110KV电缆线路保护层接地方式及保护

合集下载

电缆线路护层试验

电缆线路护层试验

3.外护套绝缘是金属护套与加强带良好的防 腐层,一旦外护套绝缘性能受到破坏时, 故障点将有电流的流进或流出,而产生交 流腐蚀,则损坏金属护套。 4.具有良好绝缘的外护套,还有防止化学腐 蚀的作用。运行中的电缆外护套,通过对 其绝缘性能的测量,还可以验证电缆是否 受到外力破坏。

综上所述,必须通过试验,来确认外护套 绝缘性能是否完好,以保证电缆线路安全运 行。
高压单芯电缆护层过电压保护的原理和方式
110kV单芯电缆护层保护
护层保护原理
三芯电缆-----通常都采用两端金 属护层直接接地方式 (35kV及以下)
因为在正常运行中,流过三个线芯的电流向量总和为 零,在铝包或金属屏蔽层外基本上没有磁链,这样, 在铝包或金属屏蔽层两端就基本上没有感应电压,所 以两端接地后不会有感应电流流过铝包或金属屏蔽层
金属护套一端接地情况:
•当雷击或操作过电压波沿线芯流动时,金属护层不接地 端会出现很高的冲击电压;在系统发生短路时,短路电 流流经线芯时,护层不接地端也会出现较高的工频感应 电压。过电压可能会导致外护套绝缘薄弱处击穿,造成 多点接地,形成环流 。
需特殊接地方式+保护器
110kV单芯电缆护层保护
护层接地及保护方式



1.高压电缆一般采用单芯电缆结构,其投运后金属护 套仍具有一定感应电压,所以其外护套必须有一定 的绝缘水平。如果外护套绝缘不良,对于一端接地 或交叉互联的电缆线路,当有冲击过电压时,保护 器尚未动作,外护套绝缘薄弱处,就可能先被击穿 ,电缆线路上将形成两点或多点接地,致金属护套 产生环流,从而发热,影响电缆线路运行的载流量 。 2.110kV及以上电力系统时中性点直接接地的系统, 对于两端接地或交叉互联的电缆线路,当发生接地 故障时,故障电流很大,金属护套中回路电流也很 大,良好的外护套绝缘将能承受良好的过电压,不 至于被击穿。如若绝缘不良,则有可能被击穿,进 而烧坏电缆的金属护套和加强带。

110kV及以上高压电缆线路的接地系统

110kV及以上高压电缆线路的接地系统

110kV及以上高压电缆线路的接地系统摘要:电力企业的发展为高压电缆线路接地系统的优化创造了有利条件,但不同接地系统其应用效果不一,因此需要进行更加深入的探讨,从而可有效保证社会用电安全。

对此,本文将对110kv及以上高压电缆线路的接地系统进行分析,并探讨其在应用过程中存在的一些问题及相关优化措施。

关键词:高压电缆;接地系统;应用;措施高压电缆线路接地系统可有效保证电路安全,具有较高的应用价值。

在此过程中,相关技术人员存在一些误区,如,部分技术人员认为在高压电力电缆的铜屏蔽与钢铠之间的接地没有区别,但实际工作过程中,其接地方式需结合具体情况进行具体分析。

此外,电网规模的扩大也要求高压电缆线路具有更高的可靠性。

接地系统可有效防止感应电压对人身安全产生威胁,因此,在电网建设过程中,应当注重接地系统应用的分析。

1高压电力电缆接地系统概述当电流通过导体时,导体周围会产生感应电压,这一感应电压会影响电路可靠性,因此,在搭建高压电力电缆时,会采取一定的屏蔽措施。

接地系统的应用原理为通过铜网或者钢铠等金属形成一个屏蔽系统,保护电缆运行。

但接地系统在安装及设计上需要注意一系列问题,才能保证其应用效果。

目前,高压电力电缆接地主要包括金属护套一点接地、金属护套两端接地、金属护套两端接地、敷设“三七开”回流线及电缆换位,金属护套交叉互联等五种方式,应用场景不同,接地施工方式也不同[1]。

因此,相关人员应当提升自身素质,为电网可靠性发展提供技术支撑。

2电缆接地系统应用特点2.1金属护套一点接地金属护套一点接地系统中感应电压会随着电缆长度的增长而增加,因而常用于短电缆线路,在应用过程中,基本上不产生环流。

此外,在安装过程中,在无安全措施的情况下,需保证其另一端感应电压小于50v,如超过50v,则需设置绝缘接头。

尤其是在电路短路时,过高的过电压会损坏护层绝缘,因此,为避免此类现象影响接地系统应用性能,需在未接地端安装保护器。

论110kV电缆线路中的交叉互联接地系统设计

论110kV电缆线路中的交叉互联接地系统设计

论110kV电缆线路中的交叉互联接地系统设计摘要:基于110kV电缆线路中的交叉互联接地系统在电网线路的生产和运行中应用的广泛性,本文重点论述了此接地系统的设计原理和实际应用现状,并分析了常见的问题,提出了一些可行的措施,以期能够为相关的实践提供些许理论参考。

关键词:电缆线路交叉互联接地系统原理应用问题措施电缆线路中的交叉互联接地系统的设计原理是将电缆金属护套的一端直接接地,普遍用的是中间绝缘接头和交叉互联箱与三相电缆的金属护套调换位置以后进行重新连接,而另一端则通过保护接地,这样在完全换位的状况下,金属护套中就没有任何环流的通过,两端对地之间也就不会产生相应的感应电压,而是在每段的电缆线中间有一定的感应电压,并能保证换位处的感应电压幅度最高。

这种交叉互联方式的电缆线接地系统有其优势,也会存在着一定的缺陷和问题。

找到适当的方式就能化不利为有利。

一、110kV电缆线路中交叉互联接地系统的原理与应用就普遍情况来看,110kV 以上的高压电缆线路中使用的电缆很多都是单芯电缆,当有电流通过这种单芯电缆线时,便会产生磁力线交链的金属护套层,电缆线的两端面就会出现感应电压。

通过电缆线的电流越大,电缆线的长度越长,感应电压的幅度就越大,三者是呈正比的关系。

但是当电缆线路过长的时候,通过电缆护套上的感应电压相加起来的电压则会在一定程度上危胁到人们的生命安全。

所以当电缆线路发生短路的故障问题时候,或者电缆线路受到雷电的强烈冲击,或者操作不当导致电压过大,就容易形成强度很大的感应电压,有时候它能击破电缆线路的保护绝缘,所以单芯电缆线路的使用中一定要采取合适的接地方法,并按照科学的步骤进行操作,以达到保护人民的生命财产安全和电缆接地系统设备安全的双重目的。

电缆护套的接地方式有一端接地方式、两端接地方式以及交叉互联接地方式,选取那一种要看这种方式所带来的利弊是否平衡,是否能够承载高压电缆线路的正常负荷。

通常,较长的110kV电缆线路的金属护套的不能使用两端接地方式,例如当电缆线路的长度超过1500米时就不能进行两端接地,因为这样会导致金属护套中通过一定量的环流,从而降低了电缆线路的总载流量,而电缆线路中的交叉互联接地方式或者一端接地方式电缆通过的载流量均大于这种两端接地方式的电缆载流量,这样就不会造成资源的浪费,能源也不至于损失过多,由此看来较长的电缆线路一般可以采用护套一端接地方式,或者采用护套中点接地方式,还可以采用交叉互联接地。

关于110kV电缆线路护层接地方式及保护

关于110kV电缆线路护层接地方式及保护

关于110kV电缆线路护层接地方式及保护作者:张贤秋梁奉山王传坤宋辉来源:《中国科技博览》2016年第07期[摘要]对我国110kV电缆线路护层常见的护层接地方式进行分析,研究电缆线路护层接地的保护措施,希望可以降低自然条件对线缆的影响,减少输电过程中的电力损失,延长电缆线路的使用寿命,避免电缆线路接地对人们的生命安全造成威胁。

[关键词]110kV电缆线路;护层接地;接地方式;接地保护中图分类号:TM521 文献标识码:A 文章编号:1009-914X(2016)07-0392-01随着我国经济的发展,城市化进程的速度不断加快,110kV电缆线路的使用越来越广泛。

电缆线路的接地方式会对电力传输造成影响。

如果护层接地方式不恰当,会导致线缆的感应电压产生变化产生过电压现象。

过电压会导致线缆护层的绝缘层被击穿,产生线路故障,并且会出现大量的环流,增加线缆的电力损失。

一旦线缆出现接地故障修复会比较困难,会对整个城市造成比较大的影响,所以对此线缆护层的接地方式及保护进行研究,对于110kV电缆线路的安全稳定运行,有着重要的意义。

一、110kV电缆线路概述110kV电缆线路为单芯线缆,属于我国城市输电线路中的主要线缆。

该电缆线路的使用寿命比较长,降低了我国城市输电线路的线缆更换次数,使输电成本得到了有效的控制,另外该电缆线路对输电环境的适应能力比较强,不会因为环境差异而造成较大的输电线损。

加强对电缆线路的护层保护,可以提高电网输电的经济效益,110kV电缆线路属于架空线路有着较高的可靠性和安全性,在我国输电线路中应用的比较广泛。

在电缆线路护层接地的过程中,必须要对护层的接地电阻进行控制,避免护层接地电阻过低而出现感应电压过大的现象,将线缆护层击穿。

二、110kV电缆线路护层常见的接地方式(一)单侧接地如果电缆线路的长度超过了500m,一般会将该电缆线路护层的一段直接与地面相接,另一端是利用电阻保护器间接的接到地上。

对110kV及以上高压电缆线路的接地系统分析

对110kV及以上高压电缆线路的接地系统分析

对110kV及以上高压电缆线路的接地系统分析摘要:本文作者通过实际工作中总结与积累经验,主要针对110kv及以上高压电缆的接地的重要性,并通过分析高压电缆接地的要求、方式和采取的措施等。

关键词:高压电缆接地电流电缆接地方式一、前言:经过十几年高压电力电缆施工我们积累了相当一部分的经验,本文综合各类文献并结合工程实际,意图对110kv及以上高压电缆的接地就重要性等方面进行探索。

二、高压电力电缆接地分析当导体内通过电流时会在其周围产生感应电压,对于在发电厂、变电所等用于低压及二次系统控制的电缆,为了防止继电保护装置误动以保证保护装置可靠性以外,也防止控制电缆屏蔽因感应电压而导致保护装置损坏,所以均采取带屏蔽铜网的电缆,并对屏蔽接地有着非常严格的规定;并且要求电缆支架等都要求接地以防止感应电压危及人身安全;而高压电力电缆同样存在这样的问题,本文将针对高压电力电缆在施工及运行中遇到的的一系列敷衍出的问题进行讨论:首先是敷设时的机械保护(电缆抗弯、防水、防火、腐蚀——采取铝、铜等金属外护套)→其次运行中线芯电流(在金属护套上形成1∶1的单匝变压器产生感应电动势——危害人身安全及电气设备运行经济性、可靠性等,采取外屏蔽接地)→接地电流或环流→各种接地方式的解决方法。

为了尽可能减少护套环流我们可以采取多种金属护套的连接与接地方式,这是我要着重讨论的问题。

高压电缆线路的接地方式有下列几种:.金属护套一点接地(一端或中点):无环流,感应电压与电缆长度成正比,短电缆线路常用;⑵. 金属护套两端接地:有环流,感应电压为零,但影响载流量,轻负荷电缆线路常用;⑶. 金属护套交叉换位连接:两端接地,中间用绝缘接头将护层交叉换位连接,无环流,感应电压与电缆长度成正比,但可以限制在允许的范围内,长电缆线路常用。

⑷.电缆换位,金属护套交叉互联:要求测得电缆金属感应电压必须是小于50v为前提,如果不是的话,必须进行相应的检查,是否是电缆的原因还是由于电缆的长度太长而造成的,还是其他原因造成的,如果是长度的原因(一般要求在500~800m的范围具体看测试结果),应相应调整其长度,比如说一组交叉互联加一组接地(一段接地)或其他方式。

110kv电缆线路护层接地方式及保护措施

110kv电缆线路护层接地方式及保护措施

110kv电缆线路护层接地方式及保护措施摘要:当前,110kv电缆线路已经逐渐成为城市中替代架空线路的关键输电环节,然而也存在不足之处,主要原因在于该输电系统的架设工作较为复杂,而且技术性要求相当高。

因此,现阶段我国供电企业需要重点探讨的问题是如何充分掌握110kv电缆线路护层接地方法,采取有效的保护措施,只有这样才可以促进企业持续健康发展。

基于此,本文首先介绍了110kv电缆线路的优势性能,然后分析了110kv电缆线路护层的常见接地方法,最后提出了110kv电缆线路护层的保护措施,以供大家学习和参考。

关键词:110kv电缆线路护层;接地方式;保护措施近年来,在社会经济日益发展的背景下,我国电力行业不仅迎来很多发展机遇,而且面临严峻的挑战,要想更好地满足社会对电能的需求,供电企业在发展中将电网建设规模不断扩大。

在该情况下,110kv电缆线路的投入使用可以使电网具有更强的供电能力,而为了提高电网运行的可靠性和稳定向,必须要不断完善且落实110kv电缆线路保护层接地方法,还要结合实际情况,合理制定有效的保护措施。

一、110kv电缆线路的优势性能就110kv电缆线路来讲,其内部是单芯结构形式,在具体应用中体现出多个优势特点,具体表现在以下几个方面:其一,可以使电缆的使用寿命得到延长,以显著减少电网运行过程中产生的总成本,为供电企业创造更多的经济效益。

其二,此电缆线路可以迅速适应自然气候带来的影响,在最大限度上减少网损,而且提升供电质量。

其三,利用电缆线路的保护层可以明显减少电缆线路受损的情况,以免投入大量的维修费用。

其四,该电缆线路是采用高空架网的形式来铺设,所以既安全又可靠。

二、110kv电缆线路护层的常见接地方法(一)单端接地电缆的线路长度不超过500米时,一般来说,终端部分运用电缆金属护套使其中的一端直接接地,而且将另一侧通过非线性的电阻保护器,以做好间接接地处理,让金属护套对地处在绝缘的状态中,以免出现有回路的问题。

110kV及以上高压电缆线路的接地系统

110kV及以上高压电缆线路的接地系统
1 1 0 k V及 以上 高压 电缆 线路 的接地 系统
鑫 周
( 国 网 四 川 攀 枝花 供 电公 司 四川省 攀枝花 市
模 的扩大 , 高压 电力 电缆工程 增多 , 高压 电缆接地 方式 的安全 与否直接 关系着 电力系 统 的安全稳 定运 行 。笔者 结合丰富 的理 论知识与工程 实践经验 , 对 1 1 0 k  ̄及以上高压 电缆接 地要求 、 方式 、 措施进行分析 。
1 高压 电力 电缆接 地分 析
在 电力系统中 , 发 电厂 、 变 电站等用 于低压与二次系统控制 的电缆 , 主要采 用带屏蔽铜 网的 电缆 , 究其 原因主要是 电流途经导体 , 会 在其周 围产生感应 电压 , 带屏蔽铜 网电缆一方 面能防止装置误动确保保护装置 的可靠性 ; 另一方面也 能防止感 应电压对保护装置的损坏 。出于 电网运 行安全 和人身安全 的考虑 , 高压 电缆对屏蔽接地 有着严格的规 定, 并且 电缆 支 架 等 都 要 求 接 地 以防 止 感 应 电压 过 大 。 作为 电力系统 的重要组成部 分, 高压电缆同样存在这样 的问题 。本 文将 针对高压 电力 电缆在施工及运 行中遇到 的的一系列敷衍 出的 问题 进行讨论 : 首先是敷设时 的机械保护 ( 电缆抗弯 、 防水、 防火、 腐蚀一采取 铝、 铜等金属外护套) 一其 次运行 中线芯电流 ( 在金属护套上形成 1 : 1的 单匝变压器产生感应 电动势一危 害人身安全及 电气设备运行经济性 、 可 靠性等 ,采取外屏蔽接地) 一接地 电流 或环 流一 各种接地方式 的解决方 法 。为减小护套环流 , 降低对 电气设备运行 、 人身安全威胁的影 响, 应采 取多种金属护套 的连接与接地方式, 这也是本文探讨 的关键所在 。
长度成正 比, 无环流;

浅析高压电力电缆金属护套接地方式

浅析高压电力电缆金属护套接地方式

浅析高压电力电缆金属护套接地方式摘要:高压电力电缆线路保护接地,可以有效保障电力电缆线路的安全运行。

电缆金属护套采取合理的联接和接地方式,在提高电缆载流量、降低工程造价的同时,更加保证了线路的安全运行。

本文对高压电力电缆金属护套接地方式进行了深入分析。

关键词:高压电力电缆;金属护套;接地方式前言高压电力电缆导体为一次绕组,电缆金属护套为二次绕组。

当导体中产生交变电流时,交变电场会在电缆金属护套上生成感应电压。

电力电缆线路施工中,要格外重视金属护套的接地。

也就是说,电力电缆线路不论是在正常运行还是在发生接地故障的状况下,都需要利用大地作为电流回路,将电缆线路接地位置的电位钳制在允许的接地电位上。

1单芯电缆与统包电缆接地方式的区别三相三芯或四芯电缆都属于统包电缆,芯线在电缆中呈三角形对称分布,三相电流对称,金属护套不会产生感应电流,因此在施工时对金属护套只要可靠接地或者多点接地均符合要求。

但是单芯电缆的芯线与金属护套近似于一台变压器的初级绕组和次级绕组,当电缆通过交流电流时,其周围产生的磁力线一部分将与金属护套铰链,在金属护套中产生感应电压,感应电压的大小与电缆的长度、流过芯线的电流成正比。

如果把金属护套的两端接地,护套与导线形成闭合回路,护套中将产生环行电流,金属护套上的环行电流与芯线的负载电流基本上处于同一数量级,将在金属护套上形成热能损耗,加速电缆绝缘层的老化,降低芯线的载流量。

2单芯高压电缆的接地方式及特点2.1金属护套一端接地。

一端接地通常指的是电缆线路一端金属屏蔽直接接地,另一端金属屏蔽对地开路不互联,通常情况下采用架空线连接端一端接地,使线路受雷击时的过电压尽量减小。

采用一端接地可以防止护层循环电流产生,使线路损耗降到最低。

需要注意的是,开路端正常运行时会出现感应电压。

尤其当受在雷击和操作时,可能有很高的冲击过电压产生。

当系统有短路发生或当短路电流流经芯线时,金属屏蔽没有接地端可能会有很高的工频感应电压产生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:过电压可能击穿电缆外护层绝缘,造成电缆金属护层多点接地故障,大幅增加环流附加热损耗,严重地影响电力电缆正常运行,甚至大幅减少电缆使用寿命。

一旦发生电缆金属护层多点接地故障,故障的测寻、定点和修复均比较困难,停电检修造成的电量损失较大。

本文首先说明了110KV电缆线路现状,然后分析了几种常用的保护层接地方式,最后详细阐述了110KV电缆电线的护层保护及限制过电压的科学措施。

关键词:110KV;电缆线路;保护层;接地;标准
一、110KV电缆线路现状
改革开放以来,我国的社会主义市场经济取得了飞速的发展,越来越多的人口涌入到了城市当中,促进了中国城市化的进程。

所以,在这之前存在的供电网已经不能够适应现当今城市的发展步伐,要求中国城市电力部门进行全方面的改革,调整现有的供电网络布局,满足城市居民对于电力的需求。

值得我们庆幸的是,城市的供电公司已经对这一问题进行了研究,并且诸多公司已经开始将其制定的计划付诸实践,取得了较为明显的效果。

大多数公司采取的改革方案是放弃以前的电缆线路,改为采用 110kV。

110kV 线路具有传统线路所不具备的优势:
第一,寿命与之前的相比较之下要更长,在一定的程度上减少了电缆的更换速度,节约了公司的供电成本;
第二,传统的电缆抗击外界天气等自然条件的能力较弱,而 110kV 则对自然条件的适应性较强;
第三,环保卫生;第四,不影响城市的整体形象。

综合上述的这些优势,110kV电缆得到了大众的青睐。

但是,任何事物都不可能是完美无缺的,我们也应该看到 110kV电缆线路的缺点和不足:由于其为单芯电缆,在使用时没有做好处理,发生事故的概率较高;而且在过电压的情况下护层很容易被击穿,造成电力的流失,严重时将会危机民众的生命。

因此,必须克服这一困难,才能大范围的推广 110kV 电缆线路。

二、几种常用的保护层接地方式
单相高压电缆的过电压可分为工频过电压与冲击过电压,工频过电压包括电缆线路正常运行时或工频短路时金属护套上产生的感应电压;冲击过电压包括雷击过电压与操作过电压。

为了限制这些过电压,电缆金属护层常采用护套单端接地、交叉互联、护套两端接地、护套中点接地、电缆换位金属护套交叉互联等接地方式。

(一)单端接地
电缆线路长度<500m时,通常采用电缆金属护套在终端位置采用一端直接接地,另一端经非线性电阻保护器间接接地的连接方式。

由于金属护套的其他部位对地绝缘,这样护套与地之间不构成回路。

(二)交叉互联
将电缆线路分成若干大段,每大段原则上分成长度相等的三小段,每小段之间以绝缘接头连接,绝缘接头处金属护套三相之间用同轴电缆经接地箱连接片进行换位连接,绝缘接头处的接地箱内装设一组护层保护器,每大段的两端护套分别互联接地。

(三)护套两端接地
电缆的金属护套两端直接接地。

当电缆线路很短,传输功率较小时,金属护套上的感应电压极小,损耗不显著,对载流量影响不大。

(四)护套中点接地
实质为单端接地。

电缆线路回路长度较长时,在电缆线路中间将金属护套接地,两端均对地绝缘并分别装设一组护层保护器。

(五)电缆换位金属护套交叉互联
在金属护套交叉互联的同时将三相电缆连续的进行换位。

这样即使在不对称的水平排列三相电缆中,由于电缆每小段进行了换位,每大段全换位,三相电缆护套感应电压相量和为零,基本没有环流。

但是此连接方式仅适合于电缆有换位空间的场所。

三、110KV电缆电线的护层保护及限制过电压的科学措施
(一)在进行施工之前,制定科学的施工方案
综合考虑电缆的分段长度,做到精确计量,电缆分段过长和过短都会带来一定的弊端,应该采用适中长度的分段,综合考虑电缆路径的实际情况及感应电压计算结果进行合理分段。

交流系统用单芯电力电缆的相序配置及其相间距离,应同时满足电缆金属护层的正常感应电压不超过允许值,并使按持续工作电流选择电缆截面尽可能较小的原则来确定。

未呈品字形配置的单芯电力电缆,有两回线及以上配置在同一通路时,在感应电压计算上应计入相互影响。

(二)合理考虑电缆分段长度,进一步强化设计验算
电缆分段不宜过长,应该综合考虑电缆路径的实际情况及感应电压计算结果进行合理分段。

交流系统用单芯电力电缆的相序配置及其相间距离,应同时满足电缆金属护层的正常感应电压不超过允许值,并使按持续工作电流选择电缆截面尽可能较小的原则来确定。

未呈品字形配置的单芯电力电缆,有两回线及以上配置在同一通路时,在感应电压计算上应计入相互影响。

(三)确保电缆护层厚度达到技术要求
在符合电缆设计规范的前提下因地制宜地采用新型外护套。

普遍认为,电缆外护套厚度在4.0mm以上,其绝缘水平在相当长的时间内都能保持稳定。

材质方面,大多电缆多采用的是PVC或PE的外护套,外面有一层石墨层。

PVC护套硬度低、受环境温度影响大。

HDPE护套硬度高,受环境温度影响小。

电缆外护套还有很多其它的形式,有的电缆外护套外的石墨层也采用挤塑的方式,无形中在外护层外面又增加了一层护层,这在施工中对保护外护层起到了很大的作用。

有的双层外护套中间夹有铜带,又进一步对外护套进行了加强。

(四)电缆敷设施工中对电缆外护层按照规范进行检测保护
严格控制电缆牵引力、侧压力在允许范围内;根据电缆通道走向特点制定最佳施工方案,电缆敷设路径上设置足够数量的滑轮;严格按照设计图施工,保证电缆排列方式、分段长度符合设计要求;电缆线路敷设完毕全线回填细沙;电缆敷设前后均分段分相按照规程要求进行护层耐压试验,若护层有损伤能尽早发现处理。

(五)确保地阻达到标准要求
电力电缆线路保护接地即电力电缆金属护层可靠接地,是有效保障电力电缆线路安全运行的重要保护措施之一。

电力电缆线路不论是在正常运行状态下,还是在发生接地故障或雷电过电压以及内部过电压状态下,均需要利用大地作为电流回路,将电缆线路接地位置的电位钳制在允许的接地电位上。

接地电位与接地装置的接地电阻值密切相关,而接地电阻值不仅与入地电流的波形、频率有关,而且与接地装置的几何形状和尺寸、大地电阻率、电缆线路敷设方式以及电缆故障类型密切相关。

如果接地电阻值不满足电缆线路安全运行的要求,则在故障状态下接地电位可能大幅升高至数百kV,一方面,地电位反击可能导致电缆外护层绝缘击穿,引发电缆线路金属护层多点接地故障;另一方面,地电位大幅升高后反击相邻电气设备,或形成跨步电压和接触电压使人员受到身体伤害等等。

因此,在地理条件和经济条件允许的情况下,应尽可能地采取优化措施,如:接地装置(接地网)设计时应采用边缘闭合、同时附加垂直接地体的设计方案等,降低电力电缆线路接地装置的接地电阻。

(六)加强环流监测
对于单端接地的电缆线路正常情况下应该没有环流,对于采用交叉互联接地方式且对称
排列的电缆线路其三相环流应该基本均衡,通过环流检测再与历史记录进行比对可以发现电缆护层存在的缺陷并及时处理。

此外,还必需定期进行预防性试验,测试护层绝缘水平,进行护层保护器试验。

一旦发现护层保护器参数不合格立即更换,为护层保护提供良好的基础。

参考文献
[1]王振文. 浅析高压电力电缆金属护套接地方式[J]. 铁道建筑技术. 2011(04)
[2]李建儒. 单芯电力电缆护层接地及护套损伤危害性分析[J].电气化铁道. 2011(02)
[3]李秋明,李壮. 单芯电缆线路接地系统的分析及处理[J]. 冶金动力. 2007(04)。

相关文档
最新文档