八年级数学14.3.2因式分解-公式法(2完全平方)集体备课教学课件
合集下载
人教版八年级上册数学14.3.2公式法第2课时利用完全平方公式分解因式课件

=(x 6)2
(2) y 2 2 y 1 x2
(2)原式=(y 1)2 x2
=(y 1 x)(y 1 x)
(3) 4(2a b)2 4(2a b) 1
(3)原式=[2(2a b)]2 2 2(2a b) 112
=(4a 2b 1)2
6.计算: (1) 38.92 2 38.9 48.9 48.92
法叫做公式法.
【课本P119 练习 第2题】
强化练习
分解因式:
(1)x2+12x+36; =(x+6)²
(2)-2xy-x2-y2; =-(x+y)²
(3)a2+2a+1.
=(a+1)²
【课本P119 练习 第2题】
强化练习
分解因式:
(4)4x2-4x+1; =(2x-1)²
(5)ax2+2a2x+a3; =a(x+a)²
B. x( x 2 y)2
D. x(4 xy 4 y 2 x2)
1
3.若m=2n+1,则m²-4mn+4n²的值是________.
4.若关于x的多项式 x²-8x+m²是完全平方式,则m 的
±4
值为________.
5.把下列多项式因式分解.
(1) x2 12 x 36
解:(1)原式=x2 2 x 6 62
2
(4 x+3);
2
2
(2) x 2 4 xy 4 y 2
( x 2 4 xy 4 y 2 )
[ x 2 2 x 2 y (2 y)2 ]
例6 分解因式:
(2) y 2 2 y 1 x2
(2)原式=(y 1)2 x2
=(y 1 x)(y 1 x)
(3) 4(2a b)2 4(2a b) 1
(3)原式=[2(2a b)]2 2 2(2a b) 112
=(4a 2b 1)2
6.计算: (1) 38.92 2 38.9 48.9 48.92
法叫做公式法.
【课本P119 练习 第2题】
强化练习
分解因式:
(1)x2+12x+36; =(x+6)²
(2)-2xy-x2-y2; =-(x+y)²
(3)a2+2a+1.
=(a+1)²
【课本P119 练习 第2题】
强化练习
分解因式:
(4)4x2-4x+1; =(2x-1)²
(5)ax2+2a2x+a3; =a(x+a)²
B. x( x 2 y)2
D. x(4 xy 4 y 2 x2)
1
3.若m=2n+1,则m²-4mn+4n²的值是________.
4.若关于x的多项式 x²-8x+m²是完全平方式,则m 的
±4
值为________.
5.把下列多项式因式分解.
(1) x2 12 x 36
解:(1)原式=x2 2 x 6 62
2
(4 x+3);
2
2
(2) x 2 4 xy 4 y 2
( x 2 4 xy 4 y 2 )
[ x 2 2 x 2 y (2 y)2 ]
例6 分解因式:
人教版八年级上册14.3.2因式分解-平方差公式(教案)

同学们,今天我们将要学习的是《平方差公式》这一章节。在开始之前,我想先问大家一个问题:“你们在解数学题时是否遇到过需要分解多项式的情况?”例如,x² - 4这样的表达式。这个问题与我们将要学习的平方差公式密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方差公式的奥秘。
(二)新课讲授(用时10分钟)
在小组讨论环节,我发现同学们的参与度很高,能够积极提出自己的观点,并尝试解决实际问题。但我也注意到,部分小组在讨论过程中可能会偏离主题,这需要我在以后的课堂上更加注意引导,确保讨论的内容紧扣教学目标。
此外,对于平方差公式与完全平方公式的混淆问题,我觉得在今后的教学中,我应该设计一些对比练习,帮助同学们明确这两个公式的区别和适用场景。通过具体的练习,让他们在实际操作中感受到这两个公式的不同。
五、教学反思
在今天的教学过程中,我发现同学们对于平方差公式的理解整体上是积极的,但也存在一些需要我进一步关注和引导的地方。在讲解平方差公式时,我注意到有些同学在推导过程中对(a + b)(a - b) = a² - b²的理解还不够深入,可能需要通过更多的实际例题来加强他们的理解。
课堂上,我尝试通过引入日常生活中的例子来激发同学们的兴趣,这种方式似乎收到了不错的效果。大家对于将数学知识应用到实际生活中的讨论非常积极,这让我感到欣慰。然而,我也意识到在接下来的课程中,需要更多地设计这样的环节,让同学们感受到数学的实用性和趣味性。
3.成展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平方差公式在实际数学题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
(二)新课讲授(用时10分钟)
在小组讨论环节,我发现同学们的参与度很高,能够积极提出自己的观点,并尝试解决实际问题。但我也注意到,部分小组在讨论过程中可能会偏离主题,这需要我在以后的课堂上更加注意引导,确保讨论的内容紧扣教学目标。
此外,对于平方差公式与完全平方公式的混淆问题,我觉得在今后的教学中,我应该设计一些对比练习,帮助同学们明确这两个公式的区别和适用场景。通过具体的练习,让他们在实际操作中感受到这两个公式的不同。
五、教学反思
在今天的教学过程中,我发现同学们对于平方差公式的理解整体上是积极的,但也存在一些需要我进一步关注和引导的地方。在讲解平方差公式时,我注意到有些同学在推导过程中对(a + b)(a - b) = a² - b²的理解还不够深入,可能需要通过更多的实际例题来加强他们的理解。
课堂上,我尝试通过引入日常生活中的例子来激发同学们的兴趣,这种方式似乎收到了不错的效果。大家对于将数学知识应用到实际生活中的讨论非常积极,这让我感到欣慰。然而,我也意识到在接下来的课程中,需要更多地设计这样的环节,让同学们感受到数学的实用性和趣味性。
3.成展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平方差公式在实际数学题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)

--因式分解的平方差公式
你学了什么方法进行分解因式?
把下列各式因式分解:
(1) ax - ay = a( x – y ) (2) 9a2 - 6ab+3a =3a(a-2b+1) (3) 3a(a+b)-5(a+b) =(a+b)(3a - 5) (4) ax2 - a3 =a(x2-a2) =a(x+a)(x-a) (5) 2xy2 - 50x =2x(y2-25) =2x(y+5)(y - 5)
个整体,加括号
熟记公式 a2 b2 (a b)(a b)
把下列式子分解因式
(x p)2 (x q)2
a² - b²= ( a + b)( a - b )
(1)a2-1
=( a )2-( 1 )2
(2)x4y2-4
=( x2y )2-( 2 )2
(3) 9 x2-0.01y2
49
=( 3
=(x+2)(x-2) =(3+y)(3-y)
(3) 1-a2
(4) 4x2-y2
=(1+a)(1-a) =(2x+y)(2x-y)
把下列各式分解因式
(1) 1-25x2
解: 1-25x2
=12-(5x)2
把两项写成平方的形式,
=(1+5x)(1-5x) 找出a和b。底数既有数
字还有字母,需要看成一
7
x )2-( 0.1y )2
(4)0.0001-121x2源自=( 0.01 )2-( 11x )2
因式分解:
1、 – a4 + 16 2、 4(a+2)2 - 9(a - 1)2 3、 (x+y+z)2 - (x-y-z)2
你学了什么方法进行分解因式?
把下列各式因式分解:
(1) ax - ay = a( x – y ) (2) 9a2 - 6ab+3a =3a(a-2b+1) (3) 3a(a+b)-5(a+b) =(a+b)(3a - 5) (4) ax2 - a3 =a(x2-a2) =a(x+a)(x-a) (5) 2xy2 - 50x =2x(y2-25) =2x(y+5)(y - 5)
个整体,加括号
熟记公式 a2 b2 (a b)(a b)
把下列式子分解因式
(x p)2 (x q)2
a² - b²= ( a + b)( a - b )
(1)a2-1
=( a )2-( 1 )2
(2)x4y2-4
=( x2y )2-( 2 )2
(3) 9 x2-0.01y2
49
=( 3
=(x+2)(x-2) =(3+y)(3-y)
(3) 1-a2
(4) 4x2-y2
=(1+a)(1-a) =(2x+y)(2x-y)
把下列各式分解因式
(1) 1-25x2
解: 1-25x2
=12-(5x)2
把两项写成平方的形式,
=(1+5x)(1-5x) 找出a和b。底数既有数
字还有字母,需要看成一
7
x )2-( 0.1y )2
(4)0.0001-121x2源自=( 0.01 )2-( 11x )2
因式分解:
1、 – a4 + 16 2、 4(a+2)2 - 9(a - 1)2 3、 (x+y+z)2 - (x-y-z)2
人教版八年级数学上册14.《公式法》第2课时教学课件

创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
观察思考
你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积 吗?
a a²
ab a
a
b
同学们拼出的图形为:
ab a b
b² b b
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
观察思考 这个大正方形的面积可以怎么求?
b ab
做一做
分解因式: (1) 3a²x²24a²x48a²
(2)412(xy)+9(xy)²
解:(1)原式 3a²(x²8x16) 3a²(x4)²
有公因式要先提公因式.
(2)原式=2²2×2×3(xy)+3(xy)² 23xy² 23x3y²
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个 数的和(或差)的平方.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
归纳
完全平方式:a²2abb²
完全平方式的特点: 1.必须是三项式(或可以看成三项的); 2.有两个同号的数或式的平方; 3.中间有两底数之积的±2倍.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
延伸
1.计算 : (1)100²21009999²
解:(1)原式(10099)² =1
(2)原式(3416)² 2500
(2)34²+3432+16²
利用完全平方公式分解因式, 可以简化计算
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
延伸
2.如果x²6x+N是一个完全平方式,那么N是( B )
人教版八年级数学上册精品教学课件14.3.2第1课时运用平方差公式因式分解

解:(1)原式=(x2)2-(y2)2
(2) a3 b ab.
分解因式后,一定要检查是 否还有能继续分解的因式, 若有,则需继续分解.
=(x2+y2)(x2-y2) =(x2+y2)(x+y)(x-y);
(2)原式=ab(a2-1) =ab(a+1)(a-1).
分解因式时,一般先用提公 因式法进行分解,然后再用 公式法.最后进行检查.
3.若a+b=3,a-b=7,则b2-a2的值为( A ) A.-21 B.21 D.10 C.-10
4.把下列各式分解因式:
(4a+3b)(4a-3b) (1) 16a2-9b2=_________________; (2) (a+b)2-(a-b)2=_________________; 4ab 9xy(y+2x)(y-2x) (3) 9xy3-36x3y=_________________; (4) -a4+16=_________________. (4+a2)(2+a)(2-a) 5.若将(2x)n-81分解成(4x2+9)(2x+3)(2x-3),则n的值 4 是_____________.
所以,(2n+1)2-25能被4整除.
课堂小结
公
式
a2-b2=(a+b)(a-b)
平方差 公式分 解因式
一提:公因式;
步 骤 二套:公式; 三查:多项式的因式分解有没有分 解到不能再分解为止.
=10×3.6
=36 (cm2) 答:剩余部分的面积为36 cm2.
8. (1)992-1能否被100整除吗? (2)n为整数,(2n+1)2-25能否被4整除? 解:(1)因为 992-1=(99+1)(99-1)=100×98,
(2) a3 b ab.
分解因式后,一定要检查是 否还有能继续分解的因式, 若有,则需继续分解.
=(x2+y2)(x2-y2) =(x2+y2)(x+y)(x-y);
(2)原式=ab(a2-1) =ab(a+1)(a-1).
分解因式时,一般先用提公 因式法进行分解,然后再用 公式法.最后进行检查.
3.若a+b=3,a-b=7,则b2-a2的值为( A ) A.-21 B.21 D.10 C.-10
4.把下列各式分解因式:
(4a+3b)(4a-3b) (1) 16a2-9b2=_________________; (2) (a+b)2-(a-b)2=_________________; 4ab 9xy(y+2x)(y-2x) (3) 9xy3-36x3y=_________________; (4) -a4+16=_________________. (4+a2)(2+a)(2-a) 5.若将(2x)n-81分解成(4x2+9)(2x+3)(2x-3),则n的值 4 是_____________.
所以,(2n+1)2-25能被4整除.
课堂小结
公
式
a2-b2=(a+b)(a-b)
平方差 公式分 解因式
一提:公因式;
步 骤 二套:公式; 三查:多项式的因式分解有没有分 解到不能再分解为止.
=10×3.6
=36 (cm2) 答:剩余部分的面积为36 cm2.
8. (1)992-1能否被100整除吗? (2)n为整数,(2n+1)2-25能否被4整除? 解:(1)因为 992-1=(99+1)(99-1)=100×98,
八年级数学上册14.3.2公式法(二)优质课教案

这两个多项式的形式都是两个数的平方和加上(或减去)这两个数的积的2倍
2、我们把a2+2ab+b2和a2-2ab+b2这样的式子叫做完全平方式
教师引导学生从运算顺序上分析运算得到特点。
先独立思考,后合作交流
学习完全平方式
1.下列多项式是不是完全平方式?为什么?
(1)(2)
(3)(4).
(5) x2+2xy-y2
三、教学目标
(一)知识目标:
(1)掌握完全平方式的特点。
(2)用完全平方式分解因式。
(二)能力目标:
(1)会判定一个多项式是否是完全平方式。
(2)能熟练应用完全平方公式分解因式。
(3)能够综合运用提公因式公式法分解因式。
(三)情感目标:
通过综合应用提公因式法、公式法分解因式进一步培养学生的观察能力,整体思想,分析解决问题的能力。
四、教学流程设计
教学环节
教师活动
学生活动
设计意图
导入:问题情境:
计算
20172-2×2017×2007+20072.
你能快速口算得到答案吗?
课件展示提出问题。
学生独立思考。
激发学生的学习兴趣引入课题
讲授探究新知
知识点一:完全平方式
1、从运算的角度看多项式a2+2ab+b2与a2-2ab+b2.有什么特点?
教师讲解定义
学生回答记忆
学习定义
探究新知
例1分解因式:(1)16x2+24x+9
分析16x2=(4x)2,9=32,24x=2×4x·3,所以16x2+24x+9是一个完全平方式,即
16x2+24x+9=(4x)2+ 2×4x·3+32
2、我们把a2+2ab+b2和a2-2ab+b2这样的式子叫做完全平方式
教师引导学生从运算顺序上分析运算得到特点。
先独立思考,后合作交流
学习完全平方式
1.下列多项式是不是完全平方式?为什么?
(1)(2)
(3)(4).
(5) x2+2xy-y2
三、教学目标
(一)知识目标:
(1)掌握完全平方式的特点。
(2)用完全平方式分解因式。
(二)能力目标:
(1)会判定一个多项式是否是完全平方式。
(2)能熟练应用完全平方公式分解因式。
(3)能够综合运用提公因式公式法分解因式。
(三)情感目标:
通过综合应用提公因式法、公式法分解因式进一步培养学生的观察能力,整体思想,分析解决问题的能力。
四、教学流程设计
教学环节
教师活动
学生活动
设计意图
导入:问题情境:
计算
20172-2×2017×2007+20072.
你能快速口算得到答案吗?
课件展示提出问题。
学生独立思考。
激发学生的学习兴趣引入课题
讲授探究新知
知识点一:完全平方式
1、从运算的角度看多项式a2+2ab+b2与a2-2ab+b2.有什么特点?
教师讲解定义
学生回答记忆
学习定义
探究新知
例1分解因式:(1)16x2+24x+9
分析16x2=(4x)2,9=32,24x=2×4x·3,所以16x2+24x+9是一个完全平方式,即
16x2+24x+9=(4x)2+ 2×4x·3+32
14.3.2公式法 课件 2024—2025学年人教版数学八年级上册

13.在括号内填上适当的数,使之能用完全平方公式进行因式分解.
(1)x2 ( )xy+25y2; (2) 9a2 36ab ( ) .
14.已知a,b,c为三角形的三边,且a2 b2 c2 ab bc ac 0
判断此三角形的形状.
15.证明:无论a,b为何值,a2 b2 6a 10b 40 的值都大于0.
(1)a2b2 10ab 25;
(2) 16m2 40mn 25n2 ;
(3) x2 y2 8xy3 16 y4;
(4) x4 6x2 y2 9 y4 ;
(5) (m n)2 8(m n) 16 ; (6) (x y)2 4xy ;
(7) x2 4x 4;
(8) m2 12m 36 ;
16.若x 2z 3y,求 x2 9 y2 4z2 4xz 的值.
(3) x2 2x 1 ;
(6) 1 x2 x 1; 4
(9) a2 1 ab 1 b2 ; 24
(12) a2b2 6ab 9
2.把下列各式分解因式:
(1)a2 12a 36; (3) 9x2 12xy 4 y2 ; (5) 3x2 6xy 3y2; (7)(a b)2 6(a b) 9; (9) x4 2x2 1 ;
把(a-b)看作一个整体,这个多项式恰好是
(a-b)与5的平方,及(a-b)与5的乘积的2
倍,这样就可以利用完全平方公式分解因式了.
解:(1)m2 10mn 25n2 (m)2 2 (m)(5n) (5n)2 (m 5n)2
(3)(a b)2 1(0 a b) 25 (a b)2 2 5(a b) 52 (a b 5)2
(4)
x2 4x
2
8
x2 4x
(1)x2 ( )xy+25y2; (2) 9a2 36ab ( ) .
14.已知a,b,c为三角形的三边,且a2 b2 c2 ab bc ac 0
判断此三角形的形状.
15.证明:无论a,b为何值,a2 b2 6a 10b 40 的值都大于0.
(1)a2b2 10ab 25;
(2) 16m2 40mn 25n2 ;
(3) x2 y2 8xy3 16 y4;
(4) x4 6x2 y2 9 y4 ;
(5) (m n)2 8(m n) 16 ; (6) (x y)2 4xy ;
(7) x2 4x 4;
(8) m2 12m 36 ;
16.若x 2z 3y,求 x2 9 y2 4z2 4xz 的值.
(3) x2 2x 1 ;
(6) 1 x2 x 1; 4
(9) a2 1 ab 1 b2 ; 24
(12) a2b2 6ab 9
2.把下列各式分解因式:
(1)a2 12a 36; (3) 9x2 12xy 4 y2 ; (5) 3x2 6xy 3y2; (7)(a b)2 6(a b) 9; (9) x4 2x2 1 ;
把(a-b)看作一个整体,这个多项式恰好是
(a-b)与5的平方,及(a-b)与5的乘积的2
倍,这样就可以利用完全平方公式分解因式了.
解:(1)m2 10mn 25n2 (m)2 2 (m)(5n) (5n)2 (m 5n)2
(3)(a b)2 1(0 a b) 25 (a b)2 2 5(a b) 52 (a b 5)2
(4)
x2 4x
2
8
x2 4x
八年级数学人教版(上册)14.3.2《公式法》第2课时PPT课件

1 -2
1 -1 1×(-1)+1×(-2)=5
课堂小结
因
式 x2+(p+q)x+pq型 分 式子的因式分解
十字相乘法
解
1p
1q 1×q+1×p=q+p 一次项系数
拓展提升
1.(2020·内江)分解因式:b4-b2-12 .
分析:将b2看成一个整体a,则原式变形为(b2)2-b2-12,
1.(2019·淄博)分解因式:x3+5x2+6x=_x_(_x_+_2_)(_x_+_3_)_.
分析:x3+5x2+6x =x(x2+5x+6) =x(x+2)(x+3).
12
13 1×3+1×2=5
2.(2019·威海)分解因式:2x2-6x+4=_2_(_x_-1_)_(_x_-2_)_.
分析:2x2-6x+4 =2(x2-3x+2) =2(x-1)(x-2).
新知探究 知识点 运用x2+(p+q)x+pq分解因式
x2+(p+q)x+pq型式子的因式分解 因式分解与整式乘法是方向相反的变形,利用这种关 系可以得出:
x2+(p+q)x+pq=(x+p)(x+q)
利用上式,可以将某些二次项系数为1的二次三项式进 行因式分解.
十字相乘法分解因式的步骤:
(1)分解二次项系数,分别写在十字交叉线的左上角和左
新知探究 跟踪训练
例 分解因式: (1) x2-3x+2;
分析:(1) 1 -1
(2) x2+3x-10. (2) 1 -2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 4
x.
5
17
7 4
x;
(4)4a2+4ab+b2;
(5)a2-ab+b2;
(6)x2-6x-9;
2.请补上一项,使下列多项式成为
完全平方式:
(1) x2+ +y2;
(2)4a2+9b2+
;
(3) x2- +4y2;
(4)a2+ + b2;
(5)x4+2x2y2+ .
a2 2abb2 ab2
绝对挑战
(1)用简便方法计算:
20052 4010 2003 20032 20052 2 2005 2003 20032
(2005 2003)2
4
(2) 计算: 7652×17-2352 ×17.
解:7652×17-2352 ×17 =17(7652 -2352) =17(765+235)(765 -235) =17 ×1 000 ×530 =9 010 000.
首2 2首尾 尾2 =(首±尾)2
例 1:把下列式子分解因式
x2 4xy 4 y2
(x2 4xy 4பைடு நூலகம்y2 )
【x2 2 • x • 2 y (2 y)2】 x 2y2
首2 2首尾 尾2 =(首±尾)2
练习 2.把下列各式分解因式: (1)a2+8a+16; (2)16x4+24x2+9;
能用完全平方公式分解因式的多项式的特点:
两个等式的左边都是三项式,其中两项符号相
同,是一个整式的平方,还有一项(中间项)符号可
“+”可“-”,它是那两项乘积的两倍.
首2 2首尾尾2 首尾2
练习1.下列多项式是完全平方式吗?
(1) 2xy+x2+y2; (2)a2+2ab+4b2;
首2 2首尾尾2
(3)a2+a+
(3)2 0132+2 013能被2 014整除吗?
解:∵2 0132+2013 =2 013(2 013+1) =2 013 ×2 014 ∴ 2 0132+2 013能被2 014整除.
四、课堂小结
1.完全平方式的特征. 2. 分解因式的方法.
如果有公因式,用提取公因式法; 如果没有公因式,就看项数. 若两项,考虑能否用平方差公式; 若三项,考虑能否用完全平方公式. 3.分解因式,必须进行到每一个多项式因式 都不能再分解为止
(2) (2x y)2 6(2x y) 9
(3) 4-12(x-y)+9(x-y)2
练习4:分解因式: (1)a4-2a2b2+b4 (2)(x+y)2-2(x2-y2)+(x-y)2
(3) x4 18x2 81 (4) 4 x3 y 4 x2 y2 xy3
注意: 因式分解一定要
彻底哦!
a2 2abb2 ab2
一般地,利用公式 a2 2abb2 ab2
或a2+2ab+b2=(a+b)2把一个多项式分解因 式的方法,叫做公式法.公式中的a, b可以 是数,也可以是整式.
我们称之为:运用完全平方公式分解因式
例1:把下列式子分解因式
16x2+24x+9
4x2 2 4x3 32 4x 32
14.3.2 公式法(2)
—运用完全平方公式分解因式
1. 计算:(1) x 12 (2) 2 y 32
x2 2x 1 4 y2 12 y 9
2. 根据1题的结果分解因式:
(1) x2 2x 1
x 12
(2) 4 y2 12 y 9
2y 32
怎样将多项式 a2 2ab b2进行因式分解? a2 2ab b2
Q (a b)2 a2 2ab b2 (a b)2 a2 2ab b2
整式乘法 a2 2ab b2 (a b)2 a2 2ab b2 (a b)2
因式分解
利用完全平方公式分解因式
a2 2ab b2 a2+(我2aa们b+b把b)22和多a项2-2式ab+b2叫 a2 2ab b2 做(a完全b)平2 方式.
(3) 49b2 a2 14ab (4) a2 10a 25 (5) 2xy x2 y2
例 2:把下列式子分解因式
(1)3ax2+6axy+3ay2;
(2)(a+b)2 -1(2 a+b)+36 =(a+b-6)2.
练习 3.把下列各式分解因式: (1) 4a2 12ab 9b2