常用热处理分类
1简述常用的热处理的方法及时效处理

1简述常用的热处理的方法及时效处理。
答:常用热处理方法:退火,正火,淬火,回火,渗碳,渗氮,碳氮共渗,渗硼。
时效处理有人工时效处理,自然时效处理。
退火,将工件加热至Ac3以上30~50度,保温一定时间后,随炉缓慢冷却至500度一下在空间中冷却。
正火,将钢件加热至Ac3或Acm以上,保温后从炉中取出在空气中冷却的一种操作。
淬火,将钢件加热至Ac3或Ac1以上,保温后在水或油等冷却液中快速冷却,已获得不稳定的组织。
回火,将淬火后的钢重新加热到Ac1以下的温度,保温后冷却至室温的热处理工艺。
自然时效处理,将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理。
人工时效处理,采用将工件加热到较高温度,并较短时间进行时效处理的时效处理工艺,叫人工时效处理。
2简述钢回火的目的答:回火又称配火。
将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。
或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。
目的:一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。
根据不同的要求可采用低温回火、中温回火或高温回火。
通常随着回火温度的升高,硬度和强度降低,延性或韧性逐渐增高。
3简述钢的表面淬火的作用及分类。
答:有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。
在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。
由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。
根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。
4简述感应热处理技术的工作原理及特点。
简述超音频感应淬火的工作频率及频率和淬硬层厚度的关系。
答:基本原理将工件放入感应器(线圈)内,当感应器中通入一定频率的交变电流时,周围即产生交变磁场。
热处理的分类

热处理的分类热处理是一种通过加热、保温和冷却的工艺,用于改变材料的物理和化学性质,以达到特定的性能要求。
它广泛应用于钢铁、铝合金、铜、镁等金属材料的生产过程中,以及一些机械零件、汽车零部件、航空航天器件、电子元器件等领域。
根据不同的加热方式和处理温度,热处理可以分为多种分类。
1.焙火处理焙火处理是指将材料加热到一定温度,然后在空气中进行保温,使其表面氧化,形成一层氧化皮。
这种处理方法主要用于铜、铝等非铁金属材料的表面处理,可以提高材料的耐腐蚀性、耐磨性和美观度。
2.正火处理正火处理是指将材料加热到一定温度,然后进行保温,最后缓慢冷却。
这种处理方法主要用于钢铁材料的生产过程中,可以改变钢铁的组织结构和力学性能,提高其硬度、强度和韧性。
3.淬火处理淬火处理是指将材料加热到一定温度,然后迅速冷却。
这种处理方法主要用于钢铁材料的生产过程中,可以使钢铁的表面形成硬度高、强度大、耐磨性好的表面层,提高钢铁的耐磨性和使用寿命。
4.回火处理回火处理是指将淬火后的材料加热到一定温度,然后进行保温,最后缓慢冷却。
这种处理方法主要用于淬火后的钢铁材料,可以消除淬火后的应力,改善钢铁的韧性和塑性。
5.退火处理退火处理是指将材料加热到一定温度,然后进行保温,最后缓慢冷却。
这种处理方法主要用于改变材料的组织结构和性能,可以提高材料的塑性、延展性和韧性,同时也可以消除材料的应力和缺陷。
6.氮化处理氮化处理是指将材料加热到一定温度,然后在氮气中进行保温,使其表面吸收氮元素,形成一层氮化物。
这种处理方法主要用于改善材料的表面硬度、耐磨性和耐腐蚀性,可以提高材料的使用寿命。
7.碳化处理碳化处理是指将材料加热到一定温度,然后在碳质物质中进行保温,使其表面吸收碳元素,形成一层碳化物。
这种处理方法主要用于改善材料的表面硬度、耐磨性和耐腐蚀性,可以提高材料的使用寿命。
总之,热处理是一种广泛应用于材料加工和制造领域的重要工艺,不同的热处理方法可以针对不同的材料和要求进行选择和应用,以达到最佳的加工效果和使用性能。
四种热处理方式

淬火Quenching钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体1化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。
通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。
淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。
也可以通过淬火满足某些特种钢材的铁磁性、耐蚀性等特殊的物理、化学性能。
淬火工艺将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。
常用的淬冷介质有盐水、水、矿物油、空气等。
淬火可以提高金属工件的硬度及耐磨性,因而广泛用于各种工、模、量具及要求表面耐磨的零件(如齿轮、轧辊、渗碳零件等)。
通过淬火与不同温度的回火配合,可以大幅度提高金属的强度、韧性及疲劳强度,并可获得这些性能之间的配合(综合机械性能)以满足不同的使用要求。
另外淬火还可使一些特殊性能的钢获得一定的物理化学性能,如淬火使永磁钢增强其铁磁性、不锈钢提高其耐蚀性等。
淬火工艺主要用于钢件。
常用的钢在加热到临界温度以上时,原有在室温下的组织将全部或大部转变为奥氏体。
随后将钢浸入水或油中快速冷却,奥氏体即转变为马氏体。
与钢中其他组织相比,马氏体硬度最高。
淬火时的快速冷却会使工件内部产生内应力,当其大到一定程度时工件便会发生扭曲变形甚至开裂。
为此必须选择合适的冷却方法。
根据冷却方法,淬火工艺分为单液淬火、双介质淬火、马氏体分级淬火和贝氏体等温淬火4类。
淬火工件的硬度淬火工件的硬度影响了淬火的效果。
淬火工件一般采用洛氏硬度计,测试HRC硬度。
淬火的薄硬钢板和表面淬火工件可测试HRA的硬度。
厚度小于0.8mm的淬火钢板、浅层表面淬火工件和直径小于5mm的淬火钢棒,可改用表面洛氏硬度计,测试HRN硬度。
常用热处理设备分类

常用的热处理设备可以分为以下几类:
1. 炉窑类:包括炉窑、炉膛、炉膛炉等。
炉窑类设备主要用于加热和保温处理,常见的有电阻炉、气体炉、真空炉等。
2. 淬火设备:用于对金属材料进行淬火处理,使其获得所需的硬度和强度。
常见的淬火设备有盐浴淬火炉、油浴淬火炉、水淬设备等。
3. 回火设备:用于对淬火后的金属材料进行回火处理,以减轻内应力和提高韧性。
常见的回火设备有回火炉、回火炉膛等。
4. 等离子设备:利用等离子体的高温和高能量对材料进行表面改性和处理。
常见的等离子设备有等离子喷涂设备、等离子刻蚀设备等。
5. 氮化设备:用于对金属材料进行氮化处理,以提高其硬度和耐磨性。
常见的氮化设备有氮化炉、氮化炉膛等。
6. 淬火油设备:用于提供淬火油,对金属材料进行淬火处理。
常见的淬火油设备有淬火油槽、淬火油泵等。
以上是常见的热处理设备分类,不同的设备适用于不同的热处理工艺和材料。
热处理分类

热处理的作用就是提高材料的机械性能、消除残余应力和改善金属的切削加工性。
按照热处理不同的目的,热处理工艺可分为两大类:预备热处理和最终热处理。
1. 预备热处理预备热处理的目的是改善加工性能、消除内应力和为最终热处理准备良好的金相组织。
其热处理工艺有退火、正火、时效、调质等。
(1)退火和正火退火和正火用于经过热加工的毛坯。
含碳量大于0.5%的碳钢和合金钢,为降低其硬度易于切削,常采用退火处理;含碳量低于0.5%的碳钢和合金钢,为避免其硬度过低切削时粘刀,而采用正火处理。
退火和正火尚能细化晶粒、均匀组织,为以后的热处理作准备。
退火和正火常安排在毛坯制造之后、粗加工之前进行。
(2)时效处理时效处理主要用于消除毛坯制造和机械加工中产生的内应力。
为避免过多运输工作量,对于一般精度的零件,在精加工前安排一次时效处理即可。
但精度要求较高的零件(如座标镗床的箱体等),应安排两次或数次时效处理工序。
简单零件一般可不进行时效处理。
除铸件外,对于一些刚性较差的精密零件(如精密丝杠),为消除加工中产生的内应力,稳定零件加工精度,常在粗加工、半精加工之间安排多次时效处理。
有些轴类零件加工,在校直工序后也要安排时效处理。
(3)调质调质即是在淬火后进行高温回火处理,它能获得均匀细致的回火索氏体组织,为以后的表面淬火和渗氮处理时减少变形作准备,因此调质也可作为预备热处理。
由于调质后零件的综合力学性能较好,对某些硬度和耐磨性要求不高的零件,也可作为最终热处理工序。
2. 最终热处理最终热处理的目的是提高硬度、耐磨性和强度等力学性能。
(1)淬火淬火有表面淬火和整体淬火。
其中表面淬火因为变形、氧化及脱碳较小而应用较广,而且表面淬火还具有外部强度高、耐磨性好,而内部保持良好的韧性、抗冲击力强的优点。
为提高表面淬火零件的机械性能,常需进行调质或正火等热处理作为预备热处理。
其一般工艺路线为:下料--锻造--正火(退火)--粗加工--调质--半精加工--表面淬火--精加工。
常用热处理分类

常用热处理的分类1 表面淬火表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。
表面淬火时通过快速加热,使刚件表面很快到淬火的温度,在热量来不及穿到工件心部就立即冷却,实现局部淬火。
表面淬火的目的在于获得高硬度,高耐磨性的表面,而心部仍然保持原有的良好韧性,常用于机床主轴,齿轮,发动机的曲轴等。
表面淬火采用的快速加热方法有多种,如电感应,火焰,电接触,激光等,目前应用最广的是电感应加热法。
2 表面淬火和回火将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理工艺。
或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。
一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。
3 物理气相沉积物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。
物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。
发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。
4 化学气相沉积化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。
它本质上属于原子范畴的气态传质过程。
与之相对的是物理气相沉积(PVD)。
整体热处理1 退火退火是一种金属热处理工艺,指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却。
目的是降低硬度,改善切削加工性;消除残余应力,稳定尺寸,减少变形与裂纹倾向;细化晶粒,调整组织,消除组织缺陷。
热处理知识介绍

球化退火应用
球化退火主要适用于共析钢和过共析钢,如碳 素工具钢、合金工具钢、轴承钢等。这些钢经 轧制、锻造后空冷,所得组织是片层状珠光体 与网状渗碳体,这种组织硬而脆,不仅难以切 削加工,且在以后淬火过程中也容易变形和开 裂。
球化退火应用
而经球化退火得到的是球状珠光体组织,其中 的渗碳体呈球状颗粒,弥散分布在铁素体基体 上,和片状珠光体相比,不但硬度低,便于切 削加工,而且在淬火加热时,奥氏体晶粒不易 长大,冷却时工件变形和开裂倾向小。另外对 于一些需要改善冷塑性变形(如冲压、冷镦等) 的亚共析钢有时也可采用球化退火。
热处理分类——回火
钢的回火是将淬火钢加热至A1以下的某一温 度,保温一段时间,然后冷却到室温的一种热 处理工艺。
消除钢淬火时产生的亚稳定组织。
二、退火热处理
退火热处理是将金属或合金加热到适当的温度, 保持一定的时间,然后缓慢冷却的热处理工艺。
退火后组织亚共析钢是铁素体加片状珠光体; 共析钢或过共析钢则是粒状珠光体。总之退火 组织是接近平衡状态的组织。
Fe+H2O→FeO+H2 FeC+CO2→Fe+2CO 还原: FeO+H2→Fe+H2O
FeO+CO→Fe+CO2
对策
所以我们必须做到: 1.减少盘圆料自身带的FeO(盘圆料的酸洗可 以减少FeO); 2.降低炉内的CO、H2在适当的比值和线材来 减少O2、H2O脱碳性气体(加氮气降低炉内 CO、H2的体积百分比),加瓦斯,丙烯可以分 解成甲烷与炉内的H2O、O2反应成CO作为保 护气氛。
CH3OH
CO+2H2
中性气体
氮气在高温加热时和钢铁不发生任何作用,即 不氧化。不脱碳、也无还原和增碳作用,故为 中性气体。
氧化案例
热处理基础知识

热处理基础知识热处理的原理热处理就是通过将工件放于一定的气氛中进行适当的加热、保温及冷却,以改变工件的性能的过程。
热处理术语整体热处理:把金属或工件进行穿透加热的热处理工艺。
本车间使用的热处理工艺均为整体热处理,包括:渗碳、淬(回)火、调质、正火、渗碳直接淬火等。
局部热处理:仅对工件的某个部件或几个部位进行热处理的工艺,常用的有高频淬火、激光表面处理等。
化学热处理:把金属材料或工件放在适当的活性介质中加热、保持,使一种或几种化学元素渗入其表层,以改变其化学成分、组织和性能的热处理工艺,渗碳是其中的一种。
可控气氛热处理:为达到无氧化、无脱碳、按要求增碳的目的,在成分可以控制的炉气中进行加热和冷却的热处理工艺。
本车间用的UBE渗碳自动生产线就是可控气氛热处理的一种。
真空热处理:在一定的真空度的加热炉中,可实现工件无氧化的热处理工艺。
热处理术语滴注式气氛:把含碳有机液体(一般用甲醇)定量滴入加热到一定温度(700℃以上)、密封良好的炉内,在炉内裂解形成的气氛。
甲醇裂解气可以用作渗碳载气、添加丙酮、异丙醇、煤油等可提高碳势,作为渗碳气氛。
淬火冷却介质:工件冷却淬火时使用的介质。
常用的有水,盐、碱、有机聚合物水溶液。
油、熔盐、流态床、空气、氢气、氮气和惰性气体等。
淬透性:以在规定条件下淬火所能达到的硬度分布表征的材料特性。
淬硬性:以钢在理想条件下所能达到的最高硬度表征的材料特性。
端淬试验:将标准端淬试样(φ25x100mm)奥氏体化后,在专用的试验机上对其下端平面喷水冷却,然后沿试样圆柱表面轴向磨平带上测出硬度和水冷端距离的关系曲线。
此曲线被称为端淬曲线。
该试验方法被称做端淬试验,通过端淬试验可以大致确定金属材料的淬透性。
热处理术语奥氏体化:将钢铁加热到Ac3或Ac1以上,使原始组织全部或部分转变为奥氏体的工艺等温转变:钢和铸铁奥氏体化后,冷却到Ar1或Ar3以下温度保持时的过冷奥氏体发生的转变。
连续冷却转变:钢铁奥氏体化后以不同的冷却速度连续冷却时,过冷奥低体发生的转变,过冷奥氏体连续冷却时的开始和终止转变时间、温度及转变产物与冷却速度间的关系曲线称做奥氏体连续冷却转变曲线(CCT曲线)退火:钢铁或非铁金属加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用热处理的分类
1 表面淬火
表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。
表面淬火时通过快速加热,使刚件表面很快到淬火的温度,在热量来不及穿到工件心部就立即冷却,实现局部淬火。
表面淬火的目的在于获得高硬度,高耐磨性的表面,而心部仍然保持原有的良好韧性,常用于机床主轴,齿轮,发动机的曲轴等。
表面淬火采用的快速加热方法有多种,如电感应,火焰,电接触,激光等,目前应用最广的是电感应加热法。
2 表面淬火和回火
将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理工艺。
或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。
一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。
3 物理气相沉积
物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在
基体表面沉积具有某种特殊功能的薄膜的技术。
物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。
发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。
4 化学气相沉积
化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。
它本质上属于原子范畴的气态传质过程。
与之相对的是物理气相沉积(PVD)。
整体热处理
1 退火
退火是一种金属热处理工艺,指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却。
目的是降低硬度,改善切削加工性;消除残余应力,稳定尺寸,减少变形与裂纹倾向;细化晶粒,调整组织,消除组织缺陷。
2 正火
正火,又称常化,是将工件加热至Ac3或Acm以上40~60℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
其目的是在于使晶粒细化和碳化物分布均匀化,去除
材料的内应力,降低材料的硬度。
3 淬火
钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上温度,保温一段时间,使之全部或部分奥氏体1化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。
通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。
4 淬火和回火
将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理工艺。
或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。
一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。
5 高温回火
高温回火是把零件淬火后,再加热到500~650℃,一般是加热到psk线(临界点Ac1)的某一温度,保温一段时间后,以适当的速度冷却。
[1]。
高温回火得到铁素体+细粒状渗碳体的混合物,即回火索氏体组织。
具有优良的综合力学性能,多用于结构零件淬火后的回火,如连杆、螺栓、齿轮及轴。
淬火+高温回火称为调质
一般用于淬火的后续处理,淬火+高温回火被称为调质处理,在工业生产中有广泛的应用。
回火温度范围为500-650摄氏度,有利于彻底消除内应力,提高金属的塑性和韧性,回火一般采用空气中冷却。
硬度一般在25~35HRC之间,回火后的组织为回火索氏体。
主要应用于含碳量为0.3%-0.5%的碳钢和合金钢制造的各类连接和传动的结构零件。
6 调质(淬火+高温回火=调质)
质件大都在比较大的动载荷作用下工作,它们承受着拉伸、压缩、弯曲、扭转或剪切的作用,有的表面还具有摩擦,要求有一定的耐磨性等等。
总之,零件处在各种复合应力下工作。
这类零件主要为各种机器和机构的结构件,如轴类、连杆、螺栓、齿轮等,在机床、汽车和拖拉机等制造工业中用得很普遍。
尤其是对于重型机器制造中的大型部件,调质处理用得更多.因此,调质处理在热处理中占有很重要的位置。
在机械产品中的调质件,因其受力条件不同,对其所要求的性能也就不完全一样。
一般说来,各种调质件都应具有优良的综合力学性能,即高强度和高韧性的适当配合,以保证零件长期顺利工作。
7 稳定化处理
稳定组织,消除残余应力,以使工件形状和尺寸保持在规定范围内的任何一种热处理工艺。
8 固溶处理
材料或工件加热至适当温度并保温足够时间,使可溶相充分溶解,然后快速冷却到室温以获得过饱和固溶体的热处理工艺。
9 水韧处理
水韧处理实际为一种固溶处理,常用于高锰钢,由于高锰钢的铸态组织为奥氏体,碳化物及少量的相变产物珠光体所组成。
沿奥氏体晶界析出的碳化物降低钢的韧性,为消除碳化物,将钢加热至奥氏体区温度(1050-1100℃,视钢中碳化物的细小或粗大而定)并保温一段时间(每25mm壁厚保温1h),使铸态组织中的碳化物基本上都固溶到奥氏体中,然后快速冷却,从而得到单一的过冷
10 时效处理
时效处理可分为自然时效和人工时效两种。
自然时效是将铸件置于露天场地半年以上,使其缓缓地发生形变,从而使残余应力消除或减少。
人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底,但相比自然时效应力释放不彻底。
“两种材料以不同的方式获得强度,”Menzemer
说,“6061铝合金通过热处理获得强度,有时称为人工时效.T6是达到最大强度的优化时效。
化学热处理
1 渗碳
渗碳:是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分。
相似的还有低温渗氮处理。
这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。
2 碳氮共渗(氧化)
钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程,习惯上碳氮共渗又称作氰化。
目前以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较是广。
中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度,低温气体碳氮共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性。
3 渗氮
渗氮,是在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。
常见有液体渗氮、气体渗氮、离子渗氮。
传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,保温较长时间后,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入工件表层内,从而改变表层的化学成分和组织,获得优良的表面性能。
如果在渗氮过程中同时渗入碳以促进氮的扩散,则称为氮碳共渗。
常
用的是气体渗氮和离子渗氮,因而可使渗氮后的钢件得到高的表面硬度、耐磨性、疲劳强度、抗咬合性、抗大气和过热蒸汽腐蚀能力、抗回火软化能力,并降低缺口敏感性。
4 氮碳共渗
以渗氮为主同时渗入碳的化学热处理工艺。
工业生产中已广泛应用的氮碳共渗有气体法和熔盐法。
5 渗其他非金属
6 渗金属
渗金属,英文:diffusion metallizing ,是指以金属原子渗入钢的表面层的过程。
它是使钢的表面层合金化,以使工件表面具有某些合金钢、特殊钢的特性,如耐热、耐磨、抗氧化、耐腐蚀等。
生产中常用的有渗铝、渗铬、渗硼、渗硅等。
通俗的讲就是使一种或多种金属原子渗入金属工件表层内的化学热处理工艺。
将金属工件放在含有渗入金属元素的渗剂中,加热到一定温度,保持适当时间后,渗剂热分解所产生的渗入金属元素的活性原子便被吸附到工件表面,并扩散进入工件表层,从而改变工件表层的化学成分、组织和性能。
7 多元共渗
将两种以上元素渗入工件表面的化学热处理工艺。