广东2012九年级学业考试(信息卷二)-数学解析
2012年广东深圳数学中考试题试答案解析

深圳市2012年初中毕业生学业考试数学试卷说明:1、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好。
2、全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页。
考试时间90分钟,满分100分。
3、本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。
答题卡必须保持清洁,不能折叠。
4、本卷选择题1—12,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13—23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内。
5、考试结束,请将本试卷和答题卡一并交回。
第一部分 选择题一.选择题(共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.(2012广东深圳3分)-3的倒数是( )A .3B .-3C .13 D .13【答案】D 。
【考点】倒数。
【分析】解:∵(﹣31)×(﹣3)=1, ∴-3的倒数是﹣31. 故选D .2.(2012广东深圳3分)第八届中国(深圳)文博会以总成交额143 300 000 000 元再创新高,将数143 300 000 000 用科学记数法表示为( ) A .1.433×1010 B .1.433×1011 C .1.433×1012 D .0.1433×1012 【答案】B 。
【考点】科学记数法—表示较大的数。
【分析】解:143 300 000 000=1.433×1011; 故选B .3.(2012广东深圳3分)下列图形中,既是轴对称图形,又是中心对称图形的是( )图160° 12A B C D 【答案】A 。
【考点】中心对称图形和轴对称图形。
【分析】解:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
2012年广州市初中毕业生学业考试数学试题(解析版)

2012年广东省广州市中考数学试卷解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(2012•广州)实数3的倒数是()A.﹣B.C.﹣3 D.3考点:实数的性质。
专题:常规题型。
分析:根据乘积是1的两个数互为倒数解答.解答:解:∵3×=1,∴3的倒数是.故选B.点评:本题考查了实数的性质,熟记倒数的定义是解题的关键.2.(2012•广州)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2考点:二次函数图象与几何变换。
专题:探究型。
分析:直接根据上加下减的原则进行解答即可.解答:解:由“上加下减”的原则可知,将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x2﹣1.故选A.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.3.(2012•广州)一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱考点:由三视图判断几何体。
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形,可得为棱柱体,所以这个几何体是三棱柱;故选D.点评:本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.4.( 2012•广州)下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b考点:去括号与添括号;合并同类项。
分析:根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.解答:解:A、6a﹣5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、﹣(a﹣b)=﹣a+b,故此选项正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.点评:此题主要考查了合并同类项,去括号,关键是注意去括号时注意符号的变化,注意乘法分配律的应用,不要漏乘.5.(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()A.26 B.25 C.21 D.20考点:等腰梯形的性质;平行四边形的判定与性质。
2012年广东省初中毕业生学业考试数学试卷及答案

2012年广东省初中数学毕业生学业考试一、选择题(每小题3分,共15分)1. -5的绝对值是()A.5 B.-5 C.D.2.地球半径约为6 4000 000 米,用科学技术法表示为()A.0.64×107B.6.4×106C.64×105D.640×104 3.数据8,8,6,5,6,1,6的众数是()A.1 B.5 C.6 D.84.如左图所示几何体的三视图是()题4图A.B.C.5.已知三角形两边的长分别是4和10,则三角形第三边的长可能是A.5 B.6 C.11 D.16二、填空题(每小题4分,共20分)6.分解因式:7.不等式的解集是8.如图,A、B、C是O的三个点,∠ABC=25°,则∠AOC的度数是题8图9.若x、y为实数,且满足,则的值是10.如图,在□ABCD中,AD=2,AB=4,A=30°.以点A为圆心,AD的长为半径画弧交AB于点E,连结CE,则阴影部分的面积是(结果保留)题10图三、解答题(一)(每小题6分,共30分)11.计算:12.先化简,再求值:(x+3)(x-3)-x(x-2),其中x=413.解方程:14.如图,在∠ABC中,AB=AC,∠ABC=72°(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数。
15.已知:如图,在四边形ABCD中,ABCD,对角线AC,BD相交于点O,BO=DO。
求证:四边形ABCD是平行四边形。
题14图题15图四、解答题(二)(每小题7分,共28分)16.据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?17.如图,直线与反比例函数的图象交于点A(4,2),与x轴交于点B。
2012年广东省中考数学试卷(含解析版)

2012年广东省中考数学试卷一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣2.(3分)地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×1043.(3分)数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.84.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16二、填空题(每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)分解因式:2x2﹣10x=.7.(4分)不等式3x﹣9>0的解集是.8.(4分)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是.9.(4分)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是.10.(4分)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).三、解答题(一)(每小题6分,共30分)11.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.12.(6分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.13.(6分)解方程组:.14.(6分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.15.(6分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO =DO.求证:四边形ABCD是平行四边形.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(7分)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?17.(7分)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x 轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.18.(7分)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).19.(7分)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.21.(9分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD 于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.22.(9分)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).2012年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【考点】15:绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的形式为a×10n,其中1≤a<10,n为整数.【解答】解:6400000=6.4×106.故选:B.【点评】此题考查用科学记数法表示较大的数,其规律为1≤|a|<10,n为比原数的整数位数小1的正整数.3.(3分)数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.8【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义即可求解.【解答】解:6出现的次数最多,故众数是6.故选:C.【点评】本题主要考查了众数的概念,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的,比较简单.4.(3分)如图所示的几何体的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】1:常规题型.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:几何体的主视图是:故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16【考点】K6:三角形三边关系.【专题】2B:探究型.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.【点评】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.二、填空题(每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)分解因式:2x2﹣10x=2x(x﹣5).【考点】53:因式分解﹣提公因式法.【分析】首先确定公因式是2x,然后提公因式即可.【解答】解:原式=2x(x﹣5).故答案是:2x(x﹣5).【点评】本题考查了提公因式法,正确确定公因式是关键.7.(4分)不等式3x﹣9>0的解集是x>3.【考点】C6:解一元一次不等式.【分析】先移项,再将x的系数化为1即可.【解答】解:移项得,3x>9,系数化为1得,x>3.故答案为:x>3.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.8.(4分)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是50°.【考点】M5:圆周角定理.【专题】11:计算题.【分析】根据同弧所对的圆心角等于所对圆周角的2倍,由已知圆周角的度数,即可求出所求圆心角的度数.【解答】解:∵圆心角∠AOC与圆周角∠ABC都对,∴∠AOC=2∠ABC,又∠ABC=25°,则∠AOC=50°.故答案为:50°.【点评】此题考查了圆周角定理的运用,熟练掌握圆周角定理是解本题的关键.9.(4分)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是1.【考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可【解答】解:根据题意得:,解得:.则()2012=()2012=1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.(4分)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是3﹣π(结果保留π).【考点】L5:平行四边形的性质;MO:扇形面积的计算.【专题】16:压轴题.【分析】过D点作DF⊥AB于点F.可求▱ABCD和△BCE的高,观察图形可知阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积,计算即可求解.【解答】解:过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=2,∴阴影部分的面积:4×1﹣﹣2×1÷2=4﹣π﹣1=3﹣π.故答案为:3﹣π.【点评】考查了平行四边形的性质,扇形面积的计算,本题的关键是理解阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积.三、解答题(一)(每小题6分,共30分)11.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣1+=﹣.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.12.(6分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.【考点】4J:整式的混合运算—化简求值.【专题】2B:探究型.【分析】先把整式进行化简,再把x=4代入进行计算即可.【解答】解:原式=x2﹣9﹣x2+2x=2x﹣9,当x=4时,原式=2×4﹣9=﹣1.【点评】本题考查的是整式的混合运算﹣化简求值,在有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.13.(6分)解方程组:.【考点】98:解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入法求出y的值即可.【解答】解:①+②得,4x=20,解得x=5,把x=5代入①得,5﹣y=4,解得y=1,故此方程组的解为:.【点评】本题考查的是解二元一次方程组,熟知解二元一次不等式组的加减消元法和代入消元法是解答此题的关键.14.(6分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.【考点】KH:等腰三角形的性质;N2:作图—基本作图.【专题】2B:探究型.【分析】(1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线即可;(2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的定义得出∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.【解答】解:(1)①一点B为圆心,以任意长长为半径画弧,分别交AB、BC于点E、F;②分别以点E、F为圆心,以大于EF为半径画圆,两圆相交于点G,连接BG角AC于点D即可.(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°,∵BD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°,∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.【点评】本题考查的是基本作图及等腰三角形的性质,熟知角平分线的作法是解答此题的关键.15.(6分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO =DO.求证:四边形ABCD是平行四边形.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】14:证明题;16:压轴题.【分析】先根据AB∥CD可知∠ABO=∠CDO,再由BO=DO,∠AOB=∠DOC即可得出△ABO≌△CDO,故可得出AB=CD,进而可得出结论.【解答】证明:∵AB∥CD,∴∠ABO=∠CDO,在△ABO与△CDO中,∵,∴△ABO≌△CDO(ASA),∴AB=CD,∴四边形ABCD是平行四边形.【点评】本题考查的是平行四边形的判定、全等三角形的判定与性质,熟知平行四边形的判定定理是解答此题的关键.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(7分)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?【考点】AD:一元二次方程的应用.【专题】123:增长率问题.【分析】(1)设年平均增长率为x.根据题意2010年公民出境旅游总人数为5000(1+x)万人次,2011年公民出境旅游总人数5000(1+x)2 万人次.根据题意得方程求解;(2)2012年我国公民出境旅游总人数约7200(1+x)万人次.【解答】解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得:5000(1+x)2 =7200,解得x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1+x)=7200×(1+20%)=8640(万人次).答:预测2012年我国公民出境旅游总人数约8640万人次.【点评】此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.17.(7分)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x 轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.【考点】GB:反比例函数综合题.【专题】31:数形结合.【分析】(1)先把(4,2)代入反比例函数解析式,易求k,再把y=0代入一次函数解析式可求B点坐标;(2)假设存在,然后设C点坐标是(a,0),然后利用两点之间的公式可得=,借此无理方程,易得a=3或a=5,其中a=3和B点重合,舍去,故C点坐标可求.【解答】解:(1)把(4,2)代入反比例函数y=,得k=8,把y=0代入y=2x﹣6中,可得x=3,故k=8;B点坐标是(3,0);(2)假设存在,设C点坐标是(a,0),∵AB=AC,∴=,即(4﹣a)2+4=5,解得a=5或a=3(此点与B重合,舍去)故点C的坐标是(5,0).【点评】本题考查了反比函数的知识,解题的关键是理解点与函数的关系,并能灵活使用两点之间的距离公式.18.(7分)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).【考点】T9:解直角三角形的应用﹣坡度坡角问题;TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先在直角三角形ABC中根据坡角的正切值用AB表示出BC,然后在直角三角形DBA中用BA表示出BD,根据BD与BC之间的关系列出方程求解即可.【解答】解:∵在直角三角形ABC中,=tanα=,∴BC=∵在直角三角形ADB中,∴=tan26.6°=0.50即:BD=2AB∵BD﹣BC=CD=200∴2AB﹣AB=200解得:AB=300米,答:小山岗的高度为300米.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并求解.19.(7分)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5==;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.【考点】37:规律型:数字的变化类.【分析】(1)(2)观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.(3)运用变化规律计算.【解答】解:根据观察知答案分别为:(1);;(2);;(3)a1+a2+a3+a4+…+a100=×(1﹣)+×(﹣)+×(﹣)+×(﹣)+…+×=(1﹣+﹣+﹣+﹣+…+﹣)=(1﹣)=×=.【点评】此题考查寻找数字的规律及运用规律计算.寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.【考点】62:分式有意义的条件;6D:分式的化简求值;X6:列表法与树状图法.【分析】(1)根据题意列出图表,即可表示(x,y)所有可能出现的结果;(2)根据(1)中的树状图求出使分式+有意义的情况,再除以所有情况数即可;(3)先化简,再找出使分式的值为整数的(x,y)的情况,再除以所有情况数即可.【解答】解:(1)用列表法表示(x,y)所有可能出现的结果如下:﹣2﹣11﹣2(﹣2,﹣2)(﹣1,﹣2)(1,﹣2)﹣1(﹣2,﹣1)(﹣1,﹣1)(1,﹣1)1(﹣2,1)(﹣1,1)(1,1)(2)∵使分式+有意义的(x,y)有(﹣1,﹣2)、(1,﹣2)、(﹣2,﹣1)、(﹣2,1)4种情况,∴使分式+有意义的(x,y)出现的概率是,(3)∵+=(x≠±y),使分式的值为整数的(x,y)有(1,﹣2)、(﹣2,1)2种情况,∴使分式的值为整数的(x,y)出现的概率是.【点评】此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏地表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD 于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.【考点】KD:全等三角形的判定与性质;LB:矩形的性质;PB:翻折变换(折叠问题);T7:解直角三角形.【专题】16:压轴题;2B:探究型.【分析】(1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论;(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=8﹣x,在Rt△ABG中利用勾股定理即可求出AG的长,进而得出tan∠ABG的值;(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan∠ABG即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结论.【解答】(1)证明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE,在△ABG与△C′DG中,∵,∴△ABG≌△C′DG(AAS);(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD,设AG=x,则GB=8﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(8﹣x)2,解得x=,∴tan∠ABG===;(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD,∴HD=AD=4,∴tan∠ABG=tan∠ADE=,∴EH=HD×=4×=,∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线,∴HF=AB=×6=3,∴EF=EH+HF=+3=.【点评】本题考查的是翻折变换、全等三角形的判定与性质、矩形的性质及解直角三角形,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.22.(9分)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)已知抛物线的解析式,当x=0,可确定C点坐标;当y=0时,可确定A、B 点的坐标,进而确定AB、OC的长.(2)直线l∥BC,可得出△AED、△ABC相似,它们的面积比等于相似比的平方,由此得到关于s、m的函数关系式;根据题干条件:点E与点A、B不重合,可确定m的取值范围.(3)①首先用m列出△AEC的面积表达式,△AEC、△AED的面积差即为△CDE的面积,由此可得关于S△CDE、m的函数关系式,根据函数的性质可得到S△CDE的最大面积以及此时m的值;②过E做BC的垂线EM,这个垂线段的长即为与BC相切的⊙E的半径,可根据相似三角形△BEF、△BCO得到的相关比例线段求得该半径的值,由此得解.【解答】解:(1)已知:抛物线y=x2﹣x﹣9;当x=0时,y=﹣9,则:C(0,﹣9);当y=0时,x2﹣x﹣9=0,得:x1=﹣3,x2=6,则:A(﹣3,0)、B(6,0);∴AB=9,OC=9.(2)∵ED∥BC,∴△AED∽△ABC,∴=()2,即:=()2,得:s=m2(0<m<9).(3)解法一:∵S△ACE=AE•OC=m×9=m,∴S△CDE=S△ACE﹣S△ADE=m﹣m2=﹣(m﹣)2+.∵0<m<9,∴当m=时,S△CDE取得最大值,最大值为.此时,BE=AB﹣AE=9﹣=.记⊙E与BC相切于点M,连接EM,则EM⊥BC,设⊙E的半径为r.在Rt△BOC中,BC===3.∵∠OBC=∠MBE,∠COB=∠EMB=90°.∴△BOC∽△BME,∴=,∴=,∴r==.∴所求⊙E的面积为:π()2=π.解法二:∵S△AEC=AE•OC=m×9=m,∴S△CDE=S△AEC﹣S△ADE=m﹣m2=﹣(m﹣)2+.∵0<m<9,∴当m=时,S△CDE取得最大值,最大值为.此时,BE=AB﹣AE=9﹣=.∴S△EBC=S△ABC=.如图2,记⊙E与BC相切于点M,连接EM,则EM⊥BC,设⊙E的半径为r.在Rt△BOC中,BC==.∵S△EBC=BC•EM,∴×r=,∴r==.∴所求⊙E的面积为:π()2=π.【点评】该题主要考查了二次函数的性质、相似三角形的性质、图形面积的求法等综合知识.在解题时,要多留意图形之间的关系,有些时候将所求问题进行时候转化可以大大的降低解题的难度.。
2012年广东省初中毕业生学业考试数学信息卷二

新世纪教育网精选资料 版权所有 @新世纪教育网2012 年广东省初中毕业生学业考试(信息卷二)数学卷说明: 1.全卷共 8 页,考试时间为80 分钟,总分 120 分。
2.答卷前,考生一定将自己的姓名、学校、班级按要求填写在密封线左侧的空格内。
3.答案可用黑色或蓝色笔迹的钢笔、署名笔按各题要求答在试卷上,不可以用铅笔、圆 珠笔和红笔。
4.考试结束时,将试卷交回。
一、选择题 (本大题共 5 小题,每题 3 分,共 15 分.在每题给出的四个选项中,只有一个是正确的,请将所选选项的字母写在答题卷相应的地点)1.- 2011 的绝对值是 ()11A . 2011B .- 2011 C.2011 D .-20112.2011 年 3 月 5 日,第十一届全国人民代表大会第四次会议在人民大礼堂开幕,国务院总理温家宝作《政府工作报告》 .报告指出我国 2010 年国内生产总值达到398000 亿元. “398000”这个数据用科学记数法 (保存两个有效数字 ) 表示正确的选项是 ()A . 3.98× 105B . 3.98×106C . 4.0×105D .4.0× 1063.某青年排球队12 名队员的年纪状况以下:年纪 (单位:岁 )18 19 20 21 22人数1 4322则这个队队员年纪的众数和中位数是 ()A . 20,19B . 19,19C . 19,20.5D .19,204. 如图,将三角尺的直角极点放在直尺的一边上,∠1= 30°,∠ 2= 70°,则∠ 3 等于()A . 20°B .30°C .40°D .50°第4题图新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站。
版权所有@新世纪教育网新世纪教育网精选资料 版权所有 @新世纪教育网第 5题图5.如图,⊙ P 内含于⊙ O ,⊙ O 的弦 AB 切⊙ P 于点 C ,且 AB ∥OP.若暗影部分的面积 为 9π,则弦 AB 的长为 ()A .9B .6C .4D . 3二、填空题 (本大题共5 小题,每题4 分,共 20 分.请把以下各题的正确答案填写在答题卷相应的地点 )6.分解因式: x 2y - 2xy + y = ______________.7.在平面直角坐标系中,点P(- 2,3)对于原点对称的点的坐标为 ________.8.将正方形与直角三角形纸片按以下图所示方式叠放在一同,已知正方形的边长为20cm ,点 O 为正方形的中心, AB =5 cm ,则 CD 的长为 ________.第 8题图第9题图9.如图,在等腰梯形 ABCD 中,AD ∥BC ,∠ A = 120 °,AD = 8,BC = 14,则梯形 ABCD 的周长为 __________.2 22=1;f 110.假如记 y =x2= f(x) ,而且 f(1) 表示当 x = 1 时 y 的值,即 f(1) =1 表1+x1+1 221 2示当 x = 1时 y 的值,即 f 1 =2= 1,那么 f(1)+ f(2) +f 1+ f(3) +f 1 + + f(n) + f 12 21 2523n1+ 2=________.三、解答题 (一 )(本大题共 5 小题,每题6分,共 30 分)π0 1- 13+ x111.计算: 8- 2cos45 °+7-2 - 2 .12.解方程: x - + 1=4- x.4新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站。
2012年广东省中考数学试卷-答案

广东省2012年初中毕业生学业考试数学答案解析 一、选择题1.【答案】A【解析】根据负数的绝对值等于它的相反数,得|5|5-=故选A【提示】根据绝对值的性质求解.【考点】绝对值2.【答案】B【解析】66400000 6.410=⨯【提示】科学记数法的形式为10n a ⨯,其中110a ≤<,n 为整数.【考点】科学记数法—表示较大的数3.【答案】C【解析】6出现的次数最多,故众数是6【提示】众数指一组数据中出现次数最多的数据,根据众数的定义即可求解.【考点】众数4.【答案】B【解析】从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:131, , ,故选:B . 【提示】主视图是从立体图形的正面看所得到的图形,找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【考点】简单组合体的三视图5.【答案】C【解析】设此三角形第三边的长为x ,则104104x -<<+,即614x <<,四个选项中只有11符合条件.【提示】设此三角形第三边的长为x ,根据三角形的三边关系求出x 的取值范围,找出符合条件的x 的值即可.【考点】三角形三边关系二、填空题6.【答案】2(5)x x -【解析】原式2(5)x x =-【提示】首先确定公因式是2x ,然后提公因式即可.【考点】因式分解——提公因式法7.【答案】3x >【解析】移项得,39x >,系数化为1得:3x >.【提示】先移项,再将x 的系数化为1即可.【考点】解一元一次不等式8.【答案】50︒【解析】圆心角AOC ∠与圆周角ABC ∠都对AC ,2AOC ABC ∴∠=∠,又25ABC ∠=︒,则50AOC ∠=︒【提示】根据同弧所对的圆心角等于所对圆周角的2倍,由已知圆周角的度数,即可求出所求圆心角的度数.【考点】圆周角定理9.【答案】1【解析】根据题意得:3030x y -=⎧⎨-=⎩,解得:33x y =⎧⎨=⎩.则20122012313x y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.【提示】根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可.【考点】非负数的性质:算术平方根,非负数的性质:绝对值10.【答案】13π-2430sin301AD AB A DF AD EB AB AE ==∠=︒∴=︒==-=,,,,36033【提示】过D 点作DF AB ⊥于点F ,可ABCD 和BCE △的高,观察图形可知阴影部分的面积为ABCD 的面积-扇形ADE 的面积-BCE △的面积,计算即可求解.【考点】扇形面积的计算,平行四边形的性质三、解答题(一)11.【答案】1-【提示】本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值12.【答案】1-【解析】解,原式222299x x x x -+=-=-,当4x =时,原式2491=⨯-=-.【提示】先把整式进行化简,再把4x =代入进行计算即可. 【考点】整式的混合运算——化简求值13.【答案】51x y =⎧⎨=⎩ 【解析】解:①+②得,420x =,解得5x =,把5x =代入①得,54y -=,解得1y =,故此不等式组的解为:51x y =⎧⎨=⎩【提示】先用加减消元法求出x 的值,再用代入法求出y 的值即可. 2AD ABC ∠是BDC ∠是【提示】((2)先根据等腰三角形的性质及三角形内角和定理求出【答案】证明:AB CD ∥ABO ∠=ABO CDO ∴△≌△,AB CD ∴=,∴四边形ABCD 是平行四边形.【提示】先根据AB CD ∥可知ABO CDO ∠=∠,再由BO DO AOB DOC =∠=∠,,即可得出ABO CDO △≌△,故可得出AB CD =,进而可得出结论.【考点】平行四边形的判定,全等三角形的判定与性质四、解答题(二)16.【答案】(1)20%(2)8640【解析】(1)设这两年我国公民出境旅游总人数的年平均增长率为x .根据题意得25000(1)7200x +=. 解得120.220% 2.2x x ===-,(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1)7200120%8640x +=⨯=万人次.答:预测2012年我国公民出境旅游总人数约8640万人次.【提示】(1)设年平均增长率为x ,根据题意2010年公民出境旅游总人数为25000(1)x +万人次,2011年公民出境旅游总人数25000(1)x +万人次.根据题意得方程求解.(2)2012年我国公民出境旅游总人数约7200(1)x +万人次.【考点】一元二次方程的应用 ,AB AC =(此点与B 重合,舍去)【提示】(1)先把(4,2)代入反比例函数解析式,易求k ,再把0y =代入一次函数解析式可求B 点坐.(2)假设存在,然后设C 点坐标是(,0)a ,=,借此无理方程,易得3a =或5a =,其中3a =和B 点重合,舍去,故C 点坐标可求. 【解析】在直角三角形在直角三角形BD BC -解得:300AB =米,答:小山岗的高度为300米.【提示】首先在直角三角形ABC 中根据坡角的正切值用AB 表示出BC ,然后在直角三角形DBA 中用BA 表示出BD ,根据BD 与BC 之间的关系列出方程求解即可.【考点】解直角三角形的应用——仰角俯角问题,解直角三角形的应用——坡度坡角问题19.【答案】(1)1911⨯ 1112911⎛⎫⨯- ⎪⎝⎭ (2)1(21)(21)n n -+ 11122121n n ⎛⎫⨯- ⎪-+⎝⎭【解析】(1)根据观察知答案分别为1911⨯和1112911⎛⎫⨯- ⎪⎝⎭.(2)根据观察知答案分别为1(21)(21)n n -+和11122121n n ⎛⎫⨯- ⎪-+⎝⎭. (3)1234100a a a a a +++++1111111111111112323525727921992011111111111123355779199201111220112002201100201⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫=-+-+-+-++- ⎪⎝⎭⎛⎫=- ⎪⎝⎭=⨯=【提示】(1)观察知,找第一个等号后面的式子规律是关键:分子不变,为1.(2)分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.(3)运用变化规律计算. )求使分式)2223x xy x y --使分式的值为整数的使分式的值为整数的【考点】列表法与树状图法,分式有意义的条件,分式的化简求值21.【答案】(1)证明:BDC '△由BDC △翻折而成,90C BAG C D AB CD AGB DGC ABG ADE ∠=∠=︒'==∠=∠'∴∠=∠,,,,在:ABG C DG '△≌△中,BAD C AB C D ABG ADC '∠=∠⎧⎪'=⎨⎪'∠=∠⎩,ABG C DG ∴'△≌△.(2)724(3)256【解析】(2)由(1)可知ABG C DG ∴'△≌△,GD GB AG GB AD ∴=∴+=,,设AG x =,则8GB x =-,在22Rt ABG AB AG BG +=△中,2,即2226(8)x x +=-,解得74x =, 747tan 624AG ABG AB ∴∠=== (3)AEF △是DEF △翻折而成,EF ∴垂直平分AD ,142HD AD ∴==, 7tan tan 24ABG ADE ∴∠=∠=, 777=424246EH HD ∴=⨯⨯=, EF 垂直平分AD ,AB AD ⊥,HF 是ABD △的中位线,116322HF AB ∴==⨯=,725366EF EH HF =+=+=. 【提示】(1)根据翻折变换的性质可知90C BAG ∠=∠=︒,C D AB CD '==,AGB DGC '∠=∠,故可得出结论.(2)由(1)可知GD GB =,故A G G B A D +=,设A G x =,则8G B x =-,在Rt ABG △中利用勾股定理即可求出AG 的长,进而得出tan ABG ∠的值.(3)由AEF △是DEF △翻折而成可知EF 垂直平分AD ,故142HD AD ==,再根据tan ABG ∠即可得出EF 的长,同理可得HF 是ABD △的中位线,故可得出HF 的长,由EF EH HF =+即可得出结论.【考点】翻折变换(折叠问题),全等三角形的判定与性质,矩形的性质,解直角三角形22.【答案】(1)99AB OC ==,(2)21092s m m =<<() (3)118 729π )ED BC ∥ABC AB = ⎝192S AE OC m ==,212m =-+2729π52E S EF ==【提示】(1)已知抛物线的解析式,当0x =,可确定C 点坐标;当0y =时,可确定A B 、点的坐标,进而确定AB OC 、的长.(2)直线l BC ∥,可得出AED ABC △、△相似,它们的面积比等于相似比的平方,由此得到关于s m 、的函数关系式;根据题干条件:点E 与点A B 、不重合,可确定m 的取值范围.(3)第一小问、首先用m 列出AEC △的面积表达式,AEC AED △、△的面积差即为CDE △的面积,由此可的关于CDE S △、m 的函数关系式,根据函数的性质可得到CDE S △的最大面积以及此时m 的值.第二小问、过E 做BC 的垂线EF ,这个垂线段的长即为与BC 相切的E 的半径,可根据相似三角形BEF △、BCO △得到的相关比例线段求得该半径的值,由此得解.【考点】二次函数综合题。
[2015年中考必备]2012年中考数学卷精析版——广东卷
![[2015年中考必备]2012年中考数学卷精析版——广东卷](https://img.taocdn.com/s3/m/59c493f5941ea76e58fa044f.png)
2012年中考数学卷精析版——广东卷(本试卷满分120分,考试时间100分钟)一.选择题(共5小题,每小题3分,共15分)3.(2012广东省3分)数据8、8、6、5、6、1、6的众数是【】A. 1 B. 5 C. 6 D. 8【答案】C。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是6,故这组数据的众数为6。
故选C。
4.(2012广东省3分)如图所示几何体的主视图是【】A.B.C.D.【答案】B。
【考点】简单组合体的三视图。
【分析】从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,3,1。
故选B。
5.(2012广东省3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【】A . 5B . 6C . 11D . 16【答案】C 。
【考点】三角形三边关系。
【分析】设此三角形第三边的长为x ,则根据三角形两边之和大于第三边,两边之差小于第三边的构成条件,得10﹣4<x <10+4,即6<x <14,四个选项中只有11符合条件。
故选C 。
二.填空题(共5小题,每小题4分,共20分) 6.(2012广东省4分)分解因式:2x 2﹣10x = ▲ . 【答案】2x (x ﹣5)。
【考点】提公因式法因式分解。
【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式。
因此,直接提取公因式2x 即可:2x 2﹣10x ==2x (x ﹣5)。
7.(2012广东省4分)不等式3x ﹣9>0的解集是 ▲ . 【答案】x >3。
【考点】解一元一次不等式。
【分析】移项得,3x >9,系数化为1得,x >3。
故答案为:x >3.8.(2012广东省4分)如图,A 、B 、C 是⊙O 上的三个点,∠ABC =25°,则∠AOC 的度数是 ▲ .【答案】50°。
2012年初中毕业与升学统一考试数学试卷(广东梅州市)(详细解析)

2012年初中毕业与升学统一考试数学试卷(广东梅州市)参考答案与试题解析一、选择题(共5小题,每小题3分,满分15分)1.(2012•梅州)=()A.﹣2B.2C.1D.﹣1考点:零指数幂。
专题:常规题型。
分析:根据任何非0数的0次幂等于1解答即可.解答:解:﹣(﹣)0=﹣1.故选D.点评:本题主要考查了零指数幂,熟记任何非0数的0次幂等于1是解题的关键.2.(2012•梅州)下列图形中是轴对称图形的是()A.B.C.D.考点:轴对称图形。
专题:常规题型。
分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选C.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(2012•梅州)某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的()A.总体B.个体C.样本D.以上都不对考点:总体、个体、样本、样本容量。
专题:计算题。
分析:根据总体、个体、样本、样本容量的定义进行解答.解答:解:∵抽查的是“五一”期间每天乘车人数,∴“五一”期间每天乘车人数是个体.故选B.点评:本题考查了总体、个体、样本、样本容量的定义,是基础题.4.(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°考点:三角形内角和定理;翻折变换(折叠问题)。
分析:先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.解答:解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.故选A.点评:本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.(2012•梅州)在同一直角坐标系下,直线y=x+1与双曲线的交点的个数为()A.0个B.1个C.2个D.不能确定考点:反比例函数与一次函数的交点问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年广东省初中毕业生学业考试(信息卷二)数学卷说明:1.全卷共8页,考试时间为80分钟,总分120分。
2.答卷前,考生必须将自己的姓名、学校、班级按要求填写在密封线左边的空格内。
3.答案可用黑色或蓝色字迹的钢笔、签字笔按各题要求答在试卷上,不能用铅笔、圆珠笔和红笔。
4.考试结束时,将试卷交回。
一、选择题(本大题共5小题,每小题3分,共15分.在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母写在答题卷相应的位置)1.-2011的绝对值是()A.2011 B.-2011 C.12011D.-120112.2011年3月5日,第十一届全国人民代表大会第四次会议在人民大会堂开幕,国务院总理温家宝作《政府工作报告》.报告指出我国2010年国内生产总值达到398000亿元.“398000”这个数据用科学记数法(保留两个有效数字)表示正确的是() A.3.98×105B.3.98×106C.4.0×105D.4.0×1063A.20,19 B.19,19 C.19,20.5 D.19,204.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=70°,则∠3等于()A.20°B.30°C.40°D.50°4题图5题图5.如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且AB ∥OP.若阴影部分的面积为9π,则弦AB 的长为( )A .9B .6C .4D .3二、填空题(本大题共5小题,每小题4分,共20分.请把下列各题的正确答案填写在答题卷相应的位置)6.分解因式:x 2y -2xy +y =______________.7.在平面直角坐标系中,点P(-2,3)关于原点对称的点的坐标为________.8.将正方形与直角三角形纸片按下图所示方式叠放在一起,已知正方形的边长为20 cm ,点O 为正方形的中心,AB =5 cm ,则CD 的长为________.8题图第9题图9.如图,在等腰梯形ABCD 中,AD ∥BC ,∠A =120°,AD =8,BC =14,则梯形ABCD 的周长为__________.10.如果记y =x 21+x 2=f(x),并且f(1)表示当x =1时y 的值,即f(1)=121+12=12;f ⎝⎛⎭⎫12表示当x =12时y 的值,即f ⎝⎛⎭⎫12=⎝⎛⎭⎫1221+⎝⎛⎭⎫122=15,那么f(1)+f(2)+f ⎝⎛⎭⎫12+f(3)+f ⎝⎛⎭⎫13+…+f(n)+f ⎝⎛⎭⎫1n =________.三、解答题(一)(本大题共5小题,每小题6分,共30分)11.计算:8-2cos45°+⎝⎛⎭⎫7-π20-⎝⎛⎭⎫12-1. 12.解方程:3+x x -4+1=14-x .13.如图,把一张给定大小的矩形卡片ABCD 放在宽度为10 mm 的横格纸中,恰好四个顶点都在横格线上,已知α=25°,求长方形卡片的周长.(精确到 1 mm,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5)14.如图,AB∥CD,∠ACD=72°.(1)用直尺和圆规作∠C的平分线CE,交AB于E,并在CD上取一点F,使AC=AF,再连结AF,交CE于K;(要求保留作图痕迹,不必写出作法)(2)依据现有条件,直接写出图中所有相似的三角形(图中不再增加字母和线段,不要求证明)15.小兵和小宁用一副扑克牌中牌面数字分别是3,6,8,10的4张牌做纸牌游戏.游戏规则是:将这4张牌的正面全部朝下洗匀后放在桌上,小兵先从中抽出一张,小宁从剩余的3张牌中也抽出一张.小宁说:“若抽出的两张牌上的数都是偶数,你获胜;否则,我获胜.”(1)请用树状图表示出抽牌可能出现的所有结果;(2)若按小宁说的规则进行游戏,这个游戏公平吗?请说明理由.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.如图,在中,E为BC的中点,连结AE并延长交DC的延长线于点F.(1)求证:AC=BF;(2)当∠D与∠AFD满足什么数量关系时,四边形ABFC是矩形,并说明理由.17.已知关于x的一元二次方程x2-2(m-1)x-m(m+2)=0.(1)若x=-2是这个方程的一个根,求m的值和方程的另一个根;(2)求证:对于任意实数m,这个方程都有两个不相等的实数根.18.日本在3·11地震后,核电站发生严重的核泄漏事故,为了防止民众受到更多的核辐射,我国某医疗公司主动承担了为日本福田地区生产2万套防辐射衣服的任务,计划10天完成,在生产2天后,日本的核辐射危机加重了,所以公司需提前完成任务,于是公司从其他部门抽调了50名工人参加生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产防辐射衣服?19.广州亚运会的召开,让同学们熟悉了不少体育明星.小红和小亮就本班同学“我最喜爱的体育明星”进行了一次调查统计,下图是他们通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)求该班共有多少名学生?(2)在扇形统计图中,“刘翔”部分所对应的圆心角的度数是多少?(3)若全校有4000名学生,请估计“最喜爱郭晶晶”的学生有多少名?五、解答题(三)(本大题共3小题,每小题9分,共27分)20.某企业获准生产“上海世博会”纪念徽章,若生产A种款式的纪念徽章125件,B 种款式的纪念徽章150件,需成本700元;若生产A种款式的纪念徽章100件,B种款式的纪念徽章450件,需成本1550元.已知A、B两种纪念徽章的市场零售价分别为2.3元,3.5元.(1)求每个A、B两种款式的纪念徽章的成本是多少元?(2)随着上海世博会的开幕,为了满足市场的需要,该企业现在每天要生产A 、B 两种款式的纪念徽章共4500件,若要求每天投入成本不超过10000元,并且每天生产的B 种款式的纪念徽章不少于A 种款式纪念徽章的14,那么每天最多获利多少元,最少获利多少元?获利最多的方案如何设计?21.如图,AB 是△ABC 外接圆⊙O 的直径,D 是AB 延长线上一点,且BD =12AB ,∠A =30°,CE ⊥AB 于E ,过C 的直径交⊙O 于点F ,连结CD 、BF 、EF.(1)求证:CD 是⊙O 的切线; (2)求tan ∠BFE 的值.22.如图(1),在平面直角坐标系中,已知点M 的坐标是(3,0),半径为2的⊙M 交x 轴于E ,F 两点,过点P(-1,0)作⊙M 的切线,切点为点A ,过点A 作AB ⊥x 轴于点C ,交⊙M于点B.抛物线y =ax 2+bx +c 经过P 、B 、M 三点.(1)求该抛物线的函数表达式;(2)若点Q 是抛物线上一动点,且位于P 、B 两点之间,设四边形APQB 的面积为S ,点Q 的横坐标为x ,求S 与x 之间的函数关系式,并求S 的最大值和此时点Q 的坐标;(3)如图(2),将AEB 沿弦AB 对折后得到AE ′B ,试判断直线AF 与AE ′B 的位置关系,并说明理由.数学卷·参考答案1.A 2.C 3.D 4.C 5.B 6. y(x -1)27.(2,-3) 8.20 cm 9. 34 10.n -1211.原式=22-2×22+1-2=2-1.12. 方程两边同时乘以x -4,得3+x +x -4=-1,解得x =0,经检验当x =0时方程有意义,则方程的解为x =0.13.作AF ⊥l 4,交l 2于E ,交l 4于F ,则△ABE 和△AFD 均为直角三角形 …1分在Rt △ABE 中,∠ABE =α=25°,sin ∠ABE =AEAB ∴AB =AE sin25°=200.4=50 …2分∵∠FAD =90°-∠BAE ,α=90°-∠BAE.∴∠FAD =α=25° 在Rt △AFD 中,cos ∠FAD =AF AD ,AD =AF cos25°≈44.4 …5分∴长方形卡片ABCD 的周长为(44.4+50)×2≈189(mm)…6分14.(1)CE 作法正确得1分,F 点作法正确,K 点标注正确得1分; (2)△CKF ∽△ACF ∽△EKA ;△CAK ∽△CEA (注:共4对相似三角形,每正确1对可得1分) 15. (1)树状图为:…3分(2)游戏公平.∵两张牌上的数都是偶数有6种可能结果(6,10),(6,8),(10,6),(10,8),(8,6),(8,10) …5分∴小兵获胜的概率P =612=12,小宁获胜的概率也为12,∴游戏公平.…6分16. (1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴∠BAE =∠CFE ,∠ABE=∠FCE ,∵E 为BC 的中点,∴EB =EC.∴△ABE ≌△FCE ,∴AE =EF.∴四边形ABFC 为平行四边形.∴AC =BF …3分(2)当∠D =∠AFD 时,四边形ABFC 是矩形. …4分理由如下: ∵∠D =∠AFD ,∴AF =AD.∵四边形ABCD 是平行四边形,∴AD =BC.∴AF =BC.∵四边形ABFC 是平行四边形,∴四边形ABFC 是矩形.…7分17. (1)把x =-2代入方程,得4-2(m -1)×(-2)-m(m +2)=0,即m 2-2m =0.解得m 1=0,m 2=2.…2分当m =0时,原方程为x 2+2x =0,则方程的另一个根为x =0;…3分当m =2时,原方程为x 2-2x -8=0,则方程的另一个根为x =4.…4分 (2)Δ=[-2(m -1)2]-4×[-m(m +2)]=8m 2+4, …6分∵对于任意实数m ,m 2≥0, ∴8m 2+4>0.∴对于任意实数m ,这个方程都有两个不相等的实数根.…7分18. 设公司原计划安排x 名工人生产防核辐射衣服,由题意得 …1分2000x (1+25%)=20000-2×2000(x +50)(10-2-2) …5分解得x =750.经检验x =750是方程的解,也符合题意.…6分 答:公司原计划安排750名工人生产防核辐射衣服 . …7分 19.(1)该班人数为:20÷40%=50(人); …2分(2)在扇形统计图中,“刘翔”部分所对应的圆心角的度数是:1550×360°=108°; …4分(3)“最喜爱郭晶晶”的学生占有的比例为:50-20-15-550×100%=20% 故在全校4000名学生中“最喜爱郭晶晶”的学生人数约有:4000×20%=800(名).…7分20.(1)设每个A 种款式纪念徽章的成本是x 元,每个B 种款式纪念徽章的成本是y 元.据题意,得⎩⎪⎨⎪⎧ 125x +150y =700100x +450y =1550,解得⎩⎪⎨⎪⎧x =2y =3…3分 答:每个A 、B 两种款式的纪念徽章的成本分别是2元,3元.(2)设现在每天生产m 个A 种款式的纪念徽章, (4500-m)个B 种款式的纪念徽章. 据题意,得⎩⎪⎨⎪⎧2m +3(4500-m )≤100004500-m ≥14m…4分解得3500≤m ≤3600且m 是整数 …5分设每天共获利w 元,则w =(2.3-2)m +(3.5-3)(4500-m),即w =-0.2m +2250 …6分∵k =-0.2<0,∴w 随m 的增大而减少.∴当m =3600时,w 的值最小为w =-0.2×3600+2250=1530元; 当m =3500时,w 的值最大为w =-0.2×3500+2250=1550元, …8分则当每天生产A 种款式纪念徽章3500个,B 种款式纪念徽章1000个时获利最多,是1550元. …9分21.(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°.∵∠A =30°,∴BC =12AB …1分∵OB =12AB ,BD =12AB ,∴BC =OB =BD ,∴BC =12OD ,∴OC ⊥CD ,…3分 ∵OC 是半径,∴CD 是⊙O 的切线.…4分(2)过点E 作EH ⊥BF 于H ,如右图所示设EH =a ,∵CF 是⊙O 的直径,∴∠CBF =90°=∠ACB.∴∠CBF +∠ACB =180°.∴AC ∥BF.∴∠ABF =∠A =30°. ∴BH =3EH =3a ,BE =2EH =2a. …5分∵CE ⊥AB 于E ,∴∠A +∠ABC =90°=∠ECB +∠ABC.∴∠ECB =∠A =30°.∴BC =2BE =4a …6分∵∠BFC =∠A =30°,∠CBF =90°,∴BF =3BC = 4 3a.∴FH =BF -BH =4 3a -3a =33a …8分∴tan ∠BFE =EH FH =a 33a =39. …(9分)22.(1)依题意,可知:点P(-1,0),B(2,-3),M(3,0).∵抛物线y =ax 2+bx +c 经过P 、B 、M 三点,∴ ⎩⎪⎨⎪⎧a -b +c =04a +2b +c =-39a +3b +c =0解得:a =33,b =-233,c =-3,∴抛物线的解析式为:y =33x 2-233x - 3.…3分(2)如右图,依题意设点Q 的坐标为(x ,y 0),过点Q 作QN ⊥x 轴交于点N ,连结QP 、QB.∵点Q 是抛物线上一动点,且位于P 、B 两点之间,∴y 0=33x 2-233x -3,-1≤x ≤2 …4分∴S =S △APC +S △PQN +S 梯形CBQN =12×3×3+12(x +1)(-y 0)+12(3-y 0)(2-x)=-32⎝⎛⎭⎫x -122+3338(其中-1≤x ≤2);即:S =-32⎝⎛⎭⎫x -122+3338(其中-1≤x ≤2);∴ 当x =12时,四边形APQB 的面积S 有最大值,S 最大值=3338,此时,x =12,y 0=0,点Q 的坐标为⎝⎛⎭⎫12,543,S 最大值=3338. …7分(3)直线AF 与AE ′B 相切,理由如下:如右图,由(1)可知,PA 是⊙M 的切线,且点P(-1,0),A(2,3),C(2,0),F(5,0),∴△ACP ≌△ACF.…8分∵将AEB 沿弦AB 对折后得到AE ′B ,又∵PA 是AEB 的切线,∴FA 是AE ′B 的切线,即:直线AF 与AE ′B 相切.…9分。