2016+π)0+(﹣)﹣2 .20. (11分)如图,在正方形网格上的一个△ABC.(1)作△ABC关于直线MN的对称图形(不写作法);(2)以P为一个顶点作与△ABC全等的三角形(规定点P与点B对应,另两顶点都在图中网格交点处),则可作出________个三角形与△ABC全等;(3)在直线MN上找一点Q,使QB+QC的长最短.21. (5分)解方程:-=1.22. (5分)(2017·七里河模拟) 如图,一艘轮船以18海里/时的速度由西向东方向航行,行至A处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,求轮船与灯塔的最短距离.(精确到0.1,≈1.73)23. (10分) (2017九上·北海期末) 在北海市创建全国文明城活动中,需要20名志愿者担任“讲文明树新风”公益广告宣传工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为“展板挂图”讲解员,求选到女生的概率;(2)若“广告策划”只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁担任,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲担任,否则乙担任.试问这个游戏公平吗?请用树状图或列表法说明理由.24. (12分)(2016·广元) 中央电视台举办的“2016年春节联欢晚会”受到广泛关注,某民间组织就2016年春节联欢晚会节目的喜爱程度,在丽州广场进行了问卷调查,并将问卷调查结果分为“非常喜欢”“比较喜欢”“感觉一般”“不太喜欢”四个等级,分别记作A,B,C,D,根据调查结果绘制出如图所示的“扇形统计图”和“条形统计图”,请结合图中所给信息解答下列问题:(1)这次被调查对象共有________人,被调查者“不太喜欢”有________人;(2)补全扇形统计图和条形统计图;(3)在“非常喜欢”调查结果里有5人为80后,分别为3男2女,在这5人中,该民间组织打算随机抽取2人进行采访,请你用列表法或列举法求出所选2人均为男生的概率.25. (10分)(2016·安徽模拟) 如图,反比例函数y= 的图象与一次函数y=k2x+b的图象交于点P(m,﹣1)和Q(1,2)两点,记一次函数与坐标轴的交点分别为A,B,连接OP,OQ.(1)求两函数的解析式;(2)求证:△POB≌△QOA.26. (10分)(2017·岳池模拟) 在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.27. (7分) (2018·河南模拟) 如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,连接OC,AO延长线交⊙O于点D,OF是∠DOB的平分线,E为OF上一点,连接BE.(1)求证:AB与⊙O相切;(2)①当∠OEB=________时,四边形OCBE为矩形;②在①的条件下,若AB=4,则OA=________时,四边形OCBE为正方形?28. (15分)(2019·锡山模拟) 如图,过、作x轴的垂线,分别交直线于C、D 两点抛物线经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若沿CD方向平移点C在线段CD上,且不与点D重合,在平移的过程中与重叠部分的面积记为S,试求S的最大值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7、答案:略8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共90分)19-1、20-1、20-2、20-3、21-1、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.如图是测量一物体体积的过程:
步骤一:将180 mL的水装进一个容量为300 mL的杯子中;
步骤二:将三个相同的玻璃球放入水中,结果水没有满;
步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.
根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().
14.如图,小阳发现电线杆 的影子落在土坡的坡面 和地面 上,量得 , 米, 与地面成 角,且此时测得 米的影长为 米,则电线杆的高度为 __________米.
15.写出一个一次函数,使它的图象经过第一、三、四象限:______.
16. 的相反数是______, 的倒数是______.
17.如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.
4.A
【解析】
试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.
考点:由三视图判定几何体.
5.C
【解析】
【分析】
利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.
【详解】
L= =4π(cm);
圆锥的底面半径为4π÷2π=2(cm),
∴AF=AD=2,BD=BE,CE=CF,
∵BE+CE=BC=5,
∴BD+CF=BC=5,
∴△ABC的周长=2+2+5+5=14,
故选B.
【点睛】
本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.
8.D
【解析】
【分析】
根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.
【解析】
分析:设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.
详解:设扇形的半径为r,
根据题意得: ,
解得:r=6
故答案为6.
点睛:此题考查弧长公式,关键是根据弧长公式解答.
13.a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.
【解析】
【分析】
通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.
10.C
【解析】
【分析】
本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.
【详解】
解:原计划用时为: ,实际用时为: .
所列方程为: ,
故选C.
【点睛】
本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
二、填空题(本题包括8个小题)
11.
故选D.
【点睛】
本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.
7.B
【解析】
【分析】
根据切线长定理进行求解即可.
【详解】
∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,
【详解】
A、 ,故A正确;
B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;
C、分子、分母同时乘以3,分式的值不发生变化,故C正确;
D、 ≠ ,故D错误;
故选:D.
【点睛】
本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.
9.D
【解析】
设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.
【详解】
通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.
所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.
14.(14+2 )米
【解析】
【分析】
过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,根据直角三角形30°角所对的直角边等于斜边的一半求出DE,再根据勾股定理求出CE,然后根据同时同地物高与影长成正比列式求出EF,再求出BF,再次利用同时同地物高与影长成正比列式求解即可.
详解:设玻璃球的体积为x,则有
解得30<x<1.
故一颗玻璃球的体积在30cm3以上,1cm3以下.
故选C.
点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围.
3.C
【解析】
【分析】
连接AE,只要证明△ABC是等腰三角形,AC=AB即可解决问题.
【详解】
7.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()
A.16B.14C.12D.10
8.下列各式中的变形,错误的是(( )
A. B. C. D.
9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()
11.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.
12.已知扇形的弧长为2 ,圆心角为60°,则它的半径为________.
13.请看杨辉三角(1),并观察下列等式(2):
根据前面各式的规律,则(a+b)6=.
26.(12分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3台
100元
(进价、售价均保持不变,利润=销售收入-进货成本)求A,B两种型号的电风扇的销售单价.若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
解:如图,连接AE,
∵AB是直径,
∴∠AEB=90°,即AE⊥BC,
∵EB=EC,
∴AB=AC,
∴∠C=∠B,
∵∠BAC=50°,
∴∠C= (180°-50°)=65°,
故选:C.
【点睛】
本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
A.10 cm3以上,20 cm3以下B.20 cm3以上,30 cm3以下
C.30 cm3以上,40 cm3以下D.40 cm3以上,50 cm3以下
3.如图, 是半圆圆 的直径, 的两边 分别交半圆于 ,则 为 的中点,已知 ,则 ()
A. B. C. D.
4.如图是某个几何体的三视图,该几何体是()
【详解】
解:∵△OAB绕O点逆时针旋转60°得到△OCD,
∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;
则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;
∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.
2019-2020学年中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )
22.(8分)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.
求证:BG=FG;若AD=DC=2,求AB的长.
23.(8分)已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.
A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)
10.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖 米,那么求 时所列方程正确的是()
A. B.
C. D.
二、填空题(本题包括8个小题)
参考答案
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.C
【解析】
由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,
故选:C.
点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.
2.C
【解析】
分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.
【详解】
如图,过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F.
∵CD=8,CD与地面成30°角,