实验七 纯弯曲梁的正应力实验(共享)

合集下载

纯弯曲梁的正应力电测实验

纯弯曲梁的正应力电测实验

纯弯曲梁的正应力电测实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。

2.初步掌握电测法原理和静态电阻应变仪的使用方法。

二、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图20(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。

由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。

图20 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺三、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图20(b)所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。

当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。

通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。

由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。

实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。

纯弯曲正应力实验报告

纯弯曲正应力实验报告

纯弯曲正应力实验报告纯弯曲正应力实验报告引言:纯弯曲正应力实验是材料力学领域中的一项基础实验,通过对材料在受到纯弯曲力作用下的正应力分布进行测量和分析,可以了解材料的力学性能和变形特征。

本实验旨在通过对不同材料样本的纯弯曲正应力实验,探究材料的强度、韧性和变形能力。

实验目的:1. 了解纯弯曲正应力实验的原理和方法;2. 掌握纯弯曲正应力实验的操作技巧;3. 分析不同材料样本的正应力分布特点;4. 探究材料的强度、韧性和变形能力。

实验原理:纯弯曲正应力实验是通过施加一个纯弯曲力矩于材料上,使其产生弯曲变形。

在材料的中性轴附近,正应力呈线性分布,而在材料的表面,正应力最大。

根据材料的几何尺寸和应力分布,可以计算出材料的弯曲应力。

实验步骤:1. 准备不同材料样本,包括金属、塑料等;2. 将样本固定在弯曲试验机上,并调整试验机的参数,如加载速度、加载方式等;3. 施加纯弯曲力矩,记录下加载过程中的应变和应力数据;4. 根据实验数据,计算出材料的正应力分布和弯曲应力。

实验结果与分析:通过实验得到的数据,我们可以绘制出不同材料样本的正应力分布曲线。

根据曲线的变化特点,我们可以分析材料的强度、韧性和变形能力。

首先,正应力分布曲线的斜率表示了材料的强度。

斜率越大,说明材料的强度越高。

通过比较不同材料样本的斜率,我们可以评估材料的强度差异。

其次,正应力分布曲线的形状和曲线下的面积表示了材料的韧性。

曲线形状越平缓,说明材料的韧性越好。

曲线下的面积越大,表示材料的变形能力越高。

通过比较不同材料样本的曲线形状和曲线下的面积,我们可以评估材料的韧性和变形能力。

最后,我们还可以分析材料在不同加载条件下的正应力分布曲线。

通过比较不同加载速度、加载方式等对正应力分布曲线的影响,可以了解材料在不同应力条件下的变形特性。

结论:通过纯弯曲正应力实验,我们可以了解材料的强度、韧性和变形能力。

不同材料样本的正应力分布曲线可以反映材料的力学性能差异。

实验报告-纯弯曲梁

实验报告-纯弯曲梁

纯弯曲梁横截面上正应力的测定
实验日期实验地点报告成绩
实验者班组编号环境条件℃、%RH 一、实验目的:
二、使用仪器:
三、实验原理:
四、实验数据记录:
1、梁的受力简图、弯矩图及测点布置示意图:
2、相关尺寸及常数:试样编号:
3、应变增量的测量:单位:×10-6
实验指导教师(签名):
五、实验数据处理:
六、实验结果:
七、思考题:
1、两个材料不同、几何尺寸及受载情况完全相同的梁,在同一位置处测得的应变是否相同?应力呢?为什么?
2、由理论计算出来的L σ∆与实际测量出来的c σ∆之间的误差主要是何原因产生的?
批阅报告教师(签名): 八、问题讨论:。

纯弯曲梁正应力实验

纯弯曲梁正应力实验
每增加一级载荷,依次记录各点电阻应变片的应变读数,直到最终载荷。实验至少重复两次。 7.完成全部实验内容后,卸掉载荷,关闭电源,整理所用仪器、设备,清理实验现场,
将所用仪器设备复原,数据经指导教师检查签字。
实验表格
数据 项目 梁的几何 尺寸
纯弯曲梁正应力实验数据表
结果
数据 结果
项目
宽度 b=20mm 高度 h=40mm 跨距 a=160mm
层的距离 y。 3.拟定加载方案。先选取适当的初载 P。,估算最大载荷 Pmax(σmax≤0。7σs),分 4~6
级加载。 4.根据加载方案,调整好实验加载装置。 5.按实验要求接线。调整好电阻应变仪,检查整个测试系统是否处于正常工作状态。 6 加载。用均匀慢速加载至初载荷 P。,记下各点电阻应变仪的初读数。然后逐级加载,
实验原理
实验可采用半桥单臂、公共补偿、多点测量方法。加载采用增量法。即每增加等量的载 荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε,依次求出各点 的应力增量
△σ实 i=E△ε实 i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。
实验步骤
1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度 b 和高度 h、载荷作用点到梁支点距离 a 及各应变片到中性
一点的正应力计算公式为
s = My Iz
式中 M 为弯矩; Iz 为横截面对中性轴的惯性矩; y 为所求应力点至中性轴的距离。由 上式可知,在弹性范围内,沿横截面高度正应力按线性规律变化,其最大应力产生在上、下 边缘,为
s弯截面模量。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁的侧面不同 高度,平行于轴线贴有 7 片电阻应变片,如图所示。其中 3# 片位于中性层处, 2# 、 4# 片分 别距中性层上、下 h/ 4 处。 1# 、 1‘#、 5# 、 5‘#片分别位于上下表面。此外,在梁的上表面 沿横向粘贴 0# 应变片。

纯弯曲梁正应力测定 工程力学实验报告

纯弯曲梁正应力测定 工程力学实验报告

纯弯曲梁正应力测定一、 实验目的1.测定梁在纯弯曲时横截面上的正应力分布,验证平面假设理论和弯曲正应力公式。

2.学习电测应力实验方法。

二、 实验设备1.简支梁及加载装置。

2.电阻应变仪。

3.直尺,游标卡尺。

三、 实验原理根据弯曲梁的平面假设沿着梁横截面高度的正应力分布规律应当是直线。

为了验证这一假设,我们在梁的纯弯曲段内粘贴7片电阻应变片:1#、2#、3#、4#、5#、6#、7#,见指导书中图,由应变仪测出读数即知道沿着梁横面高度的正应力分布规律。

四、 实验步骤1.用游标卡尺测量梁的尺寸b 和h ,用钢尺量梁的支点至力作用点的距离d 。

2.将各点的应变片和温度补偿片以半桥的形式接入应变仪。

被测应变片接在AB 上,补偿片接在BC 上。

仪器操作步骤:1)半桥测量时将D 1DD 2接线柱用连接片连接起来并旋紧。

2)将标准电阻分别与A 、B 、C 接线柱相连。

3)接通电源开关。

4)按下“基零”键仪表显示“0000”或“-0000”(仪表内部已调好)。

5)按下“测量”键,显示测量值,将测量值调到“0000”或“-0000”。

6)按下“标定”键仪表显示-10000附近值,按照所使用应变片灵敏度K=2.17,调节灵敏度使显示为-9221。

7)将“本机、切换”开关置“切换”状态。

主机的 A 、B 、C 接线柱上的标准电阻去掉,将各被测量应变片一端分别与左上对应的各A (A 1~A 7)接线柱相连,公共输出端与一B 接线柱相连,温度补偿片接在B 、C 之间。

被测点(应变片号) 6 4 2 1 3 5 7 接线端子(通道号) 1 2 3 4 5 6 78)切换开关, 按次序所有点的平衡都调节在0000或-0000值上。

9)转动手轮,使梁加载荷,逐点测量、记录应变值。

采用增量法加载,每次0.5kN 。

注意不能超载。

0.5 kN , 初载荷调零; 1.0 kN , 1.5 kN ,2.0 kN ,2.5 kN ,读出应变值10)实验结束。

纯弯曲梁的正应力电测实验

纯弯曲梁的正应力电测实验

纯弯曲梁的正应力电测实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。

2.初步掌握电测法原理和静态电阻应变仪的使用方法。

二、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图20(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。

由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。

图20 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺三、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图20(b)所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。

当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。

通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。

由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。

实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。

实验七 纯弯曲梁的正应力实验

实验七 纯弯曲梁的正应力实验

实验七 纯弯曲梁的正应力实验一、实验目的1.测定梁纯弯曲时的正应力分布规律,并与理论计算结果进行比较,验证弯曲正应力公式。

2.掌握电测法的基本原理。

二、实验设备1.纯弯曲梁实验装置。

2.静态电阻应变仪。

三、实验原理已知梁受纯弯曲时的正应力公式为z I y M ⋅=σ 式中M 为纯弯曲梁横截面上的弯矩,z I 为横截面对中性轴Z 的惯性矩,y 为横截面中性轴到欲测点的距离。

本实验采用铝制的箱形梁,在梁承受纯弯曲段的侧面,沿轴向贴上五个电阻变应片,如图7-1所示,1R 和5R 分别贴在梁的顶部和低部,2R 、4R 贴在 4H y ±=的位置,3R 在中性层处。

当梁受弯曲时,即可测出各点处的轴向应变实i ε(i=1、2、3、4、5)。

由于梁的各层纤维之间无挤压,根据单向应力状态的胡克定律,求出各点的实验应力为:实i σ= ⋅E 实i ε(=i 1、2、3、4、5)式中,E 是梁材料的弹性模量。

这里采用的增量法加载,每增加等量的载荷△P ,测得各点相应的应变增量为△实i ε,求出△实i ε的平均值实i ε∆,依次求出各点的应力增量△实i σ为:△实i σ = ⋅E 实i ε∆ (7-1)把△实i σ与理论公式算出的应力增量:i σ∆理 = zi I y M ⋅∆ (7-2) 加以比较从而验证理论公式的正确性。

从图 7-l 的试验装置可知,a P M ⋅∆=∆21 (7-3)图7-1 纯弯曲梁装置四、实验步骤1.拟定加载方案。

在0~20kg 的范围内分4级进行加载,每级的载荷增量kg P 5=∆。

2. 接通应变仪电源,把测点1的应变片和温度补偿片按半桥接线法接通应变仪,具体做法是:将测点1的应变片接在应变仪的A 、B 接线柱上,将温度补偿片接在B 、C 接线柱上。

调整应变仪零点(或记录应变仪的初读数)。

3.每增加一级载荷(kg P 5=∆),记录引伸仪读数一次,直至加到20kg 。

注意观察各级应变增量情况。

纯弯曲梁的正应力试验

纯弯曲梁的正应力试验

实验六纯弯曲梁的正应力实验一、实验目的1. 梁在纯弯曲时横截面上正应力大小和分布规律;2. 验证纯弯曲梁的正应力计算公式;3. 测定泊松比μ;4. 掌握电测法的基本原理;二、实验设备1. 材料力学多功能实验台;2. 静态数字电阻应变仪一台;3. 矩形截面梁;4. 游标卡尺;三、实验原理1. 测定弯曲正应力本实验采用的是低碳钢制成的矩形截面试件,当力F 作用在辅助梁中央A 点时,通过辅助梁将压力F 分解为两个集中力2/F 并分别作用于主梁(试件)的B 、C 两点。

实验装置受力简图如下图所示。

根据内力分析,BC 段上剪力0=S F ,弯矩Fa M 21=,因此梁的BC 段发生纯弯曲。

在BC 段中任选一条横向线(通常选择BC 段的中间位置),在离中性层不同高度处取5个点,编号分别为①、②、③、④、⑤,在5个点的位置处沿着梁的轴线方向粘贴5个电阻应变片,如下图所示。

D C B a F/2F/2E a ⑥ ⑤ ①② ④ ③ hb根据单向受力假设,梁横截面上各点均处于单向应力状态,应用轴向拉伸时的胡克定律,即可通过测定的各点应变,计算出相应的实验应力。

采用增量法,各点的实测应力增量表达式为:i i E 实实εσ∆=∆式中:i 为测量点的编号,i =1、2、3、4、5;i 实ε∆ 为各点的实测应变平均增量;为各点的实测应力平均增量; 纯弯梁横截面上正应力的理论表达式为:z i i I y M ⋅=σ ; 增量表达式为: zi i I y M ⋅∆=∆σ 通过同一点实测应力的增量与理论应力增量计算结果比较,算出相对误差,即验证纯弯曲梁的正应力计算公式。

以截面高度为纵坐标,应力大小为横坐标,建立平面坐标系。

将5个不同测点通过计算得到的实测应力平均增量以及各测点的测量高度分别作为横坐标和纵坐标标画在坐标平面内,并连成曲线,即可与横截面上应力理论分布情况进行比较。

2. 测定泊松比在梁的下边缘纵向应变片⑤附近,沿着梁的宽度方向粘贴一片电阻应变片⑥(电阻应变片⑥也可贴在梁的上边缘),测出沿宽度方向的应变,利用公式εεν'=,确定泊松比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七纯弯曲梁的正应力实验(共享)
纯弯曲梁的正应力实验是利用梁的中性线来确定梁的正应力和受力分布的一种实验方法。

实验以有关的原理及其实施步骤来进行:
1.进行实验的前期准备:准备实验装置,其中包括梁本身,梁上安装实验位移传感器,垂直负荷应力传感器。

2.设定初始参数,即静态偏载、动态偏载、梁长度等参数并根据梁的材料特性计算中
性线位置,再用实验施加负荷,将应力传感器安装在梁的中性线位置,用应力传感器测量
两端的端受力,沿着梁轴线测量偏载点到梁中性线的距离。

3.在进行实验前,一定要进行梁轴线和梁中性线的精确定位,在测量受力时,要对位
置和方向进行准确控制,不要出现偏移。

4.实验中采用双脚踏开关控制负载机构,先施加次低偏载,测量偏载点到梁中性线的
距离,保证准确无误,在施加负载时,采用步进或以一定的速率施加,这样可以更好的控
制实验,并得到较准确的结果。

5.在实验过程中,观察梁表面贴有位移传感器的位移值,以及经受负荷的梁,来标定
梁的中性线位置。

6.最后,根据获得的实验结果,利用原理计算梁的应力分布,并逐步确定整个梁受力
情况,得出梁的空间应力场,以此来确定梁弯曲受力形式,进而对梁进行结构设计与优化。

实验完成后,应及时对影响实验结果的各种参数和气象条件进行记录,以确保实验结
果可靠可验。

为了能够更好的了解实验结果以及梁的受力情况,应提出相应的分析和改进
措施,以深入认识梁的受力形态,并进一步改结构设计及优化。

相关文档
最新文档