梁的纯弯曲正应力实验

合集下载

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告梁的纯弯曲正应力实验报告一、实验目的本实验旨在通过对实验材料进行纯弯曲加载,测量其正应力和弯曲角度,从而掌握材料在纯弯曲状态下的应力特性,并探究材料性能的影响因素。

二、实验原理当梁在纯弯曲时,受到的载荷可以分解为一个弯矩和一个剪力。

由于实验中去除了外部作用力,剪力为零,因此我们只需要考虑弯矩作用下的应力情况。

在梁的截面上,由于受到弯曲,不同位置的应变不同,因此会形成不同大小的应力。

在正常情况下,当梁未发生破坏时,梁的内部应力呈线性分布,即受到的弯矩越大,所受到的应力也会相应增大。

三、实验设备本实验所使用的设备包括:1.纯弯曲实验台2.测力仪3.梁材料(一定长度的圆形钢管或方管)四、实验步骤1. 选择一段合适材质的梁进行实验。

2. 将梁固定在纯弯曲实验台上。

3. 在梁的一端加上一定荷载。

4. 通过测力仪测量在梁部位不同位置受到的正应力。

5. 在梁的另一端加上一定数量的荷载,并重复步骤4,记录正应力。

6. 重复以上操作,直到梁发生破坏。

五、实验结果在实验过程中,我们记录了梁不同位置受到的正应力,并根据实验数据分析了不同弯矩下的应力分布曲线。

实验结果表明,在纯弯曲状态下,梁的内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。

六、实验分析根据实验结果,我们可以发现梁的性能会受到材料的影响。

不同的材料具有不同的弯曲特性,不同的性能和抗断性能。

而在实验中,我们也可以通过调整材料的材质和长度来控制弯曲的程度,从而控制梁的应力分布和破坏点位置。

七、实验结论本实验通过纯弯曲实验台对梁进行弯曲测试,得到了不同弯矩下的应力分布曲线。

实验结论表明,梁在纯弯曲状态下,其内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。

同时,不同材质和长度的材料在弯曲状态下具有不同的弯曲特性和抗断性能。

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告一、实验目的。

本实验旨在通过对梁的纯弯曲正应力实验,了解梁在纯弯曲状态下的受力情况,掌握梁的弯曲应力分布规律,加深对梁的力学性能的理解。

二、实验原理。

梁是一种常见的结构构件,在工程中应用广泛。

梁在受外力作用下会发生弯曲变形,产生弯曲应力。

在纯弯曲状态下,梁上任意截面的应力都是正应力,弯矩对梁上任意一点的作用会引起该点产生正应力。

梁的弯曲应力分布规律受到梁的截面形状、材料性质以及外力大小和作用形式的影响。

三、实验装置与仪器。

本次实验所使用的实验装置包括,梁的支撑装置、加载装置、测力传感器、位移传感器、数据采集系统等。

测力传感器用于测量梁上各点的受力情况,位移传感器用于测量梁上各点的位移情况,数据采集系统用于采集并记录实验数据。

四、实验步骤。

1. 将梁放置在支撑装置上,并调整支撑装置,使梁处于自由悬臂梁状态。

2. 将加载装置作用在梁的中央位置,施加均匀分布的外力。

3. 通过测力传感器和位移传感器采集梁上各点的受力和位移数据。

4. 记录实验数据,并进行数据处理和分析。

五、实验数据处理与分析。

通过对实验数据的处理和分析,得到了梁在纯弯曲状态下的应力分布规律。

实验结果表明,在梁的中央位置受力最大,呈现出最大的正应力;而在梁的两端位置受力较小,呈现出较小的正应力。

梁的弯曲应力分布呈现出一定的规律性,符合理论预期。

六、实验结论。

通过本次实验,我们深入了解了梁在纯弯曲状态下的受力情况,掌握了梁的弯曲应力分布规律。

实验结果表明,在纯弯曲状态下,梁上任意截面的应力都是正应力,呈现出一定的规律性。

这对于工程结构设计和实际应用具有一定的指导意义。

七、实验心得。

通过本次实验,我们对梁的纯弯曲正应力有了更深入的了解,也增强了对力学知识的理解和应用能力。

在今后的学习和工作中,我们将继续努力,不断提高自己的实验技能和科研能力,为工程实践和科学研究做出更大的贡献。

八、参考文献。

1. 钱七虎. 结构力学实验教程[M]. 北京,中国建筑工业出版社,2008.2. 吴光辉. 结构力学[M]. 北京,高等教育出版社,2011.以上为本次梁的纯弯曲正应力实验报告的全部内容。

梁的纯弯曲正应力实验

梁的纯弯曲正应力实验

梁的纯弯曲正应力实验
梁的纯弯曲正应力实验是为了确定梁在弯曲的情况下的受力机制以及测定梁的弯曲刚
度和受力性能的试验。

在这项实验中,主要是测试梁的弯曲刚度性能,这样可以更清楚地
了解梁的特性,并且可以判断梁受到外力时应如何反应。

这项实验是建筑结构设计中的重
要内容,当结构受外力时,梁的刚度将决定结构的中止和模态。

梁的纯弯曲正应力实验,通常需要两个或三个支撑点。

它们可以是球形、凸形或圆形
的轴承。

其中,球形轴承最常用,其支撑的特性是最佳的,最不容易产生不必要的侧向力,影响试验的准确性。

在一个纯弯曲正应力实验中,支撑一端的梁头会受到一个外载荷,即弯矩,使其变形。

强度和刚度试验系统通常由模拟电源、试验控制台、力传感器等设备组成,力导致模拟器
输出同时加载在梁上,并通过力数据计算出受力的曲率系数和强度系数。

该实验的基本步骤是:(1)在梁上安装支持设备,并将梁放在试验台上;(2)给各
支撑点安装传感器,并通过模拟器输出同时加载在梁上;(3)测量梁承受的外载荷以及
梁的变形量;(4)分析测量结果,并计算出梁在弯曲时的曲率系数和受力
总之,梁的纯弯曲正应力实验是非常重要的,它可以查明梁的强度系数,曲率和强度
系数,以及梁受外力时的变形性能和应力变化规律。

实验结果对于确定结构抗震性能等具
有重大意义,在建筑结构分析和设计中扮演着巨大的作用。

实验五----纯弯曲梁正应力实验

实验五----纯弯曲梁正应力实验

实验五 纯弯曲梁正应力实验一、试验目的1、熟悉电测法的基本原理。

2、进一步学会静态电阻应变仪的使用。

3、用电测法测定钢梁纯弯曲时危险截面沿高度分布各点的应力值。

二、试验装置1、材料力学多功能实验装置2、CM-1C 型静态数字应变仪三、试验原理本试验装置采用低碳钢矩形截面梁,为防止生锈将钢梁进行电镀。

矩形截面钢梁架在两支座上,加载荷时,钢梁中段产生纯弯曲变形最大,是此钢梁最危险的截面。

为了解中段危险截面纯弯曲梁应力沿高度方向分布情况,采用电测法测出加载时钢梁表面沿高度方向的应变情况,再由σ实=E ε实得到应力的大小。

试验前在钢梁上粘贴5片应变片见图5—1,各应变片的间距为4h,即把钢梁4等分。

在钢梁最外侧不受力处粘贴一片R 6作为温度补偿片。

图5—1 试验装置示意图对于纯弯曲梁,假设纵向纤维仅受单向拉伸或压缩,因此在起正应力不超过比例极限时,可根据虎克定律进行计算:σ实=E ε实E 为刚梁的弹性模量,ε实是通过电测法用电阻应变仪测得的应变值。

四、电测法基本原理1、电阻应变法工作原理电测法即电阻应变测试方法是根据应变应力关系,确定构件表面应力状态的一种实验应力分析法。

将应变片紧紧粘贴在被测构件上,连接导线接到电桥接线端子上 当构件受力 构件产生应变 应变片电阻值随之变化 应变仪内部的惠斯登电桥将电阻值的变化转变成正比的电压信号电阻应变仪内部的放大、相敏、检波电路转换显示器读出应变量。

2、电阻应变片1)电阻应变片的组成由敏感栅、引线、基底、盖层和粘结剂组成,其构造简图如图5—2所示。

敏感栅能把构件表面的应变转换为电阻相对变化。

由于它非常敏感,故称为敏感栅。

它用厚度为0.002~0.005mm的铜合金或铬合金的金属箔,采用刻图、制版、光刻及腐蚀等工艺过程制成,简称箔式应变。

它粘贴牢固、散热性能好、疲劳寿命长,并能较好的反映构件表面的变形,使测量精度较高。

在各测量领域得到广泛的应用。

图5—2 电阻应变片构造简图2)电阻应变片种类电阻应变片按敏感栅的结构形状可分为:单轴应变片:单轴应变片一般是指具有一个敏感栅的应变片。

纯弯曲梁的正应力实验

纯弯曲梁的正应力实验
(5)实验完毕,卸掉砝码,整理数据。
纯弯 曲梁 的正 应力 实验
(1)梁的基本参数。 (2)实验记录表格。 (3)将各点的σ实和σ理描绘在同一个σOy 坐标系中,分别作出σ实-y和σ理-y分布曲线, 以便进行比较,从而检验梁的弯曲正应力理论公 式的正确性。
15.4 材料 剪切 弹性 模量G 的测

实验用到的仪器包括WSG-80型纯弯曲正应力试 验台、静
实验梁为低碳钢制成的矩形截面梁,根据实验装置 图、实验受力图可知,施加的砝码重量通过杠杆以一定 的比例作用于副梁的中央并通过两个挂杆作用于实验梁 C,D处,其荷载各为F/2。CD段处于纯弯曲状态。
(1)测定矩形截面梁的宽度b和高度h,荷载作用点 至梁支座距离a,并测量各应变片距中性层的距离y。
(2)正确地将各测点应变片和温度补偿片分别接到 电阻应变仪的相应接线柱上。
(3)接通应变仪的电源,完成预热工作后,设置应 变仪的灵敏系数,并将各窗口读数清零。
(4)加载。首先挂上砝码托作为初荷载,记录各测 点的应变值εi。采用增量法逐级加载,分四次加载,每加 载一次记录一次应变值,直至加载完毕。
在梁中CD段任选一截面,距中性层不同高度处,等 距离地粘贴五片电阻应变片,每片相距h/4,此外还布 设一个温度补偿片。试验中,采用半桥接线法将各测点 的工作应变片和温度补偿片连接在应变电桥的相邻桥臂 上,按照电阻应变仪的操作规程将电桥预调平衡,加载 后即可从应变仪上读出各测点的应变值ε实。
纯弯 曲梁 的正 应力 实验
1.1实验目的及仪器设备
纯弯曲梁的正 应力实验
1.2实验原理 1.3实验步骤
1.4实验数据处理
理论分析可知,梁发生纯弯曲变形时,横截面 上只有正应力,以中性轴为界,一侧为拉应力,一 侧为压应力,且正应力的大小与点到中性轴的距离 成正比。本节用实验测定矩形截面简支梁承受纯弯 曲时横截面上正应力的大小及其分布规律,并与理 论值进行比较,以验证弯曲正应力公式,并初步掌 握电测法原理和静态电阻应变仪的使用方法。

纯-弯曲梁的正应力实验

纯-弯曲梁的正应力实验

纯-弯曲梁的正应力实验本实验旨在研究弯曲梁在受力时的正应力分布情况,通过实验数据的测量及分析,探讨影响梁正应力分布的因素,并对梁的强度进行评估。

1. 实验原理1.1 弯曲梁正应力分析弯曲梁是一种常用的结构元件,例如桥梁、楼层结构等,她受到外力的作用会发生弯曲形变,产生正应力和剪应力。

弯曲梁的正应力是沿着截面法向的应力,在梁的顶部为拉应力,底部为压应力。

正应力的计算公式如下:$$\sigma = \frac{My}{I}$$其中,$\sigma$为正应力,$M$为弯矩,$y$为受力点到截面重心的距离,$I$为截面惯性矩。

弯曲梁正应力的分布情况受到多种因素的影响,主要包括:① 梁材料的弹性模量:弹性模量越大,弯曲梁的刚度越大,相同外力作用下,梁的形变和正应力都会相应减小。

② 梁截面形状和尺寸:梁截面的惯性矩影响正应力的大小和分布情况。

截面抗弯性能越强,正应力越小。

③ 受力位置和方向:受力位置和作用方向是影响正应力大小和分布情况的重要因素。

不同位置和方向的外力作用会导致不同的正应力分布规律。

2. 实验设备和方法本实验采用的主要设备有:弯曲梁试验机、电子天平、千分尺等。

2.2 实验步骤1. 准备弯曲梁样品,将其加工成常用的矩形截面和半圆形截面,分别测量其截面形状和尺寸。

2. 调整弯曲梁试验机,设置好取样位置和取样方式。

3. 将弯曲梁放入试验机,设置试验参数,包括荷重大小、位移速率等。

4. 开始试验,记录每个荷载下的跨中挠度和荷载大小,并计算出弯矩大小。

5. 在试验过程中,用电子天平测量梁的重量,并用千分尺对梁的跨中直径和截面高度进行测量,计算出截面惯性矩。

6. 根据测量数据,计算出每个荷载下的正应力,并绘制出正应力分布图。

3. 结果分析3.1 实验数据记录本实验用常见的矩形和半圆形弯曲梁进行了试验,记录了不同工况下的荷载和跨中挠度等数据。

根据数据计算得出弯矩以及正应力等数据,具体数据结果如下表:1. 矩形截面弯曲梁(1)弯曲梁在起始荷载下出现了微小的振动,但并未发生失稳。

梁纯弯曲正应力测定实验(最全)word资料

梁纯弯曲正应力测定实验(最全)word资料

梁纯弯曲正应力测定实验(一)实验目的*在承受纯弯曲的钢梁上,测取其横截面上各点的正应力,验证梁的正应力公式和观察应力的分布规律;*熟悉电测初步知识和测量方法。

(二)实验原理*试件、尺寸、设备——见系网页中“教学资源栏目”之“实验指导” *操作步骤、仪器使用(同上) (三)数据处理 *测量过程记录表*注:应力平均值(增量)计算:=E 理论值计算:zM yI σ∆⋅∆=,对应载荷增量∆F 所产生的弯矩:∆M=0.5∆F .a (四)思考题*弯曲正应力的大小与材料的弹性模量E 是否有关?*分析理论值计算与实验值产生的误差原因。

(列出可能的几种) *若在实验中出现与中性层对应的点的数值为“非零”,是什么原因?临床实验室定量测定室内质量控制一术语和定义1偏倚 bias试验结果偏离可接受参考值的系统偏离(带有正负号)。

2不精密度 imprecision一组重复测定结果的随机离散,其值由统计量定量表示为标准差或变异系数。

3质量控制quality control质量管理的一部分,致力于满足质量要求。

[GB/T 19000-2000,]4 质量控制策略 quality control strategy质控品种类、每种检测频次、放置的位置,以及用于质控数据解释和确定分析批是在控还是失控的规则。

5 随机误差 random error测量结果与在重复性条件下对同一被测量进行无限多次测量所得结果的平均值之差。

6 系统误差 systematic error在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。

7 可报告范围 reportable range在仪器、试剂盒或系统的测定响应之间的关系,显示是有效的期间内试验值范围。

8 标准差 standard deviation观察值或测定结果中不精密度的统计度量。

变异性/离散的度量是总体方差的正平方根。

二质量控制的目的质量控制方法是用来监测检验方法的分析性能,警告检验人员存在的问题。

纯弯曲梁正应力实验

纯弯曲梁正应力实验
每增加一级载荷,依次记录各点电阻应变片的应变读数,直到最终载荷。实验至少重复两次。 7.完成全部实验内容后,卸掉载荷,关闭电源,整理所用仪器、设备,清理实验现场,
将所用仪器设备复原,数据经指导教师检查签字。
实验表格
数据 项目 梁的几何 尺寸
纯弯曲梁正应力实验数据表
结果
数据 结果
项目
宽度 b=20mm 高度 h=40mm 跨距 a=160mm
层的距离 y。 3.拟定加载方案。先选取适当的初载 P。,估算最大载荷 Pmax(σmax≤0。7σs),分 4~6
级加载。 4.根据加载方案,调整好实验加载装置。 5.按实验要求接线。调整好电阻应变仪,检查整个测试系统是否处于正常工作状态。 6 加载。用均匀慢速加载至初载荷 P。,记下各点电阻应变仪的初读数。然后逐级加载,
实验原理
实验可采用半桥单臂、公共补偿、多点测量方法。加载采用增量法。即每增加等量的载 荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε,依次求出各点 的应力增量
△σ实 i=E△ε实 i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。
实验步骤
1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度 b 和高度 h、载荷作用点到梁支点距离 a 及各应变片到中性
一点的正应力计算公式为
s = My Iz
式中 M 为弯矩; Iz 为横截面对中性轴的惯性矩; y 为所求应力点至中性轴的距离。由 上式可知,在弹性范围内,沿横截面高度正应力按线性规律变化,其最大应力产生在上、下 边缘,为
s弯截面模量。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁的侧面不同 高度,平行于轴线贴有 7 片电阻应变片,如图所示。其中 3# 片位于中性层处, 2# 、 4# 片分 别距中性层上、下 h/ 4 处。 1# 、 1‘#、 5# 、 5‘#片分别位于上下表面。此外,在梁的上表面 沿横向粘贴 0# 应变片。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梁的纯弯曲正应力实验
电测法是应力应变测量最常用的方法,其方法简便,技术成熟,已经成为工程中不可缺少的测量手段。

纯弯曲时正应力在横截面上线性分布,是弯曲中最简单的应力情况。

用电测法测定纯弯曲梁上的正应力,不仅可以验证材料力学理论,也可以熟悉电测法测量的原理、操作方法和注意的问题,为复杂的实验应力分析打下基础。

一、预习要求
1、YJ —5电阻应变仪测量前如何进行预调平衡?
2、采用半桥接法进行弯曲正应力测量时,如何进行温度补偿?说明原理。

二、 实验目的
1、初步掌握电测应力分析方法,学习电测接线方法、仪器调试使用方法。

2、测定梁在纯弯曲下的弯曲正应力及分布规律,验证理论公式。

三、实验设备
1、纯弯曲正应力试验台。

2、电阻应变仪及预调平衡箱。

3、矩形截面钢梁。

四、实验原理及方法
纯弯曲梁如图1a 所示。

在载荷P 作用下,梁的CD 段为纯弯曲变形。

沿梁横截 面的高度方向每隔
4
h
高度粘贴平行于轴线的测量应变片,共五片,其中第三片在中性层 上。

另外在梁外安置温度补偿块,其上贴一公共温度补偿应变片。

每一测量应变片与公共温度补偿片按图1b 接法接为半桥测量系统。

梁受到P 力作用后,产生弯曲变形。

通过电阻应变仪测出载荷作用下五个点处的应变,由于是单向拉压变形,由虎克定律εσE =即可算出各点的应力值。

另一方面,由弯曲正应力理论公式z
I My
=
σ,可算出各点的应力理论值。

于是可将实测值和理论值进行比较,验证理论公式的正确性。

实验时,载荷由砝码经过20倍杠杆放大施加。

加载分四级,每增加一个砝码,产生
P
力的增量ΔP。

每加一级后测出五个点的应变,最后取力和应变的增量平均值计算理论值和实验值。

该实验也可用万能试验机加载进行测量。

五、实验步骤
1、检查调整纯弯曲梁、电阻应变仪,使各部件和旋钮在正确位置,并打开应变仪进行预热。

2、接桥练习。

参照表1组桥,每种方式下按应变仪的使用方法进行预调平衡,平衡后加一个砝码读取应变。

读数方法为,当加载后应变仪的指针发生偏转,根据应变的大小选择并调节微调、中调、粗调读数盘使电表指针回零,这时各读数盘所指读数的代数和即是所测点的应变值。

读数盘上“-”表示压应力,“+”表示拉应力,单位为με(微应变,1με=10-6ε)。

测试后将所有应变片连线从平衡箱上拆除,并讨论结果。

3、将各测点测量应变片和公共补偿片按半桥方式接到预调平衡箱相应的接线柱上,逐点进行调平。

4、分级加砝码,每加一级后从应变仪上读出五个点的应变,按表2记录数据。

5、结束实验。

实验完毕,卸掉砝码,关闭应变仪电源,将应变片接线从预调平衡箱上取下。

表1 接桥练习
六、数据处理及实验报告
1、按表2记录和处理实验数据。

表2 弯曲实验原始数据记录表
2、每个测点求出应变增量的平均值 3
∑∆=
∆i
m
εε (m =1,2,···,5),算出相应
的应力增量实测值m m E εσ∆=∆测 (MPa )。

其中,E 取MPa 1025
⨯。

3、纯弯曲段(CD 段)内的弯矩增量为:a P M ⋅∆=∆2
1
,由公式 y I M
z
m ∆=
∆理σ 求出各测点的理论值,式中12
3
bh I z =。

4、对每个测点列表比较测m σ∆和理m σ∆,并计算相对误差
%100⨯∆∆-∆=理

测m m m σσσεσ
在梁的中性层(第3点),因03=∆理σ,故只需计算绝对误差。

5、①将接桥练习结果讨论写入实验报告“思考题”中。

②回答问题:实测和理论计算弯曲正应力分布规律如何?是否相同?
七、相关问题的分析讨论
1、电测法数据的可靠性问题
电测法利用电阻应变片将非电量——线应变转变为电量——电阻,测量应变的精度达到10-6,是一种精度很高的测试方法。

在实验中,为了保证测量的可靠性,采用温度补偿片解决试样温度和仪器标准电阻温度可能的差异引起的温度应力问题;测量时也采取了实验人员远离贴片区域,不要接触导线,避免仪器振动,应变仪先预热等一系列防范措施。

但是,电测法这种高灵敏度测量方法对外界环境变化是非常敏感的,任何一点变化都会使输出结果产生变化。

如果你有实测的经历就会发现,随机干扰因素很多,刚刚预调平衡的一个测点,当旋钮转过去再转回来时,几秒钟时间又不平衡了,往往需要多次反复,耐心细致,才能将所有测点调平;有时虽经多次反复却无法调平,只好保留原始误差开始测量。

在实测时还会发现,同一个实验装置,同样的仪器和接线,不同的实验小组测量结果也不同,甚至存在明显区别,那么哪一组数据更可靠呢?这些问题是我们实验中必然遇到的问题,也是必须解决的问题。

电测法测量环节多。

要保证测量的可靠性,首先从实验测试的全过程上,无论是贴片、接桥、预调,还是测试、计算环节都应严格按照操作规程要求进行,遇到明显不符合实际的测试结果必须查找原因,待解决后重新测试;其次从测量环节上,由于测量过程包括从非电量到电量转换、将微弱信号放大、再转换成应变表示的步骤,每一个环节有外界干扰都会反映到测量数据上,因此,要尽量避免可能引起干扰的因素出现。

如为了不出现电磁干扰,导线应固定,实验时避免触碰和挪动导线,仪器放置要稳固,并避免环境振
动,如测试在振动环境下进行,要采取仪器隔振
措施,另外电源最好配有稳压器。

在实际测试时,除了前面提到的各种防范措施外,解决误差最有效的办法是反复多次测试。

通常要求同一测试过程重复三次,按三次平均计算,或按三次中数据最规范的一次计算。

若发现某一点数据异常,应重做。

若重做后数据依旧,则应检查贴片、接线、调平等情况。

若几次测量数据均不正常,且数据分散,则应考虑铲除原有应变片重新贴片。

判断数据可靠性的方法并不是关注每一次测量的具体值,而是关注相同载荷增量下的应变增量是否同步递增。

2、偏心拉(压)实验简介
与纯弯曲梁横截面应力状况和分布规律类似,当杆件受到偏心拉伸(压缩)时,其横截面上只有正应力且也是线性分布的。

我们可以设计一个实验,测定偏心拉(压)试样某横截面上的应力分布并依据测量结果确定外载P和偏心距。

偏心拉(压)实际上是拉(压)与纯弯曲的组合,由于拉(压)和纯弯曲时横截面上只有正应力存在,经过叠加后横截面上只有正应力,且为线性分布。

因此只要能够测出正应力的分布规律,确定中性层位置,就可求出外载和作用点位置。

根据受力的不同,偏心拉(压)有单向偏心拉(压)(图2a)和双向偏心拉(压)(图2b)两种情况,测试时设计的贴片部位也不同。

请学生们自己设计布贴应变片并确定组桥方式。

实验可用电子万能材料试验机加载。

相关文档
最新文档