有理数的除法一

合集下载

有理数的四则运算法则

有理数的四则运算法则

有理数的四则运算法则
有理数是指可以表示为两个整数的比值的数,包括正整数、负
整数、零和分数。

有理数的四则运算包括加法、减法、乘法和除法,下面将详细介绍有理数的四则运算法则。

一、有理数的加法
1. 同号相加:两个正数相加,结果为正数;两个负数相加,结
果为负数。

例如:3 + 5 = 8,(-3) + (-5) = -8。

2. 异号相加:一个正数和一个负数相加,结果的绝对值等于两
个数的绝对值之差,符号取绝对值大的数的符号。

例如:3 + (-5) = -2,(-3) + 5 = 2。

二、有理数的减法
有理数的减法可以转化为加法,即a - b = a + (-b)。

例如:
3 - 5 = 3 + (-5) = -2。

三、有理数的乘法
1. 同号相乘:两个正数或两个负数相乘,结果为正数。

例如:3 * 5 = 15,(-3) * (-5) = 15。

2. 异号相乘:一个正数和一个负数相乘,结果为负数。

例如:3 * (-5) = -15,(-3) * 5 = -15。

四、有理数的除法
有理数的除法可以转化为乘法,即 a ÷ b = a * (1/b)。

例如:3 ÷ 5 = 3 * (1/5)。

需要注意的是,在有理数的除法中,除数不能为0,即 b ≠ 0。

以上就是有理数的四则运算法则,通过以上规则,我们可以轻
松地进行有理数的加减乘除运算。

希望以上内容能够帮助大家更好
地理解有理数的四则运算法则,提高数学运算能力。

1_4_3 有理数的除法【2022秋人教版七上数学精品课件含视频】

1_4_3 有理数的除法【2022秋人教版七上数学精品课件含视频】

针对练习
计算:
9

(1) 36 9
11

1
(2) 12 4 1
5
2 8
(3) 0.25
3 5
9

1 9 1
4

9 1
4
解:
(1) 36 9= -36 + = -36 + = 4+ = 4
4
1

于乘-4的倒数 4 .
知识精讲
1
换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘 a?
快速完成下边的问题:
1
1
-3
-6÷2=____,-6×
=____;
-12÷(-3)=____,-12×()=____;
-3
4
4
3
2
1
1
-2
-2
10÷(-5)=____,10×()=____;-72÷9=_____,-72×
4
21
5
12
÷
=×Leabharlann =;典例解析
例2.化简下列各式:
36
(1)
;
9
35
(2)
20
35
1
7
36
解: (1)
(2)
(35) (20) 35

(36) 9= 4
20
20 4
9
35 35 7
36
36
(2)
=

=4
解: (1)
20 20 4
9
9

有理数的除法(1)

有理数的除法(1)

4、用恰当的符号填空
则a < 0
xz > 0
< 0
5、
计算:
18 6
18 6
03
(18) 6 18 (6)
0 (3)
有理数除法法则(二):
两数相除,同号得正,异号得负,并把绝 对值相除。 零除以任何一个不等于零的数,都得零。
哦,明白啦!
归纳:
1、能整除的两个数相除用除法法则一计算,
24 1 24 16 24 16 1 ( 2) 16 2
1 a 1(a 0) a
1 1 a (a 0) a
a(a 0) 的倒数是
1 a
1除以一个不为零的数的商就是这个数的倒数.
四、分层练习,形成能力
1、计算:
(1)
( 32) ( 8)
(-48) ÷3
2、不能整除的两个数相除就用除法法则二计算 。
2 3 4 ( ) 7 5

例题示范,初步运用
例1、计算
(1)-32÷(-8)
2 1 (2)1 (-4 ) 3 5
1 1 (3) 1 2 4 2 1 1 2 (-1 ) 2 4
例2.化简下列分数:
24 12 ( 2) ( 1) 16 3 12 12 3 12 3 4 解(1) 3
1 1 )2 (2) ( 10 2
1 1 1 (3) 2 3 6
2、计算:
7 1 (2)3.5 ( ) ( ) 4 2
3、想一想
a (1)如果 >0 ,那么 ab __0. > b a < (2)如果 <0 ,那么 ab ___0. b

有理数的除法题型归纳总结(含答案)

有理数的除法题型归纳总结(含答案)

有理数的除法-重难点题型【题型1 有理数除法法则的辨析】【例1】(2020秋•许昌期末)如果a +b <0,ab >0,那么下列各式中一定正确的是( ) A .a ﹣b >0B .ab >0C .b ﹣a >0D .ab<0【解题思路】直接利用有理数的乘除运算法则以及加减运算法则判断得出答案. 【解答过程】解:∵a +b <0,ab >0, ∴a ,b 同为负数, ∴ab >0,故选:B .【变式1-1】(2020秋•鼓楼区校级月考)在下列各题中,结论正确的是( ) A .若a >0,b <0,则ba >0B .若a >b ,则a ﹣b >0C .若a <0,b <0,则ab <0D .若a >b ,a <0,则ba <0【解题思路】根据有理数的乘法法则和除法法则进行判断.【解答过程】解:A .两数相除,异号得负,该选项错误,不符合题意; B .∵a >b ,∴a ﹣b >0,该选项正确,符合题意;C .两数相乘,同号得正,该选项错误,不符合题意;D .∵a >b ,a <0,∴1<ba ,∴ba >1,该选项错误,不符合题意.故选:B .【变式1-2】(2020秋•锦江区校级期中)若a +b >0,a ﹣b <0,ab <0,则下列结论正确的是( )A .a >b ,b >0B .a <0,b <0C .a <0,b >0且|a |<|b |D .a >0,b <0且|a |>|b |【解题思路】直接利用有理数的除法运算、加法、减法运算法则以及绝对值的性质分别分析得出答案. 【解答过程】解:∵a ﹣b <0, ∴a <b , ∵ab <0,∴a <0<b , ∵a +b >0, ∴|a |<|b |. 故选:C .【变式1-3】(2020秋•秀峰区校级月考)已知a ,b 为有理数,则下列说法正确的个数为( ) ①若a +b >0,a b >0,则a >0,b >0.②若a +b >0,a b <0,则a >0,b <0且|a |>|b |. ③若a +b <0,a b >0,则a <0,b <0.④若a +b <0,ab <0,则a >0,b <0且|b |>|a |. A .1B .2C .3D .4【解题思路】根据有理数的加法法则以及有理数的除法法则分别分析得出即可. 【解答过程】解:①若a +b >0,ab >0,则a >0,b >0,故①结论正确;②若a +b >0,a b <0,则a >0,b <0且|a |>|b |或a <0,b >0且|a |<|b |,故②结论错误;③若a +b <0,ab>0,则a <0,b <0,故③结论正确;④a +b <0,ab <0,则a >0,b <0且|b |>|a |或a <0,b >0且|b |<|a |,故斯结论错误.故正确的有2个. 故选:B .【题型2 有理数乘除法的混合运算】【例2】(2021春•青浦区期中)计算:−1.75÷(−312)×47. 【解题思路】原式从左到右依次计算即可求出值. 【解答过程】解:原式=−74÷(−72)×47 =−74×(−27)×47 =27.【变式2-1】(2021春•杨浦区期中)158÷(﹣10)×(−103)÷(−154) 【解题思路】根据有理数的运算法则即可求出答案. 【解答过程】解:原式=158×−110×10−3×−415=−16【变式2-2】(2020秋•广信区月考)计算: (1)−0.75×0.4×(−123); (2)916÷(−112)×1924.【解题思路】(1)先把小数化成分数,把带分数化成假分数,再根据有理数的乘法法则求出即可; (2)先把除法变成乘法,再根据有理数的乘法法则求出即可. 【解答过程】解:(1)原式=34×25×53 =12;(2)原式=916×(−23)×1924=−1964. 【变式2-3】(2020秋•官渡区校级月考)(﹣81)÷94×49÷(﹣16) 【解题思路】根据有理数的混合计算解答即可. 【解答过程】解:(﹣81)÷94×49÷(﹣16) =81×49×49×116 =1【题型3 有理数除法的应用(含绝对值)】【例3】(2020秋•南沙区校级期中)若|abc |=﹣abc ,且abc ≠0,则|a|a+|b|b+|c|c=( )A .1或﹣3B .﹣1或﹣3C .±1或±3D .无法判断【解题思路】利用绝对值的代数意义判断得到a ,b ,c 中负数有一个或三个,即可得到原式的值. 【解答过程】解:∵|abc |=﹣abc ,且abc ≠0, ∴abc 中负数有一个或三个, 则原式=1或﹣3, 故选:A .【变式3-1】(2020秋•句容市期中)已知a 、b 为有理数,且ab >0,则a |a|+b |b|+ab |ab|的值是( )A .3B .﹣1C .﹣3D .3或﹣1【解题思路】根据同号得正分a 、b 都是正数和负数两种情况,利用绝对值的性质去掉绝对值号,然后进行计算即可得解.【解答过程】解:∵ab >0, ∴a >0,b >0时,a |a|+b |b|+ab |ab|=a a+b b +ab ab =1+1+1=3, a <0,b <0时,a |a|+b|b|+ab |ab|=a−a +b−b+ab ab=−1﹣1+1=﹣1,综上所述,a|a|+b |b|+ab|ab|的值是3或﹣1.故选:D .【变式3-2】(2020秋•讷河市期末)若三个非零有理数a ,b ,c 满足|a|a+|b|b+|c|c=1,则|abc|abc= .【解题思路】由|a|a+|b|b+|c|c=1知,a 、b 、c 中有一个为负数,故能求|abc|abc的值.【解答过程】解:∵|a|a+|b|b+|c|c=1∴a 、b 、c 中有一个为负数,另外两个为正数, ∴|abc|abc=−1故答案为﹣1.【变式3-3】(2020秋•旅顺口区期中)若abc <0,a +b +c =0,则|b+c|a+|a+c|b+|a+b|c= .【解题思路】根据有理数的乘法判断出负数的个数,再用两个字母表示出第三个字母,然后求解即可. 【解答过程】解:∵abc <0, ∴a 、b 、c 有1个负数或3个负数, ∵a +b +c =0,∴a 、b 、c 只有1个负数,∴b +c =﹣a ,a +c =﹣b ,a +b =﹣c , ∴|b+c|a+|a+c|b+|a+b|c=−1+1+1=1,故答案为:1.【题型4 有理数除法的应用(新定义)】【例4】(2020秋•平阴县期中)概念学习:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作23,读作“2的3次商”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)4,读作“﹣3的4次商”.一般地,我们把n 个a (a ≠0)相除记作a n ,读作“a 的n 次商”.根据所学概念,求(﹣4)3的值是( ) A .﹣12B .−43C .14D .−14【解题思路】利用题中的新定义计算即可求出值.【解答过程】解:根据题意得,(﹣4)3=(﹣4)÷(﹣4)÷(﹣4)=1÷(﹣4)=−14. 故选:D .【变式4-1】(2020秋•如皋市期中)有两个正数a ,b ,且a <b ,把大于等于a 且小于等于b 的所有数记作[a ,b ].例如,大于等于1且小于等于4的所有数记作[1,4].若整数m 在[5,15]内,整数n 在[﹣30,﹣20]内,那么nm 的一切值中属于整数的个数为( )A .5个B .4个C .3个D .2个【解题思路】根据已知条件得出5≤m ≤15,﹣30≤n ≤﹣20,再得出nm的范围,即可得出整数的个数.【解答过程】解:∵m 在[5,15]内,n 在[﹣30,﹣20]内, ∴5≤m ≤15,﹣30≤n ≤﹣20, ∴−305≤n m≤−2015,即﹣6≤n m ≤−43,∴n m的一切值中属于整数的有﹣2,﹣3,﹣4,﹣5,﹣6,共5个; 故选:A .【变式4-2】(2020•白云区一模)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种键盘密码,每个字母与所在按键的数字序号对应(如图),如字母Q 与数字序号0对应,当明文中的字母对应的序号为a 时,将a +7除以26后所得的余数作为密文中的字母对应的序号,例如明文“X ”对应密文“W ”. 按上述规定,将密文“TKGDFY ”解密成明文后是( )A .DAISHUB .TUXINGC .BAIYUND .SHUXUE【解题思路】根据“明文”与“密文”的转化规则,由“明文”得出“密文”,反之亦然. 【解答过程】解:由“明文”与“密文”的转换规则可得:故选:C .【变式4-3】(2020秋•铜梁区校级期中)我们知道,正整数按照能否被2整除可以分成两大类:正奇数和正偶数,小明受到启发,按照一个正整数被3整除的余数把正整数分成了3类:如果一个正整数被3整除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3整除余数为2,则这个正整数属于B类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C类,例如3,6,9等.(1)2020属于类.(选填A或B或C)(2)①从A类数中任意取两个数,它们的和属于类.(选填A或B或C)②从A类数中任意取8个数,从B类数中任意取9个数,从C类数中任意取10个数,把它们都加起来,则最后的结果属于类(选填A或B或C);(3)从A类数中任意取出m个数,从B中任意取出n个数,把它们都加起来,若最后的结果属于C类,则关于下列关于m、n的叙述中正确的是.(填序号)①m+2n属于C类;②|m﹣n|属于B类;③m属于A类,n属于B类;④m、n属于同一类.【解题思路】(1)计算2020÷3,根据计算结果即可求解;(2)①从A类数中任取两个数进行计算,即可求解;②从A类数中任意取出8数,从B类数中任意取出9个,从C类数中任意取出10数,把它们的余数相加,再除以3,根据余数判断即可求解;(3)根据m,n的余数之和,举例,观察即可判断.【解答过程】解:(1)2020÷3=673…1,所以2020被3除余数为1,属于A类;故答案为:A;(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,被3除余数为2,则它们的和属于B类;②从A类数中任意取出8数,从B类数中任意取出9数,从C类数中任意取出10数,把它们的余数相加,得(8×1+9×2+10×0)=26÷3=8…2,∴余数为2,属于B类;故答案为:①B;②B;(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m﹣n|=0,不属于B类,②错误;③若m=1,n=1,③错误;④观察可发现若m+2n属于C类,m,n必须是同一类,④正确;综上,①④正确.故答案为:①④.【题型5 有理数除法的实际应用题】【例5】(2020秋•吉安期中)气象统计资料表明,高度每增加1000米,气温就降低大约5℃,我省著名风景区庐山的最高峰高于地面约为1200米,若现在地面温度约为3℃,则山顶气温大约是多少?【解题思路】根据题意列出算式,计算即可求出值.【解答过程】解:根据题意得:3﹣1200÷1000×5=3﹣6=﹣3(℃),则山顶气温大约是﹣3℃.【变式5-1】(2021春•南岗区校级月考)温度的变化与高度有关:高度每增加1km,气温大约下降5.8℃.(1)已知地表温度是12℃,则此时高度为3km的山顶温度是多少?(2)如果山顶温度是﹣6.1℃,此时地表温度是20℃,那么这座山的高度是多少?【解题思路】(1)根据题意,列出算式进行计算;(2)先求温度差,利用温度差除以5.8,得高度.【解答过程】解:(1)依题意,得12﹣3×5.8=12﹣17.4=﹣5.4(℃).答:山顶温度为﹣5.4℃.(2)[20﹣(﹣6.1)]÷5.8=26.1÷5.8=4.5 (千米)答:这座山的高度为4.5千米.【变式5-2】(2020秋•肇源县期末)在湖北省抗击新冠病毒期间,国家实行“一省帮一市对口”支援,春雨矿泉水厂向武汉市的某地区运送矿泉水,该地区人口约12万,每人每天需2瓶水,24瓶水装成一箱,则该厂每天需要装运多少箱矿泉水?【解题思路】先计算每天需要矿泉水的瓶数,再用总瓶数除以每箱矿泉水的瓶数即可得出答案.【解答过程】解:120000×2÷24=10000(箱),答:则该厂每天需要装运10000箱矿泉水.【变式5-3】(2020秋•杨浦区校级期中)某中学举行“新冠肺炎”防控知识竞赛,全校一共有100位学生参赛,比赛设一、二、三等奖三个奖项,其中,获得一等奖、二等奖和三等奖的人数情况如下表所示,根据表格回答:奖项 一等奖 二等奖 三等奖 人数101625(1)一等奖人数是三等奖人数的几分之几?(2)一、二等奖人数之和占全校参赛学生人数的几分之几? (3)三等奖人数比二等奖人数多了几分之几? 【解题思路】(1)10除以25即可得答案,(2)一、二等奖人数和除以全校参赛学生人数即得答案,(3)三等奖人数减去二等奖人数的差,再除以二等奖人数即是答案. 【解答过程】解:(1)10÷25=25, 答:一等奖人数是三等奖人数的25;(2)(10+16)÷100=26÷100=1350, 答:一、二等奖人数之和占全校参赛学生人数的1350;(3)(25﹣16)÷16=9÷16=916, 答:三等奖人数比二等奖人数多了916.【题型6 有理数除法的运算步骤问题】【例6】(2020秋•启东市校级月考)阅读后回答问题: 计算(−52)÷(﹣15)×(−115) 解:原式=−52÷[(﹣15)×(−115)]① =−52÷1 ② =−52③(1)上述的解法是否正确?答: 若有错误,在哪一步?答: (填代号)错误的原因是:(2)这个计算题的正确答案应该是: .【解题思路】(1)直接利用有理数的乘除运算法则分析即可; (2)直接利用有理数的乘除运算法则计算即可. 【解答过程】解:(1)答:不正确 若有错误,在哪一步?答:①(填代号)错误的原因是:运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行; (2)原式=−52÷(﹣15)×(−115) =−52×115×115=−190, 这个计算题的正确答案应该是:−190. 故答案为:−190. 【变式6-1】(2021秋•大安市期末)阅读下面的解题过程: 计算(﹣15)÷(13−12)×6解:原式=(﹣15)÷(−16)×6(第一步) =(﹣15)÷(﹣1)(第二步) =﹣15(第三步)回答:(1)上面解题过程中有两处错误,第一处是第 步,错误的原因是 ,第二处是第 步,错误的原因是 .(2)把正确的解题过程写出来.【解题思路】(1)从第一步到第二步,先计算除法,再计算乘法,所以第1处是第二步,错误原因是运算顺序错误;然后根据有理数除法的运算方法,可得第2处是第三步,错误原因是得数错误. (2)根据有理数除法、乘法的运算方法,从左向右,求出算式的值是多少即可.【解答过程】解:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是得数错误. (2)(﹣15)÷(13−12)×6=(﹣15)÷(−16)×6=(﹣15)×(﹣6)×6 =90×6 =540.故答案为:二、运算顺序错误;三、得数错误.【变式6-2】(2020秋•上蔡县期中)阅读下列材料:计算50÷(13−14+112).解法一:原式=50÷13−50÷14+50÷112=50×3﹣50×4+50×12=550. 解法二:原式=50÷(412−312+112)=50÷212=50×6=300.解法三:原式的倒数为(13−14+112)÷50=(13−14+112)×150=13×150−14×150+112×150=1300.故原式=300.上述得出的结果不同,肯定有错误的解法,你认为解法 是错误的.请你选择合适的解法解答下列问题: 计算:(−142)÷(16−314+23−27) 【解题思路】根据有理数的除法,可转化成有理数的乘法,可得答案; 根据有理数的运算顺序,先算括号里面的,再算有理数的除法,可得答案. 【解答过程】解:没有除法分配律,故解法一错误; 故答案为:一. 原式=(−142)÷(56−36) =(−142)×3 =−114.【变式6-3】(2020秋•鄂托克旗期末)小华在课外书中看到这样一道题: 计算:136÷(14+112−718−136)+(14+112−718−136)÷136. 她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果. (4)根据以上分析,求出原式的结果. 【解题思路】(1)根据倒数的定义可知:136÷(14+112−718−136)与(14+112−718−136)÷136互为倒数;(2)利用乘法的分配律可求得(14+112−718−136)÷136的值;(3)根据倒数的定义求解即可; (4)最后利用加法法则求解即可.【解答过程】解:(1)前后两部分互为倒数; (2)先计算后一部分比较方便. (14+112−718−136)÷136=(14+112−718−136)×36=9+3﹣14﹣1=﹣3; (3)因为前后两部分互为倒数,所以136÷(14+112−718−136)=−13;(4)根据以上分析,可知原式=−13+(−3)=−313.。

人教版七年级数学上册第一单元《1.4.2有理数的除法法则》教案设计

人教版七年级数学上册第一单元《1.4.2有理数的除法法则》教案设计

人教版七年级数学上册第一单元《有理数的除法法则》教案设计1.4.2有理数的除法第1课时有理数的除法法则1.理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运算;(重点)2.通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.(难点)一、情境导入1.计算:(1)25×0.2=________; (2)12×(-3)=________;(3)(-1.2)×(-2)=________;(4)(-125)×0=________. 2.由(-3)×4=________,再由除法是乘法的逆运算,可得(-12)÷(-3)=4,(-12)÷4=______.同理,(-3)×(-4)=________,12÷(-4)=________,12÷(-3)=________. 观察上面的算式及计算结果,你有什么发现?换一些算式再试一试.二、合作探究探究点一:有理数的除法及分数化简【类型一】 直接判定商的符号和绝对值进行除法运算计算:(1)(-15)÷(-3);(2)12÷(-14); (3)(-0.75)÷(0.25).解析:采用有理数的除法:两数相除,同号得正,异号得负,并把绝对值相除解答. 解:(1)(-15)÷(-3)=+(15÷3)=5;(2)12÷(-14)=-(12÷14)=-48; (3)(-0.75)÷(0.25)=-(0.75÷0.25)=-3.方法总结:注意先确定运算的符号.根据“同号得正,异号得负”的法则进行计算.本题属于基础题,考查对有理数的除法运算法则掌握的程度. 【类型二】 分数的化简 化简下列分数: (1)-21-7=________;(2)-36=________;(3)-6-0.3=________;(4)-28-49=________. 解析:(1)-21-7=-7×3-7=3;(2)-36=-3(-3)×(-2)=-12;(3)-6-0.3=(-0.3)×20-0.3=20;(4)-28-49=2849=4×77×7=47. 解:(1)3;(2)-12;(3)20;(4)47. 方法总结:化简分数时要注意分子、分母的符号,同号结果为正,异号结果为负.【类型三】 将除法转化为乘法进行计算计算:(1)(-18)÷(-23); (2)16÷(-43)÷(-98). 解析:本题可采用有理数的除法:除以一个数就等于乘以这个数的倒数解答.解:(1)(-18)÷(-23)=(-18)×(-32)=18×32=27; (2)16÷(-43)÷(-98)=16×(-34)×(-89)=16×34×89=323. 方法总结:此题考查了有理数的除法运算,有理数的除法运算通常利用除以一个数等于乘以这个数的倒数化为乘法运算来求.【类型四】 根据a b ,a +b 的符号,判断a 和b 的符号如果a +b <0,a b >0,那么这两个数( )A .都是正数B .符号无法确定C .一正一负D .都是负数解析:∵a b>0,根据“两数相除,同号得正”可知,a 、b 同号,又∵a +b <0,∴可以判断a 、b 均为负数.故选D.方法总结:此题考查了有理数乘法和加法法则,将二者综合考查是考试中常见的题型,此题的侧重点在于考查学生的逻辑推理能力.探究点二:有理数的乘除混合运算计算:(1)-2.5÷58×(-14); (2)(-47)÷(-314)×(-112). 解析:(1)把小数化成分数,同时把除法变成乘法,再根据有理数的乘法法则进行计算即可.(2)首先把乘除混合运算统一成乘法,再确定积的符号,然后把绝对值相乘,进行计算即可.解:(1)原式=-52×85×(-14)=52×85×14=1; (2)原式=(-47)×(-143)×(-32)=-(47×143×32)=-4. 方法总结:解题的关键是掌握运算方法,先统一成乘法,再计算.三、板书设计有理数除法法则:1.任何数除以一个不为0的数,等于乘以这个数的倒数,即a ÷b =a ×1b(b ≠0). 2.(1)两个数相除,同号为正,异号得负,并把绝对值相除.(2)0除以任何一个不为0的数,都得0.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计是可以采用课本的引例做为探究除法法则的导入.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.教学时应该使学生掌握除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则求解;2.在多个有理数进行除法运算或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.1.4.2 有理数的除法第1课时有理数的除法法则教学目标:1.了解有理数除法的定义.2.经历探索有理数除法法则的过程,会进行有理数的除法运算.3.会化简分数.教学重点:正确应用法则进行有理数的除法运算.教学难点:怎样根据不同的情况来选取适当的方法求商.教与学互动设计:(一)创设情境,导入新课1.小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?(50×20=1000)放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?(1000÷50=20).2.从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?(二)合作交流,解读探究1.比较大小:8÷(-4)8×(-);(-15)÷3 (-15)×;(-1)÷(-2)(-1)×(-).小组合作完成上面题目的填空,探讨并归纳出有理数的除法法则.2.运用法则计算:(1)(-15)÷(-3);(2)(-12)÷(-);(3)(-8)÷(-).观察商的符号及绝对值同被除数和除数的关系,探讨归纳有理数除法法则的另一种说法.3.师生共同完成课本P34例5,P35例6、例7.乘除混合运算该怎么做呢?通过课本P36例7的学习,由学生自己叙述计算的方法:先将除法转换为乘法,然后确定积的符号,最后求出结果.(三)应用迁移,巩固提高1.计算:(1)(-36)÷9;(2)(-63)÷(-9);(3)(-)÷;(4)0÷3;(5)1÷(-7);(6)(-6.5)÷0.13;(7)(-)÷(-);(8)0÷(-5).2.化简下列分数:(1);(2);(3);(4).(四)总结反思,拓展升华本节课大家一起学习了有理数除法法则.有理数的除法计算有2种方法:一是根据“除以一个数等于乘以这个数的倒数”,二是根据“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第二种方法.(五)课堂跟踪反馈夯实基础1.选择题(1)如果一个数除以它的倒数,商是1,那么这个数是()A.1B.2C.-1D.±1(2)若两个有理数的商是负数,那么这两个数一定是()A.都是正数B.都是负数C.符号相同D.符号不同提升能力2.计算题(1)(-2)÷(-);(2)3.5÷÷(-1); (3)-÷(-7)÷(-);(4)(-1)÷(+)÷(-).第2课时 有理数的加、减、乘、除混合运算1.能熟练地运用有理数的运算法则进行有理数的加、减、乘、除混合运算;(重点)2.能运用有理数的运算律简化运算;(难点)3.能利用有理数的加、减、乘、除混合运算解决简单的实际问题.(难点)一、情境导入1.在小学我们已经学习过加、减、乘、除四则运算,其运算顺序是先算________,再算________,如果有括号,先算__________里面的.2.观察式子3×(2+1)÷(5-12),里面有哪几种运算,应该按什么运算顺序来计算? 二、合作探究 探究点一:有理数的加、减、乘、除混合运算计算:(1)(2-13)×(-6)-(1-12)÷(1+13); (2)(-316-113+114)×(-12). 解析:(1)先计算括号内的,再按“先乘除,后加减”的顺序进行;(2)可考虑利用乘法的分配律进行简便计算.解:(1)(2-13)×(-6)-(1-12)÷(1+13)=53×(-6)-12÷43=(-10)-12×34=-10-38=-1038; (2)(-316-113+114)×(-12)=(-3-16-1-13+1+14)×(-12)=(-3-14)×(-12)=-3×(-12)-14×(-12)=3×12+14×12=36+3=39. 方法总结:在进行有理数的混合运算时,应先观察算式的特点,若能应用运算律进行简化运算,就先简化运算,在简化运算后,再利用混合运算的顺序进行运算.探究点二:运用计算器进行有理数的混合运算用计算器计算:-25÷5-15×(-23). 解析:不同品牌的计算器的操作方法可能有所不同,具体参见计算器的使用说明. 解:按键顺序为(-)25÷5-15×(-)2÷3=就可得结果为5.探究点三:有理数混合运算的应用已知海拔每升高1000m ,气温下降6℃,某人乘热气球旅行,在地面时测得温度是8℃,当热气球升空后,测得高空温度是-1℃,热气球的高度为________m.解析:此类问题考查有理数的混合运算,解题时要正确理解题意,列出式子求解,由题意可得[8-(-1)]×(1000÷6)=1500(m),故填1500.方法总结:本题的考点是有理数的混合运算,熟练运用运算法则是解题的关键.三、板书设计1.有理数加减乘除混合运算的顺序:先算乘除,再算加减,有括号的先算括号里面的,同级运算从左到右依次进行.2.利用运算律简化运算3.运用计算器进行有理数的混合运算4.有理数混合运算的应用这节课主要讲授了有理数的加减乘除混合运算.运算顺序“先乘除后加减”学生早已熟练掌握,让学生学会分析题目中所包含的运算是本节课的重难点.在教学时,要注意结合学生平时练习中出现的问题,及时纠正和指导,培养学生良好的解题习惯.1.4.2 有理数的除法第4课时有理数的加、减、乘、除混合运算教学目标:掌握有理数加、减、乘、除运算的法则及运算顺序,能够熟练运算.教学重难点:如何按有理数的运算顺序,正确而合理地进行计算.教与学互动设计:(一)创设情境,导入新课观察式子×(-)×÷里有哪种运算,应该按什么运算顺序来计算较简便?(二)合作交流,解读探究引导首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.另外带分数进行乘除运算时,必须化成假分数.注意有理数混合运算的步骤:先乘除,后加减,有括号先算括号里面的.(三)应用迁移,巩固提高【例1】(1)-3÷2÷(-2);(2)-×(-1)÷(-2);(3)-÷×(-)÷(-);(4)20÷(-4)×5+5×(-3)÷15-7.【例2】某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?(四)总结反思,拓展升华引导学生一起小结:①有理数的运算顺序:先乘除,后加减,有括号的先算括号里面的;②要注意认真审题,根据题目意思正确选择途径,仔细运算,注意检查,使结果无误.(五)课堂跟踪反馈夯实基础1.选择题(1)下列各数中互为倒数的是()A.4和-B.-0.75和-C.-1和1D.-5和(2)若a<b<0,那么下列式子成立的是()A.<B.ab<1C.>1D.<12.若a、b互为倒数,c、d互为相反数,m为最大的负整数,则+ab+= .提升能力3.计算题(1)(-4)÷(-2)÷(-1);(2)(-5)÷(-1)××(-2)÷7;(3)1÷(-1)+0÷(-5.6)-(-4.2)×(-1);(4)÷(+-).4.已知a、b互为相反数,c、d互为倒数,x的绝对值为1,求3x-(a+b+cd)-x.。

[新人教版七年级上册课件]有理数除法(1)

[新人教版七年级上册课件]有理数除法(1)

1 0 4 0 4
除以一个非零的数等于乘以这个正数的倒数。
有理数除法法则:
除以一个数, 等于_________________. 乘以这个数的倒数
1 a÷b=a · (b≠0). b
注意:除法在运算时有 2 个要素要发生变化。
变 1 除 乘 变 2 除数 倒数
例1 计算: (1) (-36) ÷9
观察右侧算式, 两个有理数相除时: 除法能否转化为乘法? 商的符号如何确定? 商的绝对值如何确定?
正数除以正数 负数除以正数 零除以正数 因为 所以
1 8÷4 =2 8 =2 4 1 (-8)÷4 =-2 ( 8) =-2 4 1 0÷4 =0 0 =0 4
1 8 4 8 (-2)×4= -8, 4 1 ( 8)-2. 4 ( 8) (-8)÷ 4= 4
计算:
2 (5) 1 ( ) 5
例3:计算:
5 5 1 1.(125 ) (5); 2. 2.5 ( ) 7 8 4 5 5 1 解 : ( 125 ) ( 5) 2. 2.5 ( ) 7 8 4 5 1 5 8 1 (125 ) 7 5 2 5 4 1 5 1 125 1 5 7 5 1 1 25 25 7 7
例4
化简下列分数:
12 (1) 3 45 (2) 12
分数可以理解 为分子除以分 母.
12 解: (1) 3
=(-12) ÷3=-4 =(-45) ÷(-12)
=45÷12
45 (2) 12
15 = 4
化简:
72 (1) ; 9
30 (2) 45
(3)
0 75
, 并把绝对值相除

1.4.2 第1课时 有理数的除法法则教案

1.4.2 第1课时 有理数的除法法则教案

第一章 有理数1.4 有理数的乘除法1.4.2 有理数的除法第1课时 有理数的除法法则学习目标:1.认识有理数的除法,经历除法的运算过程.2.理解除法法则,体验除法与乘法的转化关系.3.掌握有理数的除法及乘除混合运算.重点:有理数的除法法则及运算. 难点:准确、熟练地运用除法法则.一、知识链接 1.填一填:2.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘. 一个数同0相乘,仍得________. 3.进行有理数乘法运算的步骤: (1)确定_____________; (2)计算____________. 二、新知预习1.根据除法是乘法的逆运算填空: (+2)×(+3)=+6(+6)÷(+2)=_________,对162+⨯=__________. (-2)×(-3)=+6(+6)÷(-2)=_________, 比 16()2+⨯-=__________. 2.对比观察上述式子,你有什么发现?【自主归纳】 有理数的除法法则:除以一个数(不等于0)等于乘这个数的____________. 3.根据有理数的乘法法则和除法法则,讨论:(1)同号两数相除,商的符号怎样确定,结果等于什么?(2(3)0除以任何一个不等于0【自主归纳】两数相除,同号得任何不等于0的数都得______.三、自学自测计算:(1) (-8)÷(-4);(3)213532⎛⎫⎛⎫-÷⎪ ⎪⎝⎭⎝⎭;四、我的疑惑一、要点探究探究点1问题1:(-4)×6×(-3/5)×-8÷8÷(-4)= 8-36÷ 6=-12/25 ÷ (-3/5)= (-12/25) -72 ÷9= -72问题2:问题3:(1)-54 ÷(-9);(2)-27 ÷ 3(3)0 ÷(-7); (4)-24÷(-6).思考:从上面我们能发现商的符号有什么规律?有理数除法法则(二):两数相除,同号得 ,异号得 ,并把绝对值 . 0除以任何一个不等于0的数,都得 . 思考:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?归纳:两个法则都可以用来求两个有理数相除.如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1 计算(1)(-36)÷ 9; (2)(-2512)÷(-53).例2 化简下列各式: (1)312-;(2)1245--探究点2:有理数的乘除混合运算 例3 计算 (1)(-12575)÷(-5);(2)-2.5÷85×(-41).方法归纳:(1)有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算;(2)乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).1.(1)(-24)÷4; (2) (-18)÷(-9); (3) 10÷(-5).2.计算:(1)(-24)÷[(-32)×49];(2)(-81)÷214×49÷(-16).二、课堂小结 一、有理数除法法则: 1.a ÷b =a ×b1(b ≠0)。

初一有理数除法法则

初一有理数除法法则

初一有理数除法法则有理数除法是数学中的一个重要概念,它是指对有理数进行除法运算的规则和原则。

在初一阶段,我们需要掌握有理数除法法则,以便能够正确地进行有理数的除法运算。

本文将介绍初一有理数除法法则的相关知识。

一、有理数的定义有理数是指可以表示为两个整数之比的数,包括正整数、负整数、零和分数。

有理数可以用分数形式表示,也可以用小数形式表示。

有理数分为正有理数和负有理数两类。

二、有理数的除法法则有理数的除法法则包括以下几个重要的原则:1. 除以正数:如果一个有理数除以一个正数,其结果的符号与被除数的符号相同。

例如,-12除以3的结果为-4,12除以3的结果为4。

2. 除以负数:如果一个有理数除以一个负数,其结果的符号与被除数的符号相反。

例如,-12除以-3的结果为4,12除以-3的结果为-4。

3. 被除数为0:任何一个有理数除以0都是没有意义的,因为0不能作为除数。

4. 0除以任何数:0除以任何非零数的结果都是0。

5. 两个负数相除:两个负数相除的结果是正数。

例如,-12除以-3的结果为4。

6. 两个正数相除:两个正数相除的结果是正数。

例如,12除以3的结果为4。

7. 正数除以负数:正数除以负数的结果是负数。

例如,12除以-3的结果为-4。

8. 负数除以正数:负数除以正数的结果是负数。

例如,-12除以3的结果为-4。

三、实例分析以下是一些实例,用来进一步说明有理数除法法则的应用:1. 例题一:计算-15除以3。

根据除以正数的法则,结果的符号与被除数的符号相同,所以-15除以3的结果为-5。

2. 例题二:计算-15除以-3。

根据两个负数相除的法则,结果是正数,所以-15除以-3的结果为5。

3. 例题三:计算15除以-3。

根据正数除以负数的法则,结果是负数,所以15除以-3的结果为-5。

4. 例题四:计算0除以5。

根据0除以任何数的法则,结果都是0,所以0除以5的结果为0。

四、总结初一有理数除法法则是进行有理数除法运算必须遵守的规则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习难点
理解商的符号及其绝对值与被除数和除数的关系
教具
彩粉笔
学法指导
由小学的乘除法入手,小组合作探究有理数的乘除法的关系,最后完成检测
一、预习导学
1、小红从家里到学校,每分钟走50米,共走了20分钟。
问小红家离学校有米,列出的算式为。
2、放学时,小红仍然以每分钟50米的速度回家,应该走分钟。列出的
算式为
五、课堂小结
1、本节课你有什么收获?
2、你还有什么疑惑?
六、课堂检测
1、判断
(1)如果两数相除,结果为正,则这两个数同正或同负()
(2)零除任何数,都等于零();
(3)零没有倒数();
(4)互为相反数的两个数,乘积为负();
(5)任何数的倒数都不会大于它本身();
(6)若 ,则 ( )
2、计算:
(1)( )÷6 (2) (-18)÷(-12)÷(- )
从上面这个例子你可以发现,有理数除法与乘法之间的关系是
3、写出下列各数的倒数
-4的倒数, 的倒数,
-1 的倒数;0.2的倒数___________
二、合作交流、探究新知
活动一
比较大小8÷(-4)8×(一 );
(-15)÷3(-15)×
备注
小组合作交流、并与小学里学习的乘除方法进行类比与对比
(一1 )÷(一2)(-1 )×(一 );
3.化简下列分数:
(1) (2)
(3) (4)
三、巩固练习
计算(1)(-36)÷9(2)(- )÷(- )
思考
在有理数的除法法则(1)中,什么发生了变化
分数表示的是分子除以分母
(3)-96÷(-16)(4)-6.5÷0.13
四、能力提升
1、计算:
2、下列计算正确吗?为什么?
3÷ ÷
=3÷1
=3
3、已知 , 互为倒数, , 互为相反数,求 的值.
(3)(- )÷3 (4)(-6)÷(-4)÷(- )





活动二
1、归纳有理数的除法法则:
(1)、除以一个不等于0的数,等于;
用字母表示为:a÷b=_______________________
(2)、两数相除,同号得,异号得,并把绝对值相,0除以任何一个不等于0的数,都得;
2、运用法则计算:
(1)(-15)÷(-3);(2)(-12)÷(一 );(3)(-8)÷(一 )
第五中学备课专用稿(改进版)
七年数学组第1课时总2课时
课题
有理数的除法
(一)
集体备课时间:9月30日第__5__周
授课时间:10月9日第__6_周
主Hale Waihona Puke 人审核人学习目标1、理解除法是乘法的逆运算;
2、掌握除法法则,会进行有理数的除法运算;
3、经历利用已有知识解决新问题的探索过程
学习重点
有理数的除法法则
相关文档
最新文档