初三数学:几何辅助线之手拉手模型
初中数学几何模型之手拉手模型

即∠DAC=∠EAB,
在△ACD与△ABE中
,
∴△ACD≌△ABE(SAS);
(2)∵△ACD≌△ABE,
∴∠ADC=∠AEB,
∵△ADE是等腰直角三角形,
∴∠ADE=∠AED =45°,
∴∠AEB=∠ADE+∠CDE=45°+60°=105°.
【点睛】本题考查全等三角形的判定和性质,解题的关键是根据等腰直角三角形的性质和全等三角形的判定进行解答.
一、模型类别
二、相关结论的运用
(一)有公共顶点的等边三角形
典例精讲:
[问题提出]
(1)如图①, 均为等边三角形,点 分别在边 上.将 绕点 沿顺时针方向旋转,连结 .在图②中证明 .
[学以致用]
(2)在(1)的条件下,当点 在同一条直线上时, 的大小为度.
[拓展延伸]
(3)在(1)的条件下,连结 .若 直接写出 的面积 的取值范围.
(3)①
∵△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∵∠BAD=∠BAC+∠DAC,∠CAE=∠DAE+∠DAC,
∴∠BAD=∠CAE,
∴△ABD≌△ACE,
∴BD=CE,∠ABD=∠ACE,
∵∠AOB=∠FOC,
∴∠BFC=∠BAC=90°,
∴S四边形BCDE=S△BCE+S△DCE ;
数学模型-----手拉手
有些同学在学习数学时无从下手,找不到突破的方法,做不到举一反三,所以在数学的学习过程中,必须深入本质,做到知识、规律、法则掌握准确,及时反思.下面先给大家介绍一种常见的数学模型---手拉手模型,通过对模型的理解和掌握,把模型的结论融会贯通,理解透彻,那么这一类题型,都是可以迎刃而解的.
中考必会几何模型:手拉手模型(含答案)

1 手拉手模型
模型 手拉手
如图,△ABC 是等腰三角形、△ADE 是等腰三角形,AB =AC ,AD
=AE ,∠BAC =∠DAE =α.
结论:连接BD 、CE ,则有△BAD ≌△CAE .
模型分析
如图①,
∠BAD =∠BAC -∠DAC ,∠CAE =∠DAE -∠DAC .
∵∠BAC =∠DAE =α,
∴∠BAD =∠CAE .
在△BAD 和△CAE 中,
AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩
﹐﹐
﹐ 图②、图③同理可证.
(1)这个图形是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.
(2)如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,所以把这个模型称为手拉手模型.
(3)手拉手模型常和旋转结合,在考试中作为几何综合题目出现.
模型实例
例1 如图,△ADC 与△EDG 都为等腰直角三角形,连接AG 、CE ,相交于点H ,问:
(1)AG 与CE 是否相等?
(2)AG 与CE 之间的夹角为多少度?
解答:
C D E A B 图① C D E A B 图② C
D E A B 图③ C D E G H A O。
中考数学几何专题——手拉手模型一

手拉手模型一、手拉手模型1.手的判别:人站在等腰三角形顶角的位置,张开双臂,左手边的腰为左手,右手边的腰为右手。
2.手拉手模型的定义:两个等顶角的等腰三角形组成的图形,且顶角的顶点为公共顶点。
(顶角相等、等腰三角形、共顶点)条件模型结论特殊结论△ABC与△CDE是等腰三角形,且∠ACB=∠DCE (1)D ACD@D BCE (SSS)(2)AD=BE(左手拉左手,右手拉右手)(3)ÐBHA=ÐBCA(4)HC平分ÐAHE△ABC与△CDE是等腰直角三角形,且∠ACB=∠DCE=90°(5)S D BCD=S D ACE(6)BD2+AE2=AB2+DE2正方形ACBP与正方形CEQD是正方形△ABC 与△CDE是等边三角形(5)D ACM@D BCND DCM@D ECN(6) CM=CN(7)D CMN是等边三角形(8)MN∥AE,CD∥AB, CB∥DE(9) BH+CH=AHDH+CH=EH二、手拉手模型的变形:(两三角形相似,且对应角共顶点)条件模型结论D BAC∽D DAE,且ÐDAE=ÐBAC (1)D BAD∽D CAE(两边对应成比例且夹角相等) (2)BDCE=BACA(3) ÐBHC=ÐBAC【巩固练习】1、如图所示,若△ABC、△ADE都是正三角形,试比较线段BD与线段CE的大小.2、如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正确的是()3、如图,分别以△ABC的三边为边在BC的同侧作三个等边三角形,即△ABD,△BCE,△ACF.请回答下列问题:(1)说明四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,四边形ADEF是菱形?(4)当△ABC满足什么条件时,四边形ADEF是正方形?(5)当△ABC满足什么条件时,以A,D,E,F为顶点的四边形不存在?4、问题情境:如图1,已知△ABC和△DCE中,∠ACB=∠DCE=90°,AC=BC=2,CD=CE=1,点D在AC 边上,点E 在BC 延长线上。
几何辅助线之手拉手模型(初三)

手拉手模型教学目标:1:理解手拉手模型得概念,并掌握其特点2:掌握手拉手模型得应用知识梳理:1、等边三角形条件:△OAB,△OCD均为等边三角形结论:;;导角核心:2、等腰直角三角形条件:△OAB,△OCD均为等腰直角三角形结论:;;导角核心:3、任意等腰三角形条件:△OA B,△OCD 均为等腰三角形,且∠AOB = ∠COD 结论:;; 核心图形:核心条件:;; 典型例题:例1:在直线ABC 得同一侧作两个等边三角形△ABD 与△BCE,连接A E与C D,证明:(1)△AB E≌△DBC;(2)AE =DC;(3)AE 与DC得夹角为60°;(4)△A GB ≌△DFB; (5)△EGB ≌△CFB;(6)BH 平分∠A HC;GF ∥ACH FGE D例2:如果两个等边三角形△ABD 与△BCE,连接AE 与C D,证明: (1)△ABE ≌△DB C;(2)AE=DC;(3)AE 与DC 得夹角为60°; (4)A E与DC 得交点设为H,B H平分∠AHCEBDA例3:如果两个等边三角形△ABD 与△BC E,连接AE 与CD,证明:(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC得夹角为60°;(4)AE与DC得交点设为H,BH平分∠AHC例4:如图,两个正方形ABCD与DEFG,连接AG与CE,二者相交于H问:(1)△ADG≌△CDE就是否成立?(2)AG就是否与CE相等?(3)AG与CE之间得夹角为多少度?(4)HD就是否平分∠AHE?F例5:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H、问 (1)△ADG≌△CDE就是否成立?(2)AG就是否与CE相等?(3)AG与CE之间得夹角为多少度?(4)HD就是否平分∠AHE?A例6:两个等腰三角形ABD与BCE,其中AB=BD,CB=EB,∠ABD=∠CBE,连接AE与CD、问(1)△ABE≌△DBC就是否成立?(2)AE就是否与CD相等?(3)AE与CD之间得夹角为多少度?(4)HB就是否平分∠AHC?DEHABC例7:如图,分别以△ABC得边AB、AC同时向外作等腰直角三角形,其中 AB =AE ,AC =AD,∠BAE =∠CAD=90°,点G为BC中点,点F 为BE 中点,点H 为CD中点。
中考必会几何模型:手拉手模型

手拉手模型模型讲解【结论】如图所示,AB=AC,AD=AE,∠BAC=∠DAE,则(1)△ABD≌△ACE;(2)BD和CE的夹角∠BFE=∠BAC=∠DAE.【证明】(1)∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC.∴∠BAD=∠CAE.在△ABD和△ACE中,{AB=AC,∠BAD=∠CAE, AD=AE,∴△ABD≌△ACE(SAS).(2)△ABD≌△ACE,可看成△ABD绕点A逆时针旋转到△ACE 的位置,BA和CA的夹角为∠BAC,AD和AE的夹角为∠DAE,BD和CE的夹角为∠BFE,根据旋转的性质容易得到对应边的夹角等于旋转角,故∠BFE=∠BAC=∠DAE.手拉手模型的变形【结论1】如图所示,等边△ABC和等边△CDE.则△BCD≌△ACE,AE=BD,∠BFA=60°.【结论2】如图所示,等腰Rt△ABC 和等腰Rt△CDE.则△BCD≌△ACE,∠BFA=90°.典例秒杀典例1如图,△ACB和△DCE均为等边三角形,点A,D,E在同一条直线上,连接BE,则∠AEB的度数是( ).A.30°B.45°C.60°D.75°典例2如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M.则BD与CE的数量关系为().A.BD= 12CE B.BD=23CE C.BD=CE D.BD=32CE典例3如图,△ABC中,AB=AC. ∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°得到△ADE.连接BD、CE交于点F,则BD与(E 的数量关系为( ).A.BD= 12CE B.BD= 23CE C.BD=CED.BD=32CE小试牛刀1.如图,△ABC和△CDE均为等边三角形,点A,D,E在同一条直线上,连接BE.若∠CAE=25°.则∠EBC的度数是().8A.35°B. 30°C.25°D.20°2.如图所示,B,D,E在同一条直线上,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=( ).A.60°B.55°C.50°D.无法计算3.如图,在△ABC中,∠ABC=45°.AD,BE分别为BC,AC边上的高,AD,BE相交于点F.连接CF,则有下列结论:①BF=AC;②∠FCD=45°;③若BF=2EC,则△FDC的周长等于AB的长,其中正确的有( ).A.0个B.1个C.2个D.3个直击中考1.(2020湖北鄂州中考真题)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<CC, ∠AOB=∠COD=36°.连接AC,BD交于点M.连接OM.有下列结论: ∠AMB=36DU3:②AC=BD;③OM平分∠AOD;④MO平分∠AMD.其中正确的结论个数为( ).A.4B.3C.2D.12.(2020辽宁锦州中考真题)已知△AOB和△MON都是等腰直角三OA<OM=ON),∠AOB=∠MON=90°.角形(√22(1)如图1.连接AM,BN.求证:△AOM≌△BON.(2)若将△MON绕点O顺时针旋转.①如图2,当点N恰好在AB边上时,求证:BN2+AN2 =2ON2;②当点A,M,N在同一条直线上时,若OB=4.ON=3.请直接写出线段BN的长.典例1【答案】C【解析】∵△ACB和△DCE均为等边三角形,且△ACB与△DCE 共点,形成了手拉手模型。
初中数学几何模型之——手拉手模型,跟我学-应对中考轻松自如

初中数学几何模型之——手拉手模型,跟我学-应对中考轻松自
如
一、模型一:手拉手模型----旋转型全等
(1)等边三角形
手拉手-等边旋转
【条件】:△OAB和△OCD均为等边三角形;
【结论】:①△OAC≌△OBD;②∠AEB=60°;③OE平分∠AED
(2)等腰直角三角形
手拉手-等腰直角旋转
【条件】:△OAB和△OCD均为等腰直角三角形;
【结论】:①△OAC≌△OBD;②∠AEB=90°;③OE平分∠AED
(3)顶角相等的两任意等腰三角形
手拉手-等腰旋转
【条件】:△OAB和△OCD均为等腰三角形;且∠COD=∠AOB
【结论】:①△OAC≌△OBD;②∠AEB=∠AOB;③OE平分∠AED
二、模型二:手拉手模型----旋转型相似
(1)一般情况
【条件】:CD∥AB,将△OCD旋转至右图的位置
【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD;
②延长AC交BD于点E,必有∠BEC=∠BOA
(2)特殊情况
【条件】:CD∥AB,∠AOB=90° 将△OCD旋转至右图的位置
【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD;
②延长AC交BD于点E,必有∠BEC=∠BOA;
③BD/AC=OD/OC=OB/OA=tan∠OCD;
④BD⊥AC;
⑤连接AD、BC,必有AD2+BC2=AB2+CD2;
⑥S△BCD=1/2AC×BD。
中考数学压轴题-手拉手模型

学习目标:
1.理解手拉手模型。
2.会对手拉手模型改造的旋转型全等与旋转型
相似进行识别和构造,并掌握一些基本结论。
3.会利用手拉手模型解决几何问题。
手拉手模型定义
手拉手模型的主要特征就是两个形状
一样(或相似)的图形,它们有着共同
的顶点,可以旋转到任意角度,就像两
个人手拉手一样,所以被称为手拉手。
手拉手模型分类
模型1 手拉手全等模型
模型构建
顶角相等,且共顶点的两个等腰三角形,经旋转后得到的两个三角形都可根据“边角边”之间的关系进行推理判断。
(简记:双等腰,共顶角,绕共顶点旋转得全等) 模型1一基本图形.gsp
手拉手模型分类
模型2 手拉手相似模型
模型构建
两个相似的非等腰三角形对应顶点重合,经
旋转后可以产生新的相似三角形。
(简记:非等腰,共顶角,绕共顶点旋转得相似)模型2-基本图形.gsp
特殊常考题型:
手拉手模型的应用
手拉手模型的应用 习题4.gsp
习题5.gsp
课堂小结
1、手拉手模型的识别、构造、应用。
2、你运用到了哪些数学方法?
请相信数学会为你的未来带来更多的可能!。
中考数学几何模型复习 专题 手拉手模型(学生版+解析版)

中考数学几何模型复习手拉手模型一、方法突破问题一:构成手拉手的必要条件.当对一个几何图形记忆并不深刻的时候,可以尝试用文字取总结要点,比如手拉手:四线共点,两两相等,夹角相等.条件:如图,OA=OB,OC=OD(四线共点,两两相等),∠AOB=∠COD(夹角相等)结论:△OAC≌△OBD(SAS)证明无需赘述,关于条件中的OA=OB,OC=OD,有时候会直接以特殊几何图形的形式给出,比如我们都很熟悉的等边三角形和正方形.1.等边三角形手拉手(1)如图,B、C、D三点共线,△ABC和△CDE是等边三角形,连接AD、BE,交于点P:结论一:△ACD≌△BCE证明:AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩→ △ACD≌△BCE(SAS)ABCDOD(2)记AC 、BE 交点为M ,AD 、CE 交点为N :结论二:△ACN ≌△BCM ;△MCE ≌△NCD证明:MBC NAC BC AC BCM ACN ∠=∠⎧⎪=⎨⎪∠=∠⎩→ △ACN ≌△BCM (SAS );MCE NCD CE CDCEM CDN ∠=∠⎧⎪=⎨⎪∠=∠⎩→ △MCE ≌△NCD (ASA ) (3)连接MN :结论三:△MNC 是等边三角形.证明:60CM CNMCN =⎧⎨∠=︒⎩→△MCN 是等边三角形.(4)记AD 、BE 交点为P ,连接PC :结论四:PC 平分∠BPD证明:△BCE ≌△ACD → CG =CH → PC 平分∠BPD .DDHG ααEDCBAP(5)结论五:∠APB =∠BPC =∠CPD =∠DPE =60°.(6)连接AE :结论六:P 点是△ACE 的费马点(P A +PC +PE 值最小)2.正方形手拉手如图,四边形ABCD 和四边形CEFG 均为正方形,连接BE 、DG :结论一:△BCE ≌△DCG证明:CB CD BCE DCG CE CG =⎧⎪∠=∠⎨⎪=⎩→ △BCE ≌△DCG (SAS )结论二:BE =DG ,BE ⊥DG证明:△BCE ≌△DCG → BE =DG ;∠CBE =∠CDG → ∠DHB =∠BCD =90°(旋转角都相等)【重点概述】手拉手模型是一种基本的旋转型全等,与其说看图找模型,不如是“找条件、定模型”.60°60°60°60°PABCDEEDCBAPF问题二:条件与结论如何设计?设计一:我们可以给出手拉手模型条件,得到一组全等来解决问题,就像问题一中所得出的结论那样; 设计二:如果题目已知△ABC ≌△ADE 外,则还可得△ABD 和△ACE 均为等腰三角形,且有△ABD ∽△ACE ,AB AD BDAC AE CE==.问题三:如何构造手拉手?如何构造手拉手?换句话说,如何构造旋转?当我们在思考这个问题的时候,不妨先问一句,旋转能带来什么?图形位置的改变,这一点就够了,因为,若有数量关系,则先有位置关系.二、典例精析例一:如图,等边三角形ABC 的边长为4,点O 是ABC ∆的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBEBDE ∆周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4例二:如图,点P 在等边ABC ∆的内部,且6PC =,8PA =,10PB =,将线段PC 绕点C 顺时针旋转60︒得到P C ',连接AP ',则sin PAP '∠的值为 .EDCBAC例三:如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60︒得到线段AQ ,连接BQ .若6PA =,8PB =,10PC =,则四边形APBQ 的面积为 .例四:如图,等边三角形ABC 内有一点P ,分別连结AP 、BP 、CP ,若6AP =,8BP =,10CP =.则ABP BPC S S ∆∆+= .例五:如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则ABC∆的面积为( )A.9 B.9 C.18+D.18 例六:在Rt △ABC 中,AB =AC ,点P 是三角形内一点且∠APB =135°,PC =AC 的最大值为_________.QPABCPABCPABCABCP三、中考真题演练1.(2021•日照)问题背景:如图1,在矩形ABCD中,AB=30ABD∠=︒,点E是边AB的中点,过点E作EF AB⊥交BD于点F.实验探究:(1)在一次数学活动中,小王同学将图1中的BEF∆绕点B按逆时针方向旋转90︒,如图2所示,得到结论:①AEDF=;②直线AE与DF所夹锐角的度数为.(2)小王同学继续将BEF∆绕点B按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当BEF∆旋转至D、E、F三点共线时,则ADE∆的面积为.2.(2021•贵港)已知在ABC∆中,O为BC边的中点,连接AO,将AOC∆绕点O顺时针方向旋转(旋转角为钝角),得到EOF∆,连接AE,CF.(1)如图1,当90=;=时,则AE与CF满足的数量关系是AE CF∠=︒且AB ACBAC(2)如图2,当90≠时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若∠=︒且AB ACBAC不成立,请说明理由.(3)如图3,延长AO到点D,使OD OABC=时,求DE的长.=,连接DE,当5==,6AO CF3.(2021•黑龙江)在等腰ADE ∆中,AE DE =,ABC ∆是直角三角形,90CAB ∠=︒,12ABC AED ∠=∠,连接CD 、BD ,点F 是BD 的中点,连接EF .(1)当45EAD ∠=︒,点B 在边AE 上时,如图①所示,求证:12EF CD =;(2)当45EAD ∠=︒,把ABC ∆绕点A 逆时针旋转,顶点B 落在边AD 上时,如图②所示,当60EAD ∠=︒,点B 在边AE 上时,如图③所示,猜想图②、图③中线段EF 和CD 又有怎样的数量关系?请直接写出你的猜想,不需证明.4.(2021•通辽)已知AOB ∆和MON ∆都是等腰直角三角形)OM OA <<,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =; (2)将MON ∆绕点O 顺时针旋转.①如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;②当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.5.(2021•十堰)已知等边三角形ABC,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60︒得到CQ,连QB.(1)如图1,直接写出线段AP与BQ的数量关系;(2)如图2,当点P、B在AC同侧且AP AC=时,求证:直线PB垂直平分线段CQ;∆,(3)如图3,若等边三角形ABC的边长为4,点P、B分别位于直线AC异侧,且APQ求线段AP的长度.6.(2020•沈阳)在ABC ∆中,AB AC =,BAC α∠=,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接DB ,DC . (1)如图1,当60α=︒时, ①求证:PA DC =; ②求DCP ∠的度数;(2)如图2,当120α=︒时,请直接写出PA 和DC 的数量关系.(3)当120α=︒时,若6AB =,BP D 到CP 的距离为 .中考数学几何模型复习手拉手模型一、方法突破问题一:构成手拉手的必要条件.当对一个几何图形记忆并不深刻的时候,可以尝试用文字取总结要点,比如手拉手:四线共点,两两相等,夹角相等.条件:如图,OA=OB,OC=OD(四线共点,两两相等),∠AOB=∠COD(夹角相等)结论:△OAC≌△OBD(SAS)证明无需赘述,关于条件中的OA=OB,OC=OD,有时候会直接以特殊几何图形的形式给出,比如我们都很熟悉的等边三角形和正方形.3.等边三角形手拉手(1)如图,B、C、D三点共线,△ABC和△CDE是等边三角形,连接AD、BE,交于点P:结论一:△ACD≌△BCE证明:AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩→ △ACD≌△BCE(SAS)ABCDOD(2)记AC 、BE 交点为M ,AD 、CE 交点为N :结论二:△ACN ≌△BCM ;△MCE ≌△NCD证明:MBC NAC BC AC BCM ACN ∠=∠⎧⎪=⎨⎪∠=∠⎩→ △ACN ≌△BCM (SAS );MCE NCD CE CDCEM CDN ∠=∠⎧⎪=⎨⎪∠=∠⎩→ △MCE ≌△NCD (ASA ) (3)连接MN :结论三:△MNC 是等边三角形.证明:60CM CNMCN =⎧⎨∠=︒⎩→△MCN 是等边三角形.(4)记AD 、BE 交点为P ,连接PC :结论四:PC 平分∠BPD证明:△BCE ≌△ACD → CG =CH → PC 平分∠BPD .DDDHG ααEDCBAP(5)结论五:∠APB =∠BPC =∠CPD =∠DPE =60°.(6)连接AE :结论六:P 点是△ACE 的费马点(P A +PC +PE 值最小)4.正方形手拉手如图,四边形ABCD 和四边形CEFG 均为正方形,连接BE 、DG :结论一:△BCE ≌△DCG证明:CB CD BCE DCG CE CG =⎧⎪∠=∠⎨⎪=⎩→ △BCE ≌△DCG (SAS )结论二:BE =DG ,BE ⊥DG证明:△BCE ≌△DCG → BE =DG ;∠CBE =∠CDG → ∠DHB =∠BCD =90°(旋转角都相等)【重点概述】手拉手模型是一种基本的旋转型全等,与其说看图找模型,不如是“找条件、定模型”.60°60°60°60°PAB CDEEDCBAPF问题二:条件与结论如何设计?设计一:我们可以给出手拉手模型条件,得到一组全等来解决问题,就像问题一中所得出的结论那样; 设计二:如果题目已知△ABC ≌△ADE 外,则还可得△ABD 和△ACE 均为等腰三角形,且有△ABD ∽△ACE ,AB AD BDAC AE CE==.问题三:如何构造手拉手?如何构造手拉手?换句话说,如何构造旋转?当我们在思考这个问题的时候,不妨先问一句,旋转能带来什么?图形位置的改变,这一点就够了,因为,若有数量关系,则先有位置关系.二、典例精析例一:如图,等边三角形ABC 的边长为4,点O 是ABC ∆的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBEBDE ∆周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4 【分析】等边三角形中的旋转型全等连接OB 、OC ,易证△OBD ≌△OCE ,∴OD =OE ,结论①正确;考虑∠FOG 是可以旋转的,△ODE 面积和△BDE 面积并非始终相等,故结论②错误;ECBACC∵△OBD ≌△OCE ,∴四边形ODBE 的面积等于△OBC的面积,142OBCS=⨯=,故结论③正确;考虑BD =CE ,∴BD +BE =CE +BE =4,只要DE 最小,△BDE 周长就最小,△ODE 是顶角为120°的等腰三角形,故OD 最小,DE 便最小, 当OD ⊥AB 时,OD此时2DE ==,∴周长最小值为6,故结论④正确. 综上,选C ,正确的有①③④.【小结】所谓全等,实际就是将△ODB 绕点O 旋转到△OEC 的位置.等等,好像和某个图有点神似,如下:当然这个图形还可以简化一下,毕竟和D 点及F 点并没有什么关系.结论与证明不多赘述,题型可以换,但旋转是一样的旋转.例二:如图,点P 在等边ABC ∆的内部,且6PC =,8PA =,10PB =,将线段PC 绕点C 顺时针旋转60︒得到P C ',连接AP ',则sin PAP '∠的值为 .【分析】连接PP ',则CPP '△是等边三角形,故6PP PC '==,易证△CPB ≌CP A '△,∴10AP BP '==, 又AP =8,∴APP '△是直角三角形,∴3sin 5PAP '∠=.D例三:如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60︒得到线段AQ ,连接BQ .若6PA =,8PB =,10PC =,则四边形APBQ 的面积为 .【分析】分四边形为三角形.连接PQ ,易证△APQ 是等边三角形,△BPQ 是直角三角形,26APQS=168242BPQS =⨯⨯=, ∴四边形APBQ的面积为(.例四:如图,等边三角形ABC 内有一点P ,分別连结AP 、BP 、CP ,若6AP =,8BP =,10CP =.则ABP BPC S S ∆∆+= .【分析】构造旋转.如图,将△BPC 绕点B 逆时针旋转60°得△BEA ,连接EP , 可得△AEP 是直角三角形,△BEP 是等边三角形,21688242APBBPCAEPBEPSSSS+=+=⨯⨯+=+ 所以本题答案为24+QPABCQPABCPABCC搭配一:若222PA PB PC+=,则可任意旋转,得等边+直角.且两条较短边夹角(∠APB)为150°.搭配二:若∠APB=150°,则有222PA PB PC+=.例五:如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则ABC∆的面积为()A.9B.9C.18+D.18【分析】(3,4,5)是一组勾股数,通过旋转构造直角三角形.法一:如图,将三个小三角形面积分别123S S S、、考虑到△ABC是等边三角形,可将△APB 旋转到△ADC位置,可得:21331334642ADP PCDS S S S+=+=+⨯⨯=,同理可得:212143462S S++⨯⨯=,223153462S S+=+⨯⨯=,∴()123218S S S++,∴1239S S S++,故选A.CC CPABCS3S2S1PAB CC法二:如图,易证∠APB =150°,过点A 作BP 的垂线交BP 延长线于点H ,则1322AH AP ==,PH,4BH =)2229271625944S AH BH ==+=+++=+=⎝. 【思考】如果放在正方形里,条件与结论又该如何搭配?作旋转之后,可得△AEP 是等腰直角三角形,若使△PEB 也为直角三角形, 则原∠APD =135°,而线段PA 、PB 、PD 之间的关系为:2222PA PD PB +=.搭配一:若∠APD =135°,则2222PA PD PB +=;搭配二:若2222PA PD PB +=,则∠APD =135°.另外,其实这个图和点C 并没有什么关系,所以也可以将正方形换成等腰直角三角形. 大概如下图:抓主要条件,舍弃无用条件,也是理解几何图形的一种方式.例六:在Rt △ABC 中,AB =AC ,点P 是三角形内一点且∠APB =135°,PC =AC 的最大值为_________.【分析】显然根据∠APB =135,构造旋转.可得:△APQ 是等腰直角三角形,△PQC 是直角三角形,且∠PQC =90°,另外还有条件PC =HPABC EAB CDEPABCPC重新梳理下条件,(1)有一条线段PC =(2)∠PQC =90°,则Q 点轨迹是个圆弧,(3)以PQ 为斜边在PC 异侧作等腰直角三角形,点A 是直角顶点.∴A 点轨迹是什么?瓜豆原理啦,也是个圆弧:∴AC22=.三、中考真题演练1.(2021•日照)问题背景:如图1,在矩形ABCD 中,AB =30ABD ∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F . 实验探究:(1)在一次数学活动中,小王同学将图1中的BEF ∆绕点B 按逆时针方向旋转90︒,如图2所示,得到结论:①AEDF= ;②直线AE 与DF 所夹锐角的度数为 . (2)小王同学继续将BEF ∆绕点B 按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由. 拓展延伸:在以上探究中,当BEF ∆旋转至D 、E 、F 三点共线时,则ADE ∆的面积为 .CPP PCCC【解答】解:(1)如图1,30ABD ∠=︒,90DAB ∠=︒,EF BA ⊥,cos BE AB ABD BF DB ∴∠==, 如图2,设AB 与DF 交于点O ,AE 与DF 交于点H ,BEF ∆绕点B 按逆时针方向旋转90︒,90DBF ABE ∴∠=∠=︒,FBD EBA ∴∆∆∽,∴AE BE DF BF ==,BDF BAE ∠=∠, 又DOB AOF ∠=∠,30DBA AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30︒,,30︒;(2)结论仍然成立,理由如下:如图3,设AE 与BD 交于点O ,AE 与DF 交于点H ,将BEF ∆绕点B 按逆时针方向旋转,ABE DBF ∴∠=∠,又BE AB BF DB ==, ABE DBF ∴∆∆∽,∴AE BE DF BF ==,BDF BAE ∠=∠, 又DOH AOB ∠=∠,30ABD AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30︒.拓展延伸:如图4,当点E 在AB 的上方时,过点D 作DG AE ⊥于G ,2AB =30ABD ∠=︒,点E 是边AB 的中点,90DAB ∠=︒,BE ∴2AD =,4DB =,30EBF ∠=︒,EF BE ⊥,1EF ∴=,D 、E 、F 三点共线,90DEB BEF ∴∠=∠=︒,DE ∴30DEA ∠=︒,12DG DE ∴==由(2)可得:AE BE DF BF ==,∴=AE ∴,ADE ∴∆的面积1122AE DG =⨯⨯==; 如图5,当点E 在AB 的下方时,过点D 作DG AE ⊥,交EA 的延长线于G ,同理可求:ADE ∆的面积1122AE DG =⨯⨯==2.(2021•贵港)已知在ABC ∆中,O 为BC 边的中点,连接AO ,将AOC ∆绕点O 顺时针方向旋转(旋转角为钝角),得到EOF ∆,连接AE ,CF .(1)如图1,当90BAC ∠=︒且AB AC =时,则AE 与CF 满足的数量关系是 ;(2)如图2,当90BAC ∠=︒且AB AC ≠时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图3,延长AO 到点D ,使OD OA =,连接DE ,当5AO CF ==,6BC =时,求DE 的长.【解答】解:(1)结论:AE CF=.理由:如图1中,=,∠=︒,OC OB AB ACBAC=,90⊥,∴==,AO BCOA OC OB∠=∠=︒,AOC EOF90∴∠=∠,AOE COF=,=,OE OFOA OCAOE COF SAS∴∆≅∆,()∴=.AE CF(2)结论成立.理由:如图2中,=,∠=︒,OC OBBAC90∴==,OA OC OB∠=∠,AOC EOF∴∠=∠,AOE COF=,=,OE OFOA OC∴∆≅∆,AOE COF SAS()∴=.AE CF(3)如图3中,由旋转的性质可知OE OA=,OA OD=,5OE OA OD∴===,90AED∴∠=︒,OA OE=,OC OF=,AOE COF∠=∠,∴OA OEOC OF=,AOE COF∴∆∆∽,∴AE OACF OC=,5 CF OA==,∴5 53 AE=,253 AE∴=,DE∴=.3.(2021•黑龙江)在等腰ADE ∆中,AE DE =,ABC ∆是直角三角形,90CAB ∠=︒,12ABC AED ∠=∠,连接CD 、BD ,点F 是BD 的中点,连接EF .(1)当45EAD ∠=︒,点B 在边AE 上时,如图①所示,求证:12EF CD =; (2)当45EAD ∠=︒,把ABC ∆绕点A 逆时针旋转,顶点B 落在边AD 上时,如图②所示,当60EAD ∠=︒,点B 在边AE 上时,如图③所示,猜想图②、图③中线段EF 和CD 又有怎样的数量关系?请直接写出你的猜想,不需证明.【解答】(1)证明:如图①中,EA ED =,45EAD ∠=︒,45EAD EDA ∴∠=∠=︒,90AED ∴∠=︒,BF FD =,12EF DB ∴=, 90CAB ∠=︒,45CAD BAD ∴∠=∠=︒,1452ABC AED ∠=∠=︒, 45ACB ABC ∴∠=∠=︒,AC AB ∴=,AD ∴垂直平分线段BC ,DC DB ∴=,12EF CD ∴=. (2)解:如图②中,结论:12EF CD =.理由:取CD 的中点T ,连接AT ,TF ,ET ,TE 交AD 于点O . 90CAD ∠=︒,CT DT =,AT CT DT ∴==,EA ED =,ET ∴垂直平分线段AD ,AO OD ∴=,90AED ∠=︒,OE OA OD ∴==,CT TD =,BF DF =,//BC FT ∴,45ABC OFT ∴∠=∠=︒,90TOF ∠=︒,45OTF OFT ∴∠=∠=︒,OT OF ∴=,AF ET ∴=,FT TF =,AFT ETF ∠=∠,FA TE =,()AFT ETF SAS ∴∆≅∆,EF AT ∴=,12EF CD ∴=.如图③中,结论:EF =.理由:取AD 的中点O ,连接OF ,OE .EA ED =,60AED ∠=︒,ADE ∴∆是等边三角形,AO OD =,OE AD ∴⊥,30AEO OED ∠=∠=︒,tan AO AEO OE ∴∠==∴OEAD =1302ABC AED ∠=∠=︒,90BAC ∠=︒,AB ∴,AO OD =,BF FD =,12OF AB ∴=,∴OF AC =, ∴OE OFAD AC =,//OF AB ,DOF DAB ∴∠=∠,90DOF EOF ∠+∠=︒,90DAB DAC ∠+∠=︒,EOF DAC ∴∠=∠,EOF DAC ∴∆∆∽,∴EFOECD AD =,EF ∴.4.(2021•通辽)已知AOB ∆和MON ∆都是等腰直角三角形)OM OA <<,90AOB MON ∠=∠=︒. (1)如图1,连接AM ,BN ,求证:AM BN =;(2)将MON ∆绕点O 顺时针旋转. ①如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=; ②当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.【解答】(1)证明:90AOB MON ∠=∠=︒, AOB AON MON AON ∴∠+∠=∠+∠,即AOM BON ∠=∠,AOB ∆和MON ∆都是等腰直角三角形,OA OB ∴=,OM ON =,()AOM BON SAS ∴∆≅∆,AM BN ∴=;(2)①证明:连接BN ,90AOB MON ∠=∠=︒,AOB BOM MON BOM ∴∠-∠=∠-∠,即AOM BON ∠=∠,AOB ∆和MON ∆都是等腰直角三角形,OA OB ∴=,OM ON =,()AOM BON SAS ∴∆≅∆,45MAO NBO ∴∠=∠=︒,AM BN =,90MBN ∴∠=︒,222MB BN MN ∴+=,MON ∆都是等腰直角三角形,222MN ON ∴=,2222AM BM OM ∴+=;②解:如图3,当点N 在线段AM 上时,连接BN ,设BN x =, 由(1)可知AOM BON ∆≅∆,可得AM BN =且AM BN ⊥, 在Rt ABN ∆中,222AN BN AB +=,AOB ∆和MON ∆都是等腰直角三角形,4OA =,3OM =,MN ∴=,AB =222(x x ∴-+=,解得:x =,AM BN ∴= 如图4,当点M 在线段AN 上时,连接BN ,设BN x =, 由(1)可知AOM BON ∆≅∆,可得AM BN =且AM BN ⊥, 在Rt ABN ∆中,222AN BN AB +=,AOB ∆和MON ∆都是等腰直角三角形,4OA =,3OM =,MN ∴=,AB =222(x x ∴++=,解得:x =,AM BN ∴=,综上所述,线段AM . 5.(2021•十堰)已知等边三角形ABC ,过A 点作AC 的垂线l ,点P 为l 上一动点(不与点A 重合),连接CP ,把线段CP 绕点C 逆时针方向旋转60︒得到CQ ,连QB .(1)如图1,直接写出线段AP 与BQ 的数量关系;(2)如图2,当点P 、B 在AC 同侧且AP AC =时,求证:直线PB 垂直平分线段CQ ;(3)如图3,若等边三角形ABC 的边长为4,点P 、B 分别位于直线AC 异侧,且APQ ∆,求线段AP 的长度.【解答】解:(1)在等边ABC ∆中,AC BC =,60ACB ∠=︒, 由旋转可得,CP CQ =,60PCQ ∠=︒, ACB PCQ ∴∠=∠,ACB PCB PCQ PCB ∴∠-∠=∠-∠,即ACP BCQ ∠=∠, ()ACP BCQ SAS ∴∆≅∆,AP BQ ∴=.(2)在等边ABC ∆中,AC BC =,60ACB ∠=︒, 由旋转可得,CP CQ =,60PCQ ∠=︒,ACB PCQ ∴∠=∠,ACB PCB PCQ PCB ∴∠-∠=∠-∠,即ACP BCQ ∠=∠, ()ACP BCQ SAS ∴∆≅∆,AP BQ ∴=,90CBQ CAP ∠=∠=︒;BQ AP AC BC ∴===,AP AC =,90CAP ∠=︒,30BAP ∴∠=︒,75ABP APB ∠=∠=︒,135CBP ABC ABP ∴∠=∠+∠=︒,45CBD ∴∠=︒,45QBD ∴∠=︒,CBD QBD ∴∠=∠,即BD 平分CBQ ∠,BD CQ ∴⊥且点D 是CQ 的中点,即直线PB 垂直平分线段CQ .(3)①当点Q 在直线l 上方时,如图所示,延长BQ 交l 于点E ,过点Q 作QF l ⊥于点F ,由题意可得AC BC =,PC CQ =,60PCQ ACB ∠=∠=︒, ACP BCQ ∴∠=∠,()APC BCQ SAS ∴∆≅∆,AP BQ ∴=,90CBQ CAP ∠=∠=︒,60CAB ABC ∠=∠=︒,30BAE ABE ∴∠=∠=︒,4AB AC ==,AE BE ∴=, 60BEF ∴∠=︒,设AP t =,则BQ t =,EQ t ∴=-,在Rt EFQ ∆中,)QF t =-,12APQ S AP QF ∆∴=⋅=,即1)2t ⋅-=,解得t =t .即AP . ②当点Q 在直线l 下方时,如图所示,设BQ 交l 于点E ,过点Q 作QF l ⊥于点F ,由题意可得AC BC =,PC CQ =,60PCQ ACB ∠=∠=︒,ACP BCQ ∴∠=∠,()APC BCQ SAS ∴∆≅∆,AP BQ ∴=,90CBQ CAP ∠=∠=︒,60CAB ABC ∠=∠=︒,30BAE ABE ∴∠=∠=︒,120BEF ∴∠=︒,60QEF ∠=︒,4AB AC ==,AE BE ∴=, 设AP m =,则BQ m =,EQ m ∴=-,在Rt EFQ ∆中,QF m =,12APQ S AP QF ∆∴=⋅=,即12m m ⋅-解得m m ==.综上可得,AP 6.(2020•沈阳)在ABC ∆中,AB AC =,BAC α∠=,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接DB ,DC .(1)如图1,当60α=︒时,①求证:PA DC =;②求DCP ∠的度数;(2)如图2,当120α=︒时,请直接写出PA 和DC 的数量关系.(3)当120α=︒时,若6AB =,BP D 到CP 的距离为 .【解答】(1)①证明:如图1中,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD , PB PD ∴=,AB AC =,PB PD =,60BAC BPD ∠=∠=︒, ABC ∴∆,PBD ∆是等边三角形,60ABC PBD ∴∠=∠=︒,PBA DBC ∴∠=∠,BP BD =,BA BC =,()PBA DBC SAS ∴∆≅∆,PA DC ∴=.②解:如图1中,设BD 交PC 于点O .PBA DBC ∆≅∆,BPA BDC ∴∠=∠,BOP COD ∠=∠,60OBP OCD ∴∠=∠=︒,即60DCP ∠=︒.(2)解:结论:CD =.理由:如图2中,AB AC =,PB PD =,120BAC BPD ∠=∠=︒,2cos30BC AB ∴=⋅⋅︒,2cos30BD BP =⋅︒=,∴BC BD BA BP= 30ABC PBD ∠=∠=︒,ABP CBD ∴∠=∠,CBD ABP ∴∆∆∽,∴CD BC PA AB=CD ∴=.(3)过点D 作DM PC ⊥于M ,过点B 作BN CP ⊥交CP 的延长线于N . 如图31-中,当PBA ∆是钝角三角形时,在Rt ABN ∆中,90N ∠=︒,6AB =,60BAN ∠=︒,cos603AN AB ∴=⋅︒=,sin 60BN AB =⋅︒=2PN PB ==, 321PA ∴=-=,由(2)可知,CD = BPA BDC ∠=∠,30DCA PBD ∴∠=∠=︒, DM PC ⊥,12DM CD ∴=如图32-中,当ABP ∆是锐角三角形时,同法可得235PA =+=,CD =12DM CD ==综上所述,满足条件的DM ..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
手拉手模型
教学目标:
1:理解手拉手模型的概念,并掌握其特点
2:掌握手拉手模型的应用
知识梳理:
1、等边三角形
条件:△OAB,△OCD均为等边三角形
结论:;;
导角核心:
2、等腰直角三角形
条件:△OAB,△OCD均为等腰直角三角形
结论:;;
导角核心:
3、任意等腰三角形
条件:△OAB ,△OCD 均为等腰三角形,且∠AOB = ∠COD 结论:;;
核心图形: 核心条件:;;
典型例题:
例1:在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明:(1)△ABE ≌△DBC ;(2)AE=DC ;
(3)AE 与DC 的夹角为60°;(4)△AGB ≌△DFB ;
(5)△EGB ≌△CFB ;(6)BH 平分∠AHC ;GF ∥AC H
F G
E
D
例2:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;(4)AE与DC的交点设为H,BH平分∠AHC
A
例3:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;(4)AE与DC的交点设为H,BH平分∠AHC。