2011高考数学总复习课件3.4 导数的综合应用
导数应用—单调性课件

导数在经济学中常用于进行边际分析,例如边际成本、边际收益和边际效用等。通过求导,可以确定企业在一定 条件下的最优产量或价格策略。
04
导数与单调性的综合应用
导数在研究复杂函数单调性中的应用
判断函数单调性
通过求导数,可以判断函 数的单调性,进而研究函 数的极值、拐点等特性。
极值问题
导数可以用来研究函数的 极值问题,通过导数的符 号变化,可以确定函数的 极值点。
导数计算方法
通过求极限或使用导数基 本公式来计算导数。
单调性的定义与分类
单调性定义
函数在其定义域内,对于任意两点x1和x2,当x1<x2时,若函数值f(x1)≤f(x2) ,则称函数在此区间内单调递增;反之,若f(x1)≥f(x2),则称函数在此区间内 单调递减。
单调性分类
根据单调性的定义,可以将单调性分为递增和递减两类。
单调性与不等式
导数可以用来证明不等式 ,通过研究函数单调性, 可以推导出不等式的正确 性。
导数在解决多变量问题中的应用
最值问题
导数可以用来求多变量函数的最 值,通过求导数并令其为零,可
以找到函数的最值点。
优化问题
导数可以用来解决优化问题,通过 求导数并找到最优解,可以找到最 优的参数配置。
动态分析
导数与单调性的关系
单调递增的导数条件
当函数的导数大于0时,函数在此区 间内单调递增。
单调递减的导数条件
单调性与导数的关系总结
导数的符号决定了函数的单调性,通 过判断导数的符号可以判断函数的单 调性。
当函数的导数小于0时,函数在此区 间内单调递减。
02
导数在研究函数单调性中的应用
导数在判断函数单调性中的应用
高考数学专题复习《导数的综合应用》PPT课件

(1)∀x∈D,f(x)≤k⇔f(x)max≤k;∃x∈D,f(x)≤k⇔f(x)min≤k;
(2)∀x∈D,f(x)≤g(x) ⇔f(x)max≤g(x)min;∃x∈D,f(x)≤g(x) ⇔ f(x)min≤g(x)max.
4.含两个未知数的不等式(函数)问题的常见题型及具体转化策略
(+1)ln
H(x)=
,则
-1
1
=
--2ln
(-1)
2
,
2 -2+1
K'(x)= 2 >0,于是
K(x)在(1,+∞)上单调递增,
所以 K(x)>K(1)=0,于是 H'(x)>0,从而 H(x)在(1,+∞)上单调递增.由洛必达法
(x+1)x
则,可得 lim+
x-1
→1
取值范围是(-∞,2].
第三章
高考大题专项(一) 导数的综合应用
内
容
索
引
01
突破1
利用导数研究与不等式有关的问题
必备知识预案自诊
关键能力学案突破
02
突破2
利用导数研究与函数零点有关的问题
必备知识预案自诊
关键能力学案突破
【考情分析】
从近五年的高考试题来看,对导数在函数中的应用的考查常常是一大一小
两个题目,其中解答题的命题特点是:以三次函数、对数函数、指数函数及
(1)∀x1∈[a,b],x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最小值>g(x)在[c,d]上的
最大值.
(2)∃x1∈[a,b],x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最大值>g(x)在[c,d]上的
高考数学一轮总复习课件:导数的应用(二) ——极值与最值

(2)(2020·河北冀州中学摸底)已知函数f(x)的导数f′(x)=a(x +1)(x-a),若f(x)在x=a处取得极大值,则a的取值范围是 __(_-_1_,__0)_.
【解析】 若a=0,则f′(x)=0,函数f(x)不存在极值;若a= -1,则f′(x)=-(x+1)2≤0,函数f(x)不存在极值;若a>0,当 x∈(-1,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0,所以函数 f(x)在x=a处取得极小值;若-1<a<0,当x∈(-1,a)时,f′ (x)>0,当x∈(a,+∞)时,f′(x)<0,所以函数f(x)在x=a处取得极 大值;若a<-1,当x∈(-∞,a)时,f′(x)<0,当x∈(a,-1)时,f ′(x)>0,所以函数f(x)在x=a处取得极小值.综上所述,a∈(-1, 0).
第3课时 导数的应用(二) ——极值与最值
[复习要求] 1.了解函数在某点处取得极值的必要条件和 充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数 不超过三次).3.会求闭区间上的最大值、最小值(其中多项式函 数不超过三次).
课前自助餐
函数的极值 (1)设函数 f(x)在点 x0附近有定义,如果对 x0附近的所有的点, 都有 f(x)___<___f(x0),那么 f(x0)是函数 f(x)的一个极大值,记作 y 极大值=f(x0);如果对 x0 附近的所有的点,都有 f(x)__>____f(x0), 那么 f(x0)是函数 f(x)的一个极小值,记作 y 极小值=f(x0).极大值与 极小值统称为极值.
导数的综合应用

3.3 导数的综合应用1.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答. 2.不等式问题(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题. 3.方程解的个数问题构造函数,利用导数研究函数的单调性,极值和特殊点的函数值,根据函数性质结合草图推断方程解的个数. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)连续函数在闭区间上必有最值.( √ )(2)函数f (x )=x 2-3x +2的极小值也是最小值.( √ )(3)函数f (x )=x +x -1和g (x )=x -x -1都是在x =0时取得最小值-1.( × )(4)函数f (x )=x 2ln x 没有最值.( × ) (5)已知x ∈(0,π2),则sin x >x .( × )(6)若a >2,则方程13x 3-ax 2+1=0在(0,2)上没有实数根.( × )1.(2014·湖南)若0<x 1<x 2<1,则( ) A .2121e e ln ln xxx x >-- B .1221e eln ln xx x x <--C .1221e e x xx x > D .1221e e xxx x < 答案 C解析 设f (x )=e x -ln x (0<x <1), 则f ′(x )=e x-1x =x e x-1x.令f ′(x )=0,得x e x -1=0.根据函数y =e x 与y =1x 的图象可知两函数图象交点x 0∈(0,1),因此函数f (x )在(0,1)上不是单调函数,故A ,B 选项不正确.设g (x )=e xx (0<x <1),则g ′(x )=e x(x -1)x 2.又0<x <1,∴g ′(x )<0.∴函数g (x )在(0,1)上是减函数. 又0<x 1<x 2<1,∴g (x 1)>g (x 2), ∴1221e e xxx x >.2.(2013·福建)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点 答案 D解析 A 错,因为极大值未必是最大值.B 错,因为函数y =f (x )与函数y =f (-x )的图象关于y 轴对称,-x 0应是f (-x )的极大值点.C 错,函数y =f (x )与函数y =-f (x )的图象关于x 轴对称,x 0应为-f (x )的极小值点.D 对,函数y =f (x )与y =-f (-x )的图象关于原点对称,-x 0应为y =-f (-x )的极小值点.3.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12 C.52 D.22答案 D解析 |MN |的最小值,即函数h (x )=x 2-ln x (x >0)的最小值,h ′(x )=2x -1x =2x 2-1x,显然x =22是函数h (x )在其定义域内唯一的极小值点, 也是最小值点,故t =22. 4.若商品的年利润y (万元)与年产量x (百万件)的函数关系式:y =-x 3+27x +123(x >0),则获得最大利润时的年产量为( ) A .1百万件 B .2百万件 C .3百万件 D .4百万件答案 C解析 y ′=-3x 2+27=-3(x +3)(x -3), 当0<x <3时,y ′>0; 当x >3时,y ′<0.故当x =3时,该商品的年利润最大.题型一 利用导数证明不等式例1 已知定义在正实数集上的函数f (x )=12x 2+2ax ,g (x )=3a 2ln x +b ,其中a >0.设两曲线y=f (x ),y =g (x )有公共点,且在该点处的切线相同. (1)用a 表示b ,并求b 的最大值; (2)求证:f (x )≥g (x )(x >0).(1)解 设两曲线的公共点为(x 0,y 0), f ′(x )=x +2a ,g ′(x )=3a 2x,由题意知f (x0)=g (x 0),f ′(x 0)=g ′(x 0),即⎩⎨⎧12x 20+2ax 0=3a 2ln x 0+b ,x 0+2a =3a2x.由x 0+2a =3a 2x 0,得x 0=a 或x 0=-3a (舍去).即有b =12a 2+2a 2-3a 2ln a =52a 2-3a 2ln a .令h (t )=52t 2-3t 2ln t (t >0),则h ′(t )=2t (1-3ln t ).于是当t (1-3ln t )>0,即0<t <13e 时,h ′(t )>0;当t (1-3ln t )<0,即t >13e 时,h ′(t )<0.故h (t )在(0,13e )上为增函数,在(13e ,+∞)上为减函数,于是h (t )在(0,+∞)上的最大值为h (13e )=233e 2,即b 的最大值为233e 2.(2)证明 设F (x )=f (x )-g (x )=12x 2+2ax -3a 2ln x -b (x >0),则F ′(x )=x +2a -3a 2x =(x -a )(x +3a )x(x >0).故F (x )在(0,a )上为减函数,在(a ,+∞)上为增函数. 于是F (x )在(0,+∞)上的最小值是F (a )=F (x 0)=f (x 0)-g (x 0)=0. 故当x >0时,有f (x )-g (x )≥0, 即当x >0时,f (x )≥g (x ).思维升华 利用导数证明不等式的步骤 (1)构造新函数,并求其单调区间; (2)判断区间端点函数值与0的关系;(3)判断定义域内函数值与0的大小关系,证不等式.证明:当x ∈[0,1]时,22x ≤sin x ≤x . 证明 记F (x )=sin x -22x , 则F ′(x )=cos x -22. 当x ∈(0,π4)时,F ′(x )>0,F (x )在[0,π4]上是增函数;当x ∈(π4,1)时,F ′(x )<0,F (x )在[π4,1]上是减函数.又F (0)=0,F (1)>0,所以当x ∈[0,1]时,F (x )≥0, 即sin x ≥22x . 记H (x )=sin x -x ,则当x ∈(0,1)时,H ′(x )=cos x -1<0, 所以H (x )在[0,1]上是减函数, 则H (x )≤H (0)=0,即sin x ≤x .综上,22x≤sin x≤x,x∈[0,1].题型二利用导数研究函数零点问题例2(2013·北京)已知函数f(x)=x2+x sin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.解(1)由f(x)=x2+x sin x+cos x,得f′(x)=x(2+cos x).∵y=f(x)在点(a,f(a))处与直线y=b相切.∴f′(a)=a(2+cos a)=0且b=f(a),则a=0,b=f(0)=1.(2)令f′(x)=0,得x=0.∴当x>0时,f′(x)>0,f(x)在(0,+∞)上递增.当x<0时,f′(x)<0,f(x)在(-∞,0)上递减.∴f(x)的最小值为f(0)=1.∵函数f(x)在区间(-∞,0)和(0,+∞)上均单调,∴当b>1时曲线y=f(x)与直线y=b有且仅有两个不同交点.综上可知,b的取值范围是(1,+∞).思维升华函数零点或函数图象交点问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a =1.∴f (x )=x 3-3x -1, f ′(x )=3x 2-3,由f ′(x )=0,解得x 1=-1,x 2=1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.∵直线y =m 与函数y =f (x )的图象有三个不同的交点,结合如图所示f (x )的图象可知:实数m 的取值范围是(-3,1). 题型三 生活中的优化问题例3 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.思维点拨 (1)由x =5时y =11求a ;(2)建立商场每日销售该商品所获利润和售价x 的函数关系,利用导数求最值. 解 (1)因为x =5时,y =11,所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量为 y =2x -3+10(x -6)2. 所以商场每日销售该商品所获得的利润为f (x )=(x -3)[2x -3+10(x -6)2]=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.思维升华 在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.请你设计一个包装盒,如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解 设包装盒的高为h cm ,底面边长为a cm. 由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ).由V ′=0,得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12.即包装盒的高与底面边长的比值为12.一审条件挖隐含典例:(12分)设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M .(2)如果对于任意的s ,t ∈[12,2],都有f (s )≥g (t )成立,求实数a 的取值范围.审题路线图(1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M(正确理解“存在”的含义) [g (x 1)-g (x 2)]max ≥M挖掘[g (x 1)-g (x 2)]max 的隐含实质 g (x )max -g (x )min ≥MM 的最大整数值(2)对任意s ,t ∈[12,2]都有f (s )≥g (t )(理解“任意”的含义) f (x )min ≥g (x )max求得g (x )max =1 ax+x ln x ≥1恒成立 分离常数 a ≥x -x 2ln x 恒成立求h (x )=x -x 2ln x 的最大值 a ≥h (x )max =h (1)=1 a ≥1 规范解答解 (1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M .[2分]由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x (x -23).令g ′(x )>0得x <0,或x >23,又x ∈[0,2],所以g (x )在区间[0,23]上单调递减,在区间[23,2]上单调递增,所以g (x )min =g (23)=-8527,g (x )max =g (2)=1.故[g (x 1)-g (x 2)]max =g (x )max -g (x )min =11227≥M , 则满足条件的最大整数M =4.[5分](2)对于任意的s ,t ∈[12,2],都有f (s )≥g (t )成立,等价于在区间[12,2]上,函数f (x )min ≥g (x )max .[7分]由(1)可知在区间[12,2]上,g (x )的最大值为g (2)=1.在区间[12,2]上,f (x )=ax+x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,h ′(x )=1-2x ln x -x ,可知h ′(x )在区间[12,2]上是减函数,又h ′(1)=0,所以当1<x <2时,h ′(x )<0;当12<x <1时,h ′(x )>0.[10分]即函数h (x )=x -x 2ln x 在区间(12,1)上单调递增,在区间(1,2)上单调递减,所以h (x )max =h (1)=1,所以a ≥1,即实数a 的取值范围是[1,+∞).[12分]温馨提醒 (1)“恒成立”、“存在性”问题一定要正确理解问题实质,深刻挖掘条件内含,进行等价转化.(2)构造函数是求范围问题中的一种常用方法,解题过程中尽量采用分离常数的方法,转化为求函数的值域问题.方法与技巧1.利用导数解决含有参数的单调性问题是将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.2.在讨论方程的根的个数、研究函数图象与x 轴(或某直线)的交点个数、不等式恒成立等问题时,常常需要求出其中参数的取值范围,这类问题的实质就是函数的单调性与函数的极(最)值的应用.3.在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较. 失误与防范1.函数f (x )在某个区间内单调递增,则f ′(x )≥0而不是f ′(x )>0,(f ′(x )=0在有限个点处取到).2.利用导数解决实际生活中的优化问题,要注意问题的实际意义.A 组 专项基础训练(时间:45分钟)1.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )答案 C解析 由函数f (x )在x =-2处取得极小值,可得f ′(-2)=0,且当x ∈(a ,-2)(a <-2)时,f (x )单调递减,即f ′(x )<0;当x ∈(-2,b )(b >-2)时,f (x )单调递增,即f ′(x )>0.所以函数y =xf ′(x )在区间(a ,-2)(a <-2)内的函数值为正,在区间(-2,b )(-2<b <0)内的函数值为负,由此可排除选项A ,B ,D.2.(2014·课标全国Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)答案 D解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)单调递增⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞).3.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 答案 B解析 ∵f ′(x )=3x 2+2ax +(a +6),由已知可得f ′(x )=0有两个不相等的实根. ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0. ∴a >6或a <-3.4.若函数f (x )=x x 2+a (a >0)在[1,+∞)上的最大值为33,则a 的值为( )A.33B. 3C.3+1D.3-1 答案 D解析 f ′(x )=x 2+a -2x 2(x 2+a )2=a -x 2(x 2+a )2,若a >1,当x >a 时,f ′(x )<0,f (x )单调递减,当1<x <a 时,f ′(x )>0,f (x )单调递增,当x =a 时,令f (x )=a 2a =33,a =32<1,不合题意. 若0<a ≤1,则f ′(x )≤0,f (x )在[1,+∞)上单调递减,∴f (x )max =f (1)=11+a =33,a =3-1,故选D. 5.设函数h t (x )=3tx -322t ,若有且仅有一个正实数x 0,使得h 7(x 0)≥h t (x 0)对任意的正数t 都成立,则x 0等于( )A .5B. 5 C .3D.7答案 D解析 ∵h 7(x 0)≥h t (x 0)对任意的正数t 都成立,∴h 7(x 0)≥h t (x 0)max .记g (t )=h t (x 0)=3tx 0-322t ,则g ′(t )=3x 0-123t ,令g ′(t )=0,得t =x 20,易得h t (x 0)max =g (x 20)=x 30,∴21x 0-147≥x 30,将选项代入检验可知选D. 6.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a =________.答案 1解析 ∵f (x )是奇函数,且当x ∈(-2,0)时,f (x )的最小值为1,∴f (x )在(0,2)上的最大值为-1.当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0得x =1a ,又a >12,∴0<1a <2.当x <1a时,f ′(x )>0,f (x )在(0,1a )上单调递增;当x >1a 时,f ′(x )<0,f (x )在(1a ,2)上单调递减,∴f (x )max =f (1a )=ln 1a -a ·1a =-1,解得a =1.7.已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =________.答案 -2或2解析 设f (x )=x 3-3x +c ,对f (x )求导可得,f ′(x )=3x 2-3,令f ′(x )=0,可得x =±1,易知f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.由题意知,f (1)=0或f (-1)=0,若f (1)=1-3+c =0,可得c =2;若f (-1)=-1+3+c =0,可得c =-2.8.设函数f (x )=kx 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数k 的值为________.答案 4解析 若x =0,则不论k 取何值,f (x )≥0都成立;当x >0,即x ∈(0,1]时,f (x )=kx 3-3x +1≥0可化为k ≥3x 2-1x 3. 设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4, 所以g (x )在区间(0,12]上单调递增, 在区间[12,1]上单调递减, 因此g (x )max =g (12)=4,从而k ≥4; 当x <0即x ∈[-1,0)时,f (x )=kx 3-3x +1≥0可化为k ≤3x 2-1x 3,g (x )=3x 2-1x 3在区间[-1,0)上单调递增, 因此g (x )min =g (-1)=4,从而k ≤4,综上k =4.9.设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.(1)解 由f (x )=e x -2x +2a ,x ∈R知f ′(x )=e x -2,x ∈R .令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )单调递增区间是(ln 2,+∞),f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2-2ln 2+2a .(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R ,于是g ′(x )=e x -2x +2a ,x ∈R .由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0.即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.10.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米. (1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?解 (1)当x =40时,汽车从甲地到乙地行驶了10040小时,共耗油10040×(1128 000×403-380×40+8)=17.5(升).因此,当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油17.5升.(2)当速度为x 千米/小时时,汽车从甲地到乙地行驶了100x小时, 设耗油量为h (x )升,依题意得h (x )=(1128 000x 3-380x +8)·100x=11 280x 2+800x -154(0<x ≤120), h ′(x )=x 640-800x 2=x 3-803640x 2(0<x ≤120).令h ′(x )=0,得x =80.当x ∈(0,80)时,h ′(x )<0,h (x )是减函数;当x ∈(80,120)时,h ′(x )>0,h (x )是增函数,所以当x =80时,h (x )取得极小值h (80)=11.25.易知h (80)是h (x )在(0,120]上的最小值.故当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,为11.25升.B 组 专项能力提升(时间:30分钟)11.(2014·辽宁)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]答案 C 解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R .当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3, ∴a ≥⎣⎡⎦⎤x 2-4x -3x 3max .设φ(x )=x 2-4x -3x 3, φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0, ∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6,∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3, ∴a ≤⎣⎡⎦⎤x 2-4x -3x 3min .仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4. 当x ∈[-2,-1)时,φ′(x )<0,当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值.而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上知-6≤a ≤-2.12.设函数f (x )=ln x -ax ,g (x )=e x -ax ,其中a 为常数.若f (x )在(1,+∞)上是减函数,且g (x )在(1,+∞)上有最小值,则a 的取值范围是( )A .(e ,+∞)B .[e ,+∞)C .(1,+∞)D .[1,+∞)答案 A解析 f ′(x )=1x-a ,g ′(x )=e x -a ,由题意得,当x ∈(1,+∞)时f ′(x )≤0恒成立,即x ∈(1,+∞)时a ≥1x 恒成立,则a ≥1.因为g ′(x )=e x -a 在(1,+∞)上单调递增,所以g ′(x )>g ′(1)=e -a .又g (x )在(1,+∞)上有最小值,则必有e -a <0,即a >e.综上,a 的取值范围是(e ,+∞).13.已知f (x )=x e x ,g (x )=-(x +1)2+a ,若∃x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围是____________.答案 [-1e,+∞) 解析 f ′(x )=e x +x e x =e x (1+x )当x >-1时,f ′(x )>0,函数f (x )单调递增;当x <-1时,f ′(x )<0,函数f (x )单调递减.所以函数f (x )的最小值为f (-1)=-1e. 而函数g (x )的最大值为a ,则由题意,可得-1e ≤a 即a ≥-1e. 14.设函数f (x )=a 2ln x -x 2+ax ,a >0.(1)求f (x )的单调区间;(2)求所有的实数a ,使e -1≤f (x )≤e 2对x ∈[1,e]恒成立.解 (1)因为f (x )=a 2ln x -x 2+ax ,其中x >0,所以f ′(x )=a 2x -2x +a =-(x -a )(2x +a )x. 由于a >0,所以f (x )的增区间为(0,a ),减区间为(a ,+∞).(2)由题意得f (1)=a -1≥e -1,即a ≥e.由(1)知f (x )在[1,e]内单调递增,要使e -1≤f (x )≤e 2对x ∈[1,e]恒成立.只要⎩⎪⎨⎪⎧f (1)=a -1≥e -1,f (e )=a 2-e 2+a e ≤e 2, 解得a =e.15.已知f (x )=ax -ln x ,x ∈(0,e],g (x )=ln x x,其中e 是自然对数的底数,a ∈R . (1)讨论a =1时,函数f (x )的单调性和极值;(2)求证:在(1)的条件下,f (x )>g (x )+12; (3)是否存在正实数a ,使f (x )的最小值是3?若存在,求出a 的值;若不存在,请说明理由.(1)解 ∵a =1,∴f (x )=x -ln x ,f ′(x )=1-1x=x -1x, ∴当0<x <1时,f ′(x )<0,此时f (x )单调递减;当1<x ≤e 时,f ′(x )>0,此时f (x )单调递增.∴f (x )的极小值为f (1)=1.(2)证明 ∵f (x )的极小值为1,即f (x )在(0,e]上的最小值为1,∴[f (x )]min =1.又g ′(x )=1-ln x x 2, ∴当0<x <e 时,g ′(x )>0,g (x )在(0,e]上单调递增.∴[g (x )]max =g (e)=1e <12, ∴[f (x )]min -[g (x )]max >12, ∴在(1)的条件下,f (x )>g (x )+12. (3)解 假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e])有最小值3,则f ′(x )=a -1x =ax -1x. ①当0<1a <e 时,f (x )在(0,1a)上单调递减, 在(1a,e]上单调递增, [f (x )]min =f (1a)=1+ln a =3,a =e 2,满足条件; ②当1a≥e 时,f (x )在(0,e]上单调递减, [f (x )]min =f (e)=a e -1=3,a =4e(舍去),所以,此时f (x )无最小值. 综上,存在实数a =e 2,使得当x ∈(0,e]时f (x )有最小值3.。
人教版高中总复习一轮数学精品课件 第3章 一元函数的导数及其应用 3.4 导数的综合应用

(1)解 由题设,知f(x)的定义域为(0,+∞), f'(x)= -1,
令f'(x)=0,解得x=1.
当0<x<1时,f'(x)>0,f(x)单调递增;
当x>1时,f'(x)<0,f(x)单调递减.
(2)证明 由(1)知 f(x)在 x=1 处取得最大值,最大值为 f(1)=0.
则当 x≠1 时,ln x<x-1.
求实数λ的取值范围.
e
1
1
解 同例题过程,得 +x+>λ 在区间 2 ,6 上有解,
e
1
令 g(x)= +x+,则需 λ<g(x)max.
1
由例题解答过程可知,g(x)在区间 2 ,1 上单调递减,
1
1
5
e6 37
1
在区间[1,6]上单调递增,且 g 2 =2e2 + 2,g(6)= 6 + 6 >g 2
1
当
1
0,
1
0<x< ;令
f'(x)>0,得
上单调递减,在区间
1
x> ,
1
,+∞
上单调递增.
≤1,即 a≥1 时,函数 f(x)在区间[1,2]上单调递增,故函数 f(x)在区间[1,2]上
的最小值为 f(1)=1;
1
当
≥2,即 0<a≤
1
时,函数
2
上的最小值为 f(2)=aln
f(x)在区间[1,2]上单调递减,故函数 f(x)在区间[1,2]
高考总复习一轮数学精品课件 第4章 导数及其应用 第1节 导数的概念及其意义

即在点(x0,f(x0))处
2.导数的几何意义
函数y=f(x)在x=x0处的导数f'(x0),就是曲线y=f(x)在x=x0处的切线的斜率k0,
f'(x0)
即k0=__________.
微思考已知函数y=f(x),给定一个点P(x0,y0),那么f'(x0)就是经过点P的切线的
4
√2 √2
B,直线的斜率为 m=- 3 <- 4 ,故 B 错误;
√2
C,直线的斜率为 m=- 4 ,故 C 正确;
√2
x= 2 时,等号成立,
√2
≥2√2,因此- ≤m<0.
4
对于 D,直线的斜率为 m=√2>0,故 D 错误,故选 AC.
考点三
导数几何意义的应用(多考向探究预测)
考向1 求曲线的切线方程
所以切线方程为
1
y-2=2(x-1),整理可得
4x-2y-3=0.
1
k=2,切点为(1, ),
2
考向2 求参数的值或范围
例4(1)(2024·广东惠州模拟)已知直线y=x+1与曲线y=ln(x+a)相切,则实数
a=( C )
A.-1
B.1
C.2
D.3
1
1
解析 设切点的坐标为(x0,y0),由于 y'= ,所以切线的斜率为
1 3 2
h(t)= t +t ,当t=t0时,液体上升高度的瞬时变化率为3
3
cm/s,则当t=t0+1时,液
体上升高度的瞬时变化率为( C )
A.5 cm/s
B.6 cm/s
北师版高考总复习文科数学精品课件 第3章导数及其应用 高考解答题专项一 第1课时 利用导数证明不等式

x=1,
所以当x∈(0,1)时,g'(x)>0,g(x)是递增的,
当x∈(1,+∞)时,g'(x)<0,g(x)是递减的.
所以g(x)max=g(1)=-2<0,
所以ln x-x-1<0恒成立,
即证f(x)<x2+x.
考向2.“拆分法”构造函数证明不等式
例2.(2021广东佛山高三模拟)已知函数f(x)=ax-ln x(a∈R).
高考解答
题专项一
第1课时 利用导数证明不等式
考情分析
导数的综合应用是高考考查的重点内容,也是高考压轴题之一,近几年高考
命题的趋势是稳中求变、变中求新、新中求活,纵观近几年的高考题,导数
的综合应用题考查多个核心素养以及综合应用能力,有一定的难度,一般放
在解答题的最后两个题目位置,对数学抽象、数学运算、逻辑推理等多个
x-1≥0 恒成立,
+1≤1,所以 k≥1.故 k 的取值范围为[1,+∞).
突破技巧导数的综合应用题中,最常见就是ex和ln x与其他代数式结合的题
目,对于这类问题,可以先对ex和ln x进行放缩,使问题简化,便于化简或判断
导数的正负.常见的放缩公式如下:
(1)ex≥1+x,当且仅当x=0时,等号成立;
2
突破技巧本例 2(2)不等式 e x >(x+1)ln
2 2
5
x+2x
直接证明无法进行,若转化后构
5
造函数 h(x)=e x -(x+1)ln x- x,求导后不易分析,故将不等式结合其特点转化
2
ln
高考北师大版数学总复习课件:3.2导数的应用

2.(文)函数f(x)=ax2-b在区间(-∞,0)内是减函数,则 a,b应满足( ) B.a>0且b∈R D.a<0且b∈R
A.a<0且b=0 C.a<0且b≠0
[答案] B
[解析] f′(x)=2ax,当x<0时,由f′(x)=2ax<0,得 a>0,∴a>0,b∈R.
(理)函数y=ax3-x在R上是减函数,则( 1 A . a= 3 C . a= 2 B.a=1 D . a≤ 0
(理)下面四图都是在同一坐标系中某三次函数及其导函数 的图像,其中一定不正确 的序号是( ..... )
A.①② C.①③
B.③④ D.①④
[答案] B
[解析] 对于③,f(x)在原点附近为增函数,∴f′(x)>0, 而图像中当x>0时,f′(x)<0,∴③一定不正确;对于④,同 理,导函数开始应在x轴上方,④一定不正确,故选B.
[解析] (1)f′(x)=3ax2+2bx+c, ∵x=±1是函数f(x)的极值点,且f(x)在定义域内任意一点 处可导. ∴x=±1使方程f′(x)=0, 即为3ax2+2bx+c=0的两根, 由根与系数的关系得 2b -3a=0 c =-1 3a ① ②
x e + a= 0 x y′=e +a,由条件知, x>0
有解,
∴a=-ex<-1.
4.(2011· 青岛二模)函数y=2x3-3x2-12x+5在[0,3]上的 最大值、最小值分别是( A.5;-15 C.-4;-15 ) B.5;-4 D.5;-16
[答案] A
[解析] y′=6x2-6x-12,令y′=0⇒x=-1(舍去)或x =2. x=0时y=5,x=2时y=-15,x=3时y=-4. ∴ymax=5,ymin=-15.故选A.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x+a (2)由(1)可知,f′(x)= 2 x ①若 a≥-1,则 x+a≥0,即 f′(x)≥0 在[1,e] 上恒成立,f(x)在[1,e]上为增函数, 3 ∴[f(x)]min=f(1)=-a= , 2 3 ∴a=- (舍去). 2 ②a≤-e,则 x+a≤0,即 f′(x)≤0 在[1,e]上恒 成立,f(x)在[1,e]上为减函数, a 3 ∴[f(x)]min=f(e)=1- = , e 2 e ∴a=- (舍去). 2
③若-e<a<-1,当 1<x<-a 时,f′(x)<0, ∴f(x)在(1,-a)上为减函数,当-a<x<e 时, f′(x)>0,∴f(x)在(-a,e)上为增函数, 3 ∴[f(x)]min=f(-a)=ln(-a)+1= ,∴a=- e 2 综上所述,a=- e.
题型三 【例 3】
导数与方程的解 已知函数 f(x)=x2-aln x 在(1,2]是增函数,
个根处取极小值). 4.函数的最值 求可导函数在[a,b]上的最值的步骤 求f(x)在(a,b)内的极值→求f(a)、f(b)的值→比 极值 较f(a)、f(b)的值和_____的大小.
5.利用导数解决生活中的优化问题的一般步骤
(1)分析实际问题中各量之间的关系,列出实际问 题的数学模型,写出实际问题中变量之间的函数关 系式y=f(x); (2)求函数的导数f′(x),解方程f′(x)=0;
( C )
D. n2 n 1
A.
n n 1
解析
∵f′(x)=mxm-1+a=2x+1
m 2 a 1
∴f(x)=x2+x ∴f(n)=n2+n=n(n+1)
1 f (1 ) 1 f (2) 1 f (n) 1 1 n 1 n n 1 . 故选 C.
4.a、b为实数,且b-a=2,若多项式函数f(x)在区间 (a,b)上的导函数f′(x)满足f′(x)<0,则以下式子 中一定成立的关系式是 A.f(a)<f(b) C.f(a+1)>f(b-1) 解析 ( B.f(a+1)>f(bD.f(a+1)>f(b1 2 3 2
解 由已知得函数f(x)的定义域为{x|x>1},
1 (1 x )
2
因为 f ( x )
a ln( x 1 ), 所以 f ( x )
2 - a (1 x ) (1 x )
3
2
.
①当a>0时,由f′(x)=0,得
x1 1 2 a 1, x 2 1 2 a
当a=1或a≥3时,f(x)无极值. 探究提高 (1)注意体会求函数极值的基本步骤,列 表可使解题过程更加清晰规范. (2)要求函数f(x)在区间(a-1,a+1)内的极值,需对参
数a进行讨论.
知能迁移1
已知函数
f (x)
1 (1 x )
2
a ln( x 1 )
(a为常数),求函数f(x)的极值.
(3)比较函数在区间端点和f′(x)=0的点的函数值
的大小,最大(小)者为最大(小)值.
基础自测
1.已知曲线C:y=2x2-x3,点P(0,-4),直线l过点P且与 曲线C相切于点Q,则点Q的横坐标为 A.-1 B.1 C.-2
2
(
A )
D.2
2 3
解析
2
y 4 x 3 x , 设 Q ( x 0 , 2 x 0 x 0 ), 则 l 方 程 为
极小值;
当a=1时,f(x)在(a-1,a+1)内无极值;
当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无 极大值; 当a≥3时,f(x)在(a-1,a+1)内无极值. 综上得,当0<a<1时,f(x)有极大值-2,无极小值;
当1<a<3时,f(x)有极小值-6,无极大值;
b=3, 依题意 -16a+b=-29 a=2, , b=3,
符合题意.
当a<0,令f′(x)=0得x1=0,x2=4在区间[-1,2]上,
x -1 (-1,0) 0 (0,2) 2
f′(x)
f(x)
-
-7a+b
-
0
极小值b
+
+
-16a+b
由 a<0 得-16a+b>-7a+b,则 f(x)在[-1,2]上取最大值 -16a+b,最小值 b.
1+
2 处取得极小值, a
2 2 a =2 1+ln a . a
当 a≤0 时,f(x)无极值.
题型二
函数的最值与导数
【例2】已知函数f(x)=ax3-6ax2+b,问是否存在实 数a、b使f(x)在[-1,2]上取得最大值3,最小值 -29,若存在,求出a、b的值;若不存在,请说明
知能迁移 2
a 已知函数 f(x)=ln x- . x
(1)求函数 f(x)的单调增区间; 3 (2)若函数 f(x)在[1,e]上的最小值为 ,求实数 a 的值. 2
解
(1)由题意,f(x)的定义域为(0,+∞),
1 a x+a 且 f′(x)= + 2= 2 . x x x ①当 a≥0 时, f′(x)>0,∴f(x)的单调增区间为(0,+∞). ②当 a<0 时,令 f′(x)>0,得 x>-a,∴f(x)的单调增 区间为(-a,+∞).
当a>0时,令f′(x)=0,得x1=0,x2=4在区间 [-1,2]上,
x f′(x) f(x) -1 + -7a+b (-1,0) + 0 0 极大值 b (0,2) - 2 - -16a+b
由 a>0 得-16a+b<-7a+b,则 f(x)在[-1,2]上取最大 值 b,最小值-16a+b.
2m 6 23
而g(x)的图象关于y轴对称,所以
所以m=-3.代入①得n=0.
0,
于是f′(x)=3x2-6x=3x(x-2).
由f′(x)>0得x>2或x<0, 故f(x)的单调递增区间是(-∞,0)和(2,+∞);
由f′(x)<0,得0<x<2,
故f(x)的单调递减区间是(0,2).
图所示,记y=f(x)的导函数为y=f′(x),则不等式
,1] [2,3) f′(x)≤0的解集为__________. 3 [
解析
域 (
3 2
由函数y=f(x)在定义
, 3 ) 内的图象可得,函
数y=f′(x)的大致图象如图
所示.由图象可得不等式 f′(x)≤0的解集为
[ 1 3 ,1] [ 2 , 3 ).
(2)由(1)得f′(x)=3x(x-2), 令f′(x)=0得x=0或x=2. 当x变化时,f′(x)、f(x)的变化情况如下表:
x f′(x) f(x) (-∞,0) + 0 0 极大值 (0,2) 2 0 极小值 (2,+∞) +
由此可得: 当0<a<1时,f(x)在(a-1,a+1)内有极大值f(0)=-2,无
∴f′(-x)=f′(x),∴f′(x)为偶函数,∴函数图象 关于y轴对称.由f′(0)=1可排除C、D选项.而 f′(1)=cos 1-sin 1<0,从而观察图象即可得到答
案为A.
3.已知函数f(x)=xm+ax的导数f′(x)=2x+1,则数列
{ 1 f (n) }
(n∈N*)的前n项和为
Β. n 1 n C. n n 1
于y轴对称可求m,n.由f′(x)>0及f′(x)<0可求单
调递增和递减区间.(2)先求出函数y=f(x)的极值 点,再根据极值点是否在区间(a-1,a+1)内讨论.
解
(1)由函数f(x)的图象过点(-1,-6), ①
得m-n=-3. 由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n, 则g(x)=f′(x)+6x=3x2+(2m+6)x+n.
g(x)=x-a x在(0,1)为减函数. (1)求 f(x)、g(x)的解析式; (2)求证:当 x>0 时,方程 f(x)=g(x)+2 有唯一解. 探究提高
3 2
y 2 x 0 x 0 ( 4 x 0 3 x 0 )( x x 0 ). l 过 点 P (0, 4 ), 4 2 x 0 x 0 ( 4 x 0 3 x 0 )(0 x 0 ), x 0 x 0 2合应用
基础知识
要点梳理 1.曲线的切线方程
自主学习
点P(x0,f(x0))在曲线y=f(x)上,且f(x)在(x0,f(x0)) y处存在导数,曲线y=f(x)在点P处的切线方程为___
f(x0)=f′(x0)(x-x0) __________________.
2.函数的单调性 (1)用导数的方法研究函数的单调性往往很简便, 但要注意规范步骤.求函数单调区间的基本步骤是:
理由.
思维启迪 (1)研究函数f(x)在[-1,2]上的单调性;
(2)确定f(x)在[-1,2]上的最大、最小值;
(3)列方程组求a、b. 解 由f(x)=ax3-6ax2+b得f′(x)=3ax2-12ax =3ax(x-4). 当a=0时,f′(x)=0,f(x)=b不能使f(x)在[-1,2] 上取最大值3,最小值-29.
3
1,
此时 f ( x )
a ( x x 1 )( x x 2 ) (1 x )