第二章 时间测量与控制系统

合集下载

第二章控制系统的数学模型.

第二章控制系统的数学模型.

2.2.1传递函数的定义和性质
⑴ 定义 线性定常系统的传递函数,定义为初始条件为零时,输出 量的拉氏变换与输入量的拉氏变换之比,记为G(S),即:
C ( s) G( s) R( s)
(2-4)
注:所有初始条件为零,指的是原系统处于静止状态. 设线性定常系统的n阶线性常微分方程为
dn d n 1 d a0 n c(t ) a1 n 1 c(t ) an 1 c(t ) an c(t ) dt dt dt dm d m1 d b0 m r (t ) b1 m 1 r (t ) bm1 r (t ) bm r (t ) dt dt dt
F(t)
K
F(t) F2(t)
m
f
m
x(t)
F1(t) b)
x(t)
根据牛顿第二运动定律有:
d 2 x (t ) F (t ) F1 (t ) F2 (t ) m dt2
a)
图2-2 机械位移系统
(2-2) 7
式中:
F1 (t ) ——阻尼器阻力。其大小与运动速度成正比,方向 与运动方向相反,阻尼系数为f,即: dx (t ) F1 (t ) f dt F2 (t ) ——弹簧力。设为线性弹簧,根据虎克定律有:
F2 (t ) Kx(t )
K——弹簧刚度 联立以上三式并整理得:
d 2 x (t ) dx(t ) m f Kx (t ) F (t ) 2 dt dt
(2-3) 8
综上所述,列写元件微分方程的步骤可归纳如下: ① 根据元件的工作原理及其在控制系统中的作用,确定其 输入量和输出量; ② 分析元件工作中所遵循的物理规律或化学规律,列写相 应的微分方程; ③ 消去中间变量,得到输出量与输入量之间关系的微分方 程,便是元件时域的数学模型. 9

西工大、西交大自动控制原理 第二章 控制系统的数学模型_2

西工大、西交大自动控制原理 第二章  控制系统的数学模型_2

5 比较点的移动 比较点的前移:
Rs
Cs
Rs
Cs
Gs
Gs
Qs
1 Qs
Gs
若要将比较点由方框后移至方框的前面,为保持信号 的等效,要在移动后的信号线上加入一个比较点所越 过的方框的倒数。
5 比较点的移动 比较点的后移:
Rs
Cs Gs
Rs Gs
Cs
Qs
Qs
G(s)
若要将比较点由方框前移至方框的后面,为保持信号的 等效,要在移动后的信号线上加入一个比较点所越过的 方框。
2-3 控制系统的结构图与信号流图
控制系统的结构图概述
控制系统的结构图(block diagram)是描述系统各元部 件之间信号传递关系的数学图形,表示了系统中各变量 间的因果关系以及对各变量所进行的运算。通过对系统 结构图进行等效变换(equivalent transform)后,可 求出系统的传递函数。
G1(s)
-1 H(s)
R(s)=0
f
(s)
C(s) F(s)
G2 ( s) 1 G2 (s)H (s)(1)G1(s)
G2 ( s) 1 G2 (s)G1(s)H (s)
G2(s) G2(s) 1 G(s)H(s) 1 Gk (s)
单位反馈系统H(s)=1,有
f
(s)
C(s) F(s)
若令:G(s) G1(s)G2(s) 为前向通路传递函数,
则:
B(s)
Gk (s) (s) G(s)H(s)
可见:系统开环传递函数Gk(s)等于前向通路传递函 数G(s)=G1(s)G2(s)与反馈通道传递函数H(s)的乘积。
R(S) ε(s) G1(s)
F(s)

化工仪表与自动化第五版第二章作业及答案

化工仪表与自动化第五版第二章作业及答案

第二章1.什么是被控对象特性?什么是被控对象的数学模型?研究被控对象特性有什么重要意义?答:被控对象特性是指被控对象输入与输出之间的关系。

即当被控对象的输入量发生变化时,对象的输出量是如何变化、变化的快慢程度以及最终变化的数值等。

对象的输入量有控制作用和扰动作用,输出量是被控变量。

因此,讨论对象特性就要分别讨论控制作用通过控制通道对被控变量的影响,和扰动作用通过扰动通道对被控变量的影响。

定量地表达对象输入输出关系的数学表达式,称为该对象的数学模型。

在生产过程中,存在着各种各样的被控对象。

这些对象的特性各不相同。

有的较易操作,工艺变量能够控制得比较平稳;有的却很难操作,工艺变量容易产生大幅度波动,只要稍不谨慎就会越出工艺允许的范围,轻则影响生产,重则造成事故。

只有充分了解和熟悉对象特性,才能使工艺生产在最佳状态下运行。

因此,在控制系统设计时,首先必须充分了解被控对象的特性,掌握它们的内在规律,才能选择合适的被控变量、操纵变量,合适的测量元件和控制器,选择合理的控制器参数,设计合乎工艺要求的控制系统。

特别在设计新型的控制系统时,例如前馈控制、解耦控制、自适应控制、计算机最优控制等,更需要考虑被控对象特性。

2.简述建立对象的数学模型两种主要方法。

答:一是机理分析法。

机理分析法是通过对对象内部运动机理的分析,根据对象中物理或化学变化的规律(比如三大守恒定律等),在忽略一些次要因素或做出一些近似处理后推导出的对象特性方程。

通过这种方法得到的数学模型称之为机理模型,它们的表现形式往往是微分方程或代数方程。

二是实验测取法。

实验测取法是在所要研究的对象上,人为施加一定的输入作用,然后,用仪器测取并记录表征对象特性的物理量随时间变化的规律,即得到一系列实验数据或实验曲线。

然后对这些数据或曲线进行必要的数据处理,求取对象的特性参数,进而得到对象的数学模型。

3.描述简单对象特性的参数有哪些?各有何物理意义?答:描述对象特性的参数分别是放大系数K、时间常数T、滞后时间 。

测控系统原理与设计21_输入

测控系统原理与设计21_输入

图中五个部件的噪声可以视做采集电路内部五个不相关的噪声源, 它们本身的等效输入噪声分别为: 、 VIN 3 0 V 9 V VIN 1 0.085V 、VIN 1 0.085VVIN 2 、 (可忽略不计)
VIN 4 7 V VIN 5 177 V
五个部件的放大倍数分别为:
●数字可编程控制增益:PGA202的增益倍数为 1,10,100,1000;PGA203的增益倍数为1,2,4, 8
返 回 上 页 下 页
●增益误差:G<1000 0.05%~0.15%, G=1000 0.08%~0.1%; ●非线性失真:G=1000 0.02%~0.06%。 ●快速建立时间:2μs。 ●快速压摆率:20V/μs ●共模抑制比:80~94dB。 ●频率响应:G<1000 1MHz;G=1000 250kHz。 ●电源供电范围:±6~±18V。
在测控系统中,一台微机往往要同时测量 几个被测量,因而测控系统的输入通道常常是 多路的。按照各路输入通道是共用一个采集通 道还是每个通道各用一个,输入通道可分为集 中采集式和分散采集式。
一、输入通道的分类
集中采集式之分时采集结构:
传感器 传感器 调理电路 调理电路 模 拟 多 路 切 换 开 关 采集电路
的传感器。
对传感器的主要技术要求
• 具有将被测量转换为后续电路可用电量的功能,转换范围 与被测量实际变化范围相一致。 • 符合整机对传感器精度(通常为系统精度的十倍)和速度 的要求; • 满足被测介质和使用环境的要求(如耐高温、耐高压、防 腐、抗振、防爆、抗电磁干扰、体积小、质量轻和不耗电 或耗电少等); • 满足可靠性和可维护性的要求。
传感器 传感器
调理电路 调理电路

第二章_控制系统的数学模型

第二章_控制系统的数学模型
+
R
a
La
Ea
+
if -
i a (t ) U a (t )
m Mm
Jm fm
MC
dia ( t ) R a i a (t) E a dt E a C e m ( t ) u a La M m (t) M c (t) J m M m (t) C mi a (t) dm ( t ) f m m ( t ) dt
2.2 控制系统的复数域数学模型
1、传递函数的定义
在零初始条件下,线性定常系统输出量的拉普拉斯变 换与输入量的拉普拉斯变换之比,定义为线性定常系统 的传递函数。 即,
传递函数与输入、输出之间的关系,可用结构图表示:
若已知线性定常系统的微分方程为 dnc(t ) dn 1c(t ) dc(t ) a0 a1 a n 1 anc(t ) n n 1 dt dt dt m m 1 d r(t ) d r(t ) dr (t ) b0 b1 b m 1 b mr(t ) m m 1 dt dt dt
设 c(t)和r(t)及其各阶导数初始值均为零,对上 式取拉氏变换,得
(a0s a1s
n m
n 1
an 1s an )C(s)
(b 0s b1s
m 1
bm 1s bm )R(s)
则系统的传递函数为
C(s) b 0sm b1sm 1 bm 1s bm G (s ) R(s) a0sn a1sn 1 an 1s an
L[f (t )] e sF(s)
F ( s ) f ( 1 ) ( 0 ) ( 1 ) L[ f (t )dt ] , f (0) f (t )dt t 0 s s

自动控制原理:第二章 控制系统数学模型

自动控制原理:第二章  控制系统数学模型

TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
y = Kx
式中, K f 'x0 是比例系数,它是函数f(x)在A点
的切线斜率。
18
对于有两个自变量x1,x2的非线性函数f(x1,x2),同样 可以工作在某工作点(x10,x20)附近进行线性化。
这种小偏差线性化对控制系统大多数工作状态是可 行的。事实上,自动控制系统在正常情况下都处于 一个稳定的工作状态,即平衡状态,这时被控量与 期望值保持一直,控制系统也不进行控制动作。一 旦被控量偏离期望值产生偏差时,控制系统便开始 控制动作,以便减小这个偏差。因此控制系统中被 控量的偏差一般不会很大,只是“小偏差”。
RC传网0 递络函的数阶G跃(响s)确应立曲了线t 电路输入

现代控制理论基础-第2章-控制系统的状态空间描述精选全文完整版

现代控制理论基础-第2章-控制系统的状态空间描述精选全文完整版

(2-18)
解之,得向量-矩阵形式的状态方程
(2-19)
输出方程为
(2-20)
(5) 列写状态空间表达式
将式(2-19)和式(2-20)合起来即为状态空间表达式,若令
则可得状态空间表达式的一般式,即
(2-21)
例2.2 系统如图
取状态变量:
得:
系统输出方程为:
写成矩阵形式的状态空间表达式为:
1.非线性系统
用状态空间表达式描述非线性系统的动态特性,其状态方程是一组一阶非线性微分方程,输出方程是一组非线性代数方程,即
(2-7)
2. 线性系统的状态空间描述
若向量方程中 和 的所有组成元都是变量 和 的线性函数,则称相应的系统为线性系统。而线性系统的状态空间描述可表示为如下形式: (2-8) 式中,各个系数矩阵分别为 (2-9)
4.线性定常系统的状态空间描述
式中的各个系数矩阵为常数矩阵
当系统的输出与输入无直接关系(即 )时,称为惯性系统;相反,系统的输出与输入有直接关系(即 )时,称为非惯性系统。大多数控制系统为惯性系统,所以,它们的动态方程为
(2-11)
1.系统的基本概念 2. 动态系统的两类数学描述 3. 状态的基本概念
2.2 状态空间模型
2.2.1状态空间的基本概念
1.系统的基本概念
■系统:是由相互制约的各个部分有机结合,且具有一定功能的整体。 ■静态系统:对于任意时刻t,系统的输出惟一地取决于同一时刻的输入,这类系统称为静态系统。静态系统亦称为无记忆系统。静态系统的输入、输出关系为代数方程。 ■动态系统:对任意时刻,系统的输出不仅与t时刻的输入有关,而且与t时刻以前的累积有关(这种累积在t0(t0<t)时刻以初值体现出来),这类系统称为动态系统。由于t0时刻的初值含有过去运动的累积,故动态系统亦称为有记忆系统。动态系统的输入、输出关系为微分方程。

自动控制理论 (2)

自动控制理论 (2)

第一章自动控制系统概述1、组成自动控制系统的基本元件或装置有哪些?各环节的作用?控制系统是由控制对象和控制装置组成,控制装置包括:(1) 给定环节给出与期望的输出相对应的系统输入量。

(2) 测量变送环节用来检测被控量的实际值,测量变送环节一般也称为反馈环节。

(3) 比较环节其作用是把测量元件检测到的实际输出值与给定环节给出的输入值进行比较,求出它们之间的偏差。

(4) 放大变换环节将比较微弱的偏差信号加以放大,以足够的功率来推动执行机构或被控对象。

(5) 执行环节直接推动被控对象,使其被控量发生变化。

常见的执行元件有阀门,伺服电动机等。

2、什么是被控对象、被控量、控制量、给定量、干扰量?举例说明。

被控对象指需要给以控制的机器、设备或生产过程。

被控量指被控对象中要求保持给定值、要按给定规律变化的物理量,被控量又称输出量、输出信号。

控制量也称操纵量,是一种由控制器改变的量值或状态,它将影响被控量的值。

给定值是作用于自动控制系统的输入端并作为控制依据的物理量。

给定值又称输入信号、输入指令、参考输入。

除给定值之外,凡能引起被控量变化的因素,都是干扰,干扰又称扰动。

比如一个水箱液位控制系统,其控制对象为水箱,被控量为水箱的水位,给定量是水箱的期望水位。

3、自动控制系统的控制方式有哪些?自动控制系统的控制方式有开环控制、闭环控制与复合控制。

4、什么是闭环控制、复合控制?与开环控制有什么不同?若系统的输出量不返送到系统的输入端(只有输入到输出的前向通道),则称这类系统为开环控制系统。

在控制系统中,控制装置对被控对象所施加的控制作用,若能取自被控量的反馈信息(有输出到输入的反馈通道),即根据实际输出来修正控制作用,实现对被控对象进行控制的任务,这种控制原理被称为反馈控制原理。

复合控制是闭环控制和开环控制相结合的一种方式,既有前馈通道,又有反馈通道。

5、自动控制系统的分类(按元件特性分、按输入信号的变化规律、按系统传输信号的性质)?按系统输入信号的时间特性进行分类,可分为恒值控制系统和随动系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 时间测量与控制系统
一、时间测量与控制系统概述
时间测量与控制系统的基本概念: 材料成形加工过程中对动作时间的延时长短进行测量和控制。
计时(计量)基准: 1/1000秒————1ms 1/106 秒————1μs
材料成形加工控制系统动作信号的来源——程序控制电路 (电信号)
在材料成形加工过程中,设备的程序动作是完 成加工任务必不可少的。程序动作是由程序控制 电路给出的程序动作(电平)信号驱动相应的执 行机构完成的。
二、程序控制电路
计数延时法
三、程序信号RC延时法——调节RC电路的充放电时间
特点:延时精度不高,电路1)集成电路的应用 —— 时基脉冲计数法
(2)微机(单片机)的应用
(3)PLC(可编程序控制器)的应用
相关文档
最新文档