ansys热分析

合集下载

《2024年ANSYS有限元分析软件在热分析中的应用》范文

《2024年ANSYS有限元分析软件在热分析中的应用》范文

《ANSYS有限元分析软件在热分析中的应用》篇一一、引言随着科技的不断进步,ANSYS有限元分析软件在工程领域的应用越来越广泛。

其中,ANSYS在热分析方面的应用具有很高的价值,能对复杂结构的温度分布、热应力等问题进行有效的数值模拟和分析。

本文旨在深入探讨ANSYS有限元分析软件在热分析中的应用。

二、ANSYS软件及其热分析功能ANSYS是一款广泛应用于机械、电气、流体等多领域的有限元分析软件。

其强大的功能主要得益于其精细的数值计算方法和广泛的适用性。

在热分析方面,ANSYS可以模拟各种复杂的热传导、热对流和热辐射问题,为工程师提供精确的数值结果和直观的图形展示。

三、ANSYS在热分析中的应用1. 模型建立与网格划分在ANSYS中进行热分析,首先需要建立准确的模型并进行网格划分。

ANSYS提供了强大的建模工具,可以方便地建立各种复杂的模型。

同时,其网格划分功能可以根据模型的特点和需求,自动或手动进行网格的生成和优化。

这为后续的热分析提供了可靠的数值基础。

2. 材料属性设定与载荷施加在热分析中,材料属性设定和载荷施加是关键步骤。

ANSYS 提供了丰富的材料库,可以根据实际需要选择合适的材料并进行属性的设定。

同时,根据问题的需求,可以在模型上施加各种类型的热载荷,如温度、热流等。

3. 求解与结果分析完成模型建立、网格划分、材料属性设定和载荷施加后,就可以进行求解了。

ANSYS采用先进的数值计算方法,可以快速得到求解结果。

同时,ANSYS提供了丰富的后处理功能,可以对求解结果进行可视化展示和分析。

例如,可以绘制温度分布图、热流图等,帮助工程师直观地了解问题的特点。

四、ANSYS在热分析中的优势相比传统的实验方法,ANSYS在热分析中具有以下优势:1. 准确性高:ANSYS采用先进的数值计算方法,可以模拟各种复杂的热传导、热对流和热辐射问题,得到的结果更加准确可靠。

2. 效率高:相比传统的实验方法,ANSYS可以在短时间内得到求解结果,大大提高了工作效率。

《热分析ansys教程》课件

《热分析ansys教程》课件

05
热分析优化设计
优化设计的基本概念
01
优化设计是一种通过数学模型和计算机技术,寻找满足特定条 件下的最优设计方案的方法。
02
优化设计的基本概念包括目标函数、设计变量、约束条件和求
解算法等。
热分析优化设计是针对热学问题,通过优化设计来提高产品的
03
热性能和降低能耗。
ANSYS优化设计的步骤
定义设计变量
网格质量检查
对生成的网格进行检查, 确保网格质量良好,没有 出现奇异点或扭曲。
边界条件的设置
确定边界条件
根据分析对象的实际情况,确定合适的边界条件,如温度、热流 率等。
设置边界条件
在ANSYS软件中,将确定的边界条件应用到几何模型上。
验证边界条件
对设置的边界条件进行验证,确保其合理性和准确性。
04
傅里叶定律
热量传递与温度梯度成正比,即热流密度与温度梯度 成正比。
牛顿冷却定律
物体表面与周围介质之间的温差与热流密度成正比。
热力学第一定律
能量守恒定律,表示系统能量的增加等于传入系统的 热量与系统对外界所做的功之和。
热分析的三种基本类型
稳态热分析
系统达到热平衡状态时的温度分布。
瞬态热分析
系统随时间变化的温度分布。
网格划分问题
网格划分不均匀
在某些区域,网格可能过于密集,而 在其他区域则可能过于稀疏,这可能 导致求解精度下降或求解失败。
网格自适应调整问题
在某些情况下,ANSYS可能无法正确 地自适应调整网格,导致求解结果不 准确。
网格划分问题
手动调整网格
手动调整网格密度,确保在关键区域有足够的网格密度。
使用更高级的网格划分工具

热分析(ansys教程)

热分析(ansys教程)

1. 对流边界条件:需要提供对流 系数、流体温度和表面传热系数 等信息。
3. 初始条件:确保初始温度等初 始条件设置合理,不会导致求解 过程不稳定。
求解收敛问题
•·
1. 迭代方法:选择合适的迭代方 法,如共轭梯度法、牛顿-拉夫森 法等。
2. 松弛因子调整:根据求解过程, 适时调整松弛因子,以提高求解 收敛速度。
稳态热分析的步骤
建立模型
使用ANSYS的几何建模工具创建分析对象 的几何模型。
后处理
使用ANSYS的后处理功能,查看和分析结 果,如温度云图、等温线等。
网格化
对模型进行网格化,以便进行数值计算。 ANSYS提供了多种网格化工具和选项,可 以根据需要进行选择。
求解
运行求解器以获得温度分布和其他热分析 结果。
电子设备散热分析
研究电子设备在工作状态下的散热性能,提高设备可靠性和 使用寿命。
06 热分析的常见问题与解决 方案
网格划分问题
网格划分是热分析中重要 的一步,如果处理不当, 可能导致求解精度和稳定 性问题。
•·
1. 网格无关性:确保随着 网格数量的增加,解的收 敛性得到改善,且解不再 发生大的变化。
03 稳态热分析
稳态热分析的基本原理
01
稳态热分析是用于确定物体在稳定热载荷作用下的温度分布。在稳态条件下, 物体的温度场不随时间变化,热平衡状态被建立,流入和流出物体的热量相等 。
02
稳态热分析基于能量守恒原理,即流入物体的热量等于流出物体的热量加上物 体内部热量的变化。
03
稳态热分析通常用于研究物体的长期热行为,例如散热器的性能、电子设备的 热设计等。
热分析的基本原理基于能量守恒定律,即物体内部的能量变化应满足能量守恒关系。

ANSYS热分析详解

ANSYS热分析详解

ANSYS热分析详解ANSYS是一种常用的工程仿真软件,具有强大的多物理场耦合分析能力,其中热分析是其中一个重要的应用领域。

在ANSYS中进行热分析可以帮助工程师更好地了解物体在温度变化条件下的行为,从而优化设计方案。

下面将详细介绍ANSYS热分析的原理与流程。

首先,在进行ANSYS热分析前,需要进行前期准备工作。

包括建立几何模型,定义边界条件和导入材料参数等。

在建立几何模型时,可以使用ANSYS提供的建模工具或者导入CAD文件。

然后,需要定义材料参数,如热导率、比热等。

最后,需要定义边界条件,包括外界温度、边界热流、边界散热系数等。

接下来,进行热传导分析。

热传导分析是热分析的基础,用于计算物体内部的温度分布。

在ANSYS中,可以选择稳态或者瞬态分析。

对于稳态分析,需要设置收敛准则,使计算结果达到稳定状态。

对于瞬态分析,需要设置时间步长和总的仿真时间。

在进行计算时,ANSYS会利用有限元法对物体的几何形状进行离散化处理,并通过求解热传导方程来计算温度分布。

在得到物体内部的温度分布后,可以进行热应力分析。

热应力分析是在热传导分析的基础上引入力学应力计算的过程。

在ANSYS中,可以通过多物理场耦合分析的功能来实现。

首先,需要定义材料的线性热膨胀系数和弹性模量等力学参数。

然后,可以选择求解热固结方程和弹性平衡方程,来计算物体在温度变化条件下的应力分布。

除了热应力分析,还可以进行热辐射分析。

热辐射分析是在热传导分析的基础上引入辐射传热计算的过程。

在ANSYS中,可以选择不同的辐射模型来计算物体在温度变化条件下的辐射传热。

常用的辐射模型包括黑体辐射模型和灰体辐射模型等。

通过热辐射分析可以得到物体的辐射换热通量和辐射热功率等重要参数。

最后,进行结果分析和后处理。

在ANSYS中,可以对热分析的结果进行可视化和数据分析。

可以绘制温度云图、热应力云图等,从而更好地理解物体在热变形条件下的行为。

此外,还可以导出计算结果,并进行后续的工程设计和优化。

ansys稳态及瞬态热分析.ppt

ansys稳态及瞬态热分析.ppt
[K]{T}={Q} 式中: [K]为传导矩阵,包含导热系数、对流系数及辐射率和形状系
数; {T}为节点温度向量; {Q}为节点热流率向量,包含热生成; ANSYS利用模型几何参数、材料热性能参数以及所施加的边界 条件,生成[K] 、 {T}以及{Q} 。
2001年10月1日 2023/11/13
*ANSYS培训教程 – 版本 5.5 – XJTU MSSV By: Haich Gao (011001)
Guidelines Them-16
第五讲、瞬态传热
瞬态传热过程是指一个系统的加热或冷却过程。在这个过程中系统 的温度、热流率、热边界条件以及系统内能随时间都有明显变化。 根据能量守恒原理,瞬态热平衡可以表达为(以矩阵形式表示):
[C]{T}+[K]{T}={Q}
式中: [K]为传导矩阵,包含导热系数、对流系数及辐射率和形状 系数; [C]为比热矩阵,考虑系统内能的增加; {T}为节点温度向量;
2001年10月1日 2023/11/13
*ANSYS培训教程 – 版本 5.5 – XJTU MSSV By: Haich Gao (011001)
Them-15
第四讲、稳态传热
如果系统的净热流率为0,即流入系统的热量加上系统自身产生的 热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳 态。在稳态热分析中任一节点的温度不随时间变化。稳态热分析 的能量平衡方程为(以矩阵形式表示)
2001年10月1日 2023/11/13
*ANSYS培训教程 – 版本 5.5 – XJTU MSSV By: Haich Gao (011001)
Guidelines Them-19
第八讲、热分析误差估计

ANSYS热分析简介1

ANSYS热分析简介1

ANSYS热分析简介1⽬录1. ANSYS热分析简介1. ANSYS热分析基于能量守恒原理的热平衡⽅程,⽤有限元的⽅法计算各节点的温度,并导出其他物理参数。

2. ANSYS热分析包括热传导、热对流和热辐射三种热传递⽅式,此外还可以分析相变、有内热源、接触热阻等问题。

3. ANSYS中耦合场的分析种类有热-结构耦合、热-流体耦合、热-电耦合、热-磁耦合、热-电-磁-结构耦合等。

4. 对于不同的零件,之间可以采⽤GLUE进⾏粘接,或者采⽤Overlap等⽅法,也可以建⽴接触。

1.1 传导传导:两个良好接触的物体之间的能量交换或⼀个物体内由于温度梯度引起的内部能量交换。

对流:在物体和周围介质之间发⽣的热交换。

由温差存在⽽引起的热量交换,可以分为⾃然对流和强对流。

对流⼀般作为⾯边界条件施加。

热对流⽤⽜顿冷却⽅程来描述。

辐射:⼀个物体或者多个物体之间通过电磁波进⾏能量交换。

热辐射指物体发射电磁能,并被其他物体吸收转变为热的热量交换过程。

物体温度越⾼,单位时间辐射的热量越多。

热传导和热对流都需要传热介质,⽽热辐射⽆需任何介质,且在真空中的效率最⾼。

可以看出辐射分析是⾼度⾮线性的。

1.2 热载荷分类(1)DOF约束:温度(2)集中载荷:热流(3)⾯载荷:热流,对流(4)体载荷:体积或者区域载荷。

1.2.1 载荷施加序号APDL含义备注1TUNIF施加均匀初始温度2IC施加⾮均匀的初始温度1.3 热分析分类1.3.1 稳态热分析如果热能的流动不随时间变化的话,热传递就成为是稳态的。

由于热能流动不随时间变化,系统的温度和热载荷也都不随时间变化。

稳态热平衡满⾜热⼒学第⼀定律。

通常在进⾏瞬态分析前,进⾏稳态分析⽤于确定初始温度分布。

对于稳态传热,⼀般只需要定义导热系数,他可以是恒定的,也可是是随温度变化的。

1.3.2 瞬态热分析瞬态热分析⽤于计算⼀个系统的随时间变化的温度场及其他热参数。

在⼯程上⼀般⽤瞬态热分析计算温度场,并将之作为热载荷进⾏应⼒分析。

ANSYS热分析详解

ANSYS热分析详解

ANSYS热分析详解ANSYS(工程仿真软件)是一种广泛应用于工程领域的有限元分析软件。

它不仅可以进行结构力学分析,还可以进行热分析。

热分析是通过数值模拟来研究物体在不同温度和热载荷条件下的热行为。

下面将详细介绍ANSYS热分析的一般步骤和常见应用。

热分析的步骤通常包括几个关键步骤:1.几何建模:通过ANSYS软件创建物体的三维几何模型。

可以使用软件内置的几何建模工具或从其他CAD软件导入几何模型。

2.材料定义:选择适当的材料,并在ANSYS中定义其热特性,如导热系数、比热容和线膨胀系数等。

3.网格划分:将几何模型分割成许多小单元,称为有限元。

每个有限元具有一组方程来描述其热行为。

网格划分的质量直接影响到最终结果的准确性,因此需要仔细选择合适的网格划分方法。

4.边界条件:指定物体的边界条件,如温度、热流、辐射、对流等。

这些边界条件会影响物体的热传导和热平衡。

5.求解:通过解决一组非线性偏微分方程来计算物体的温度分布。

ANSYS使用有限元方法来求解这些方程,并返回物体在不同点上的温度值。

6.后处理:对计算结果进行可视化和分析。

ANSYS可以绘制温度分布图、热通量图、温度梯度图等,以帮助用户更好地理解和分析物体的热行为。

1.电子器件散热分析:在电子设备中,散热问题常常是一个关键问题。

通过ANSYS热分析,可以评估电子器件所产生的热量,以及散热器的性能,从而确保设备的可靠性和性能。

2.汽车发动机冷却分析:汽车发动机的性能和寿命受限于冷却系统的效果。

ANSYS热分析可以帮助评估不同冷却系统的性能,并优化设计以提高发动机的效率和耐久性。

3.压力容器热应力分析:在高温和高压条件下,压力容器可能会发生热应力。

ANSYS热分析可以帮助评估容器的热应力,并指导合适的设计改进。

4.太阳能热系统分析:太阳能是一种可再生能源,可以通过太阳能热系统将太阳能转化为热能。

ANSYS热分析可以帮助评估太阳能热系统的性能,并优化设计以提高能量转化效率。

ANSYS热分析分析指南

ANSYS热分析分析指南

ANSYS热分析指南第一章 简介 (2)第二章 基础知识 (4)第三章 稳态热分析 (8)第四章 瞬态热分析 (43)第五章 表面效应单元 (66)第六章 热辐射分析 (90)第七章 热应力分析 (120)第一章 简介1.1 热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,我们一般关心的参数有:温度的分布热量的增加或损失热梯度热流密度热分析在许多工程应用中扮演着重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等等。

通常在完成热分析后将进行结构应力分析,计算由于热膨胀或收缩而引起的热应力。

1.2 ANSYS中的热分析ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Professional、ANSYS/FLOTRAN四种产品中支持热分析功能。

ANSYS热分析基于由能量守恒原理导出的热平衡方程,有关细节,请参阅《ANSYS Theory Reference》。

ANSYS使用有限元法计算各节点的温度,并由其导出其它热物理参数。

ANSYS可以处理所有的三种主要热传递方式:热传导、热对流及热辐射。

1.2.1 对流热对流在ANSYS中作为一种面载荷,施加于实体或壳单元的表面。

首先需要输入对流换热系数和环境流体温度,ANSYS将计算出通过表面的热流量。

如果对流换热系数依赖于温度,可以定义温度表,以及在每一个温度点处的对流换热系数。

1.2.2 辐射ANSYS提供了四种方法来解决非线性的辐射问题:辐射杆单元(LINK31)使用含热辐射选项的表面效应单元(SURF151-2D,或SURF152-3D)在AUX12中,生成辐射矩阵,作为超单元参与热分析使用Radiosity求解器方法有关辐射的详细描述请阅读本指南第四章。

1.2.3 特殊的问题除了前面提到的三种热传递方式外,ANSYS热分析还可以解决一些诸如:相变(熔融与凝固)、内部热生成(如焦耳热)等的特殊问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一载荷步等。

如果是使用GUI,将会出现一个对话框提示选择要读入的荷载步。

用SET 命令的TIME域可读入指定时刻的计算结果,如在指定时刻无计算结果,则程序根据附近时间点的值线性插值计算得到此时刻的结果。

3.5.13 查看结果
3-2
t
TEMPERATURE CQWTOtJR PLOT
结果显示云图
彩色云图显示
命令:PLESOL PLETAB或
PLNSOL
GUI: Main Menu>General Postproc>Plot Results>Element Solu Mai n Me nu>Ge neral Postproc>Plot Results>Elem Table
Mai n Men u>Ge neral Postproc>Plot Results>Nodal Solu
矢量图显示
命令:PLVECT 11 5© 34
PLOT NO T NODAL SOLUTION
STEP=,1
SUB 30
TtM£?=1
TEMP
TEPC-5 O&S
=1 IQ 1^1 SMX ^447 163 [——| "0噺
;14T BO停
1~11S5C&
222 4龄
259 94
297 364
334 Q2&
372 2?3
-wor s
GUI: Main Menu>General Postproc>Plot Results>Pre-defined or Userdefined
图3-2矢量结果显示
列表显示
命令:PRESQL PRNSQL PRRSOL
GUI: Main Menu>General Postproc>List Results>Element Solution Mai n Men u>Ge neral Postproc>List Results>Nodal Solution Main Menu >Ge neral Postproc>List Results>React ion Solu
3.6稳态热分析的实例 1 —带接管的圆筒罐
本例讲述了如何逐步对一个带接管的圆筒罐进行稳态热分析, 包括批处理的
方式和GUI 的方式。

3.6.1 问题描述((恒定的温度,热流率,对流,热流密度,热生成率))
本例题的主要部分为一个圆筒形罐,其上沿径向有一材料一样的接管(如 图4所
所示),罐内流动着450°F (232° C )的高温流体,接管内流动着100°F (38 ° C )的低温流体,两个流体区域由薄壁管隔离。

罐的对流换热系数为
250Btu/hr-ft 2-o F ( 1420watts/m 2- ° K ),接管的对流换热系数随管壁温度而变, 它的热物理性能如表3-13所示。

要求计算罐与接管的温度分布。

注意:本例只是很多可能的热分析中的一个,并不是所有的热分析都完全按 照与本例相同的步骤。

材料属性及其周围的环境条件决定了一个分析应该包括哪 些步骤。

VECTOR
STEP 罚 SUB 曰 V NODE=153 MIN=O
.006324 013&49 .020Z73 027S9S 0S4522 .0415415 .048471 055395
-WOT S
363.18 AREMOT
3、选择“ Utility Menu>Select Entities ”,在对话框中自上而下依次选
择:Nodes, By location , X,在Min. Max 框中输入ri2,选择From Full ,
点击OK
4、选择“ Main Menu>Solution> - Loads-Apply> -Thermal-Convection>On Nodes',选择Pick All,在Film coefficie nt 框中输入-2 ,在Bulk temperature
框中输入100,点击OK
ANSYS
OC? 10 2010
11:47:39
5、选择“ Utility Menu>Select>Everything ”。

6、选择“ Utility Menu>PlotCtrls>Symbols ”,在Show pres and convect as 菜单中选择Arrow,点击OK
5、选择“ Utility Menu>Plot>Nodes ”。

3.6.3.20 恢复工作平面及坐标系统
1、选择“ Utility Menu>WorkPlane>Change Active CS to>Global Cartesian ”。

2、选择“ Utility Menu>WorkPlane>Align WP with>Global Cartesian
3.6.3.21 设定载荷步选项
1
I'S
.33950fi USO741
.075617a 905664
一.75<C3
S t P ady — St:at:P l ysi <i of pip#1 juncrt icbn
要为分析定义50个子步,选择“
Main Menu>Solution> -Load Step Options- >Time/Frequenc>Time and Substeps ”,在 Number of substeps 框中 输入 50,设置 Automatic time stepping 为 Or 。

在工具栏点击SAVE_D 保存数据库。

363.22 求解
选择“ Main Menu>Solution> -Solve- >Current LS ”,查看分析选项是否正 确,关闭/STAT 窗口,点击OK
3.6.3.23 观察节点温度结果
1 选择“ Utility Menu>PlotCtrls>Style>Edge Options ”,设置“ Element
outlines ”框为 Edge only ,点击 OK
2、选择“ Man Menu>GeneralPostproc>Plot Results>-Contour Plot-Nodal
Solu ”,在弹出菜单的Item to be con toured 项选择左边的DOF solution ,右 边的 Temperature TEMP,点击 OK
ANSYS
OCT 13 2010 11:52131 .6.3.24绘制热流矢量图
1 选择“ Utility
Menu>WorkPlane>ChangActive CS to>Specified Coord
Sys ”,设置 Coordi nate system number 为 11,点击 OK STEI?=1
SUB =10
TLME-i TEMP CJWG)
MYS-C
SMB =lia.4bl
SMX =450 223.641
299.094
Steady State analyaia of pipe j j&<rtiorL
3.7.1.8 退岀 ANSYS
点击工具栏中的QUIT ,选择一种退出方式并点击OK
3.7.2 等效的命令流方法
/batch,list
/show
/title, Demon strati on
of positi on-vary ing film coefficie nt using
Tabular BC"s. /com
/com * /com * Table Support of boun dary con diti ons
/com *
1
EOOAL SOLTTIOI1 ANSYS
OCT 11 2010
lG:Cl=tS
TIME=£0
HEMP
曲g-o =20 .2^
30.209 29.07S 37. Ml 73.403 91.134 100。

相关文档
最新文档