几何辅助线之手拉手模型初

合集下载

初中数学几何模型之手拉手模型

初中数学几何模型之手拉手模型
∴∠BAC-∠CAE=∠DAE-∠CAE,
即∠DAC=∠EAB,
在△ACD与△ABE中

∴△ACD≌△ABE(SAS);
(2)∵△ACD≌△ABE,
∴∠ADC=∠AEB,
∵△ADE是等腰直角三角形,
∴∠ADE=∠AED =45°,
∴∠AEB=∠ADE+∠CDE=45°+60°=105°.
【点睛】本题考查全等三角形的判定和性质,解题的关键是根据等腰直角三角形的性质和全等三角形的判定进行解答.
一、模型类别
二、相关结论的运用
(一)有公共顶点的等边三角形
典例精讲:
[问题提出]
(1)如图①, 均为等边三角形,点 分别在边 上.将 绕点 沿顺时针方向旋转,连结 .在图②中证明 .
[学以致用]
(2)在(1)的条件下,当点 在同一条直线上时, 的大小为度.
[拓展延伸]
(3)在(1)的条件下,连结 .若 直接写出 的面积 的取值范围.
(3)①
∵△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∵∠BAD=∠BAC+∠DAC,∠CAE=∠DAE+∠DAC,
∴∠BAD=∠CAE,
∴△ABD≌△ACE,
∴BD=CE,∠ABD=∠ACE,
∵∠AOB=∠FOC,
∴∠BFC=∠BAC=90°,
∴S四边形BCDE=S△BCE+S△DCE ;
数学模型-----手拉手
有些同学在学习数学时无从下手,找不到突破的方法,做不到举一反三,所以在数学的学习过程中,必须深入本质,做到知识、规律、法则掌握准确,及时反思.下面先给大家介绍一种常见的数学模型---手拉手模型,通过对模型的理解和掌握,把模型的结论融会贯通,理解透彻,那么这一类题型,都是可以迎刃而解的.

初三数学:几何辅助线之手拉手模型

初三数学:几何辅助线之手拉手模型

手拉手模型
教学目标:
1:理解手拉手模型的概念,并掌握其特点
2:掌握手拉手模型的应用
知识梳理:
1、等边三角形
条件:△OAB,△OCD均为等边三角形
结论:;;
导角核心:
2、等腰直角三角形
条件:△OAB,△OCD均为等腰直角三角形
结论:;;
导角核心:
3、任意等腰三角形
条件:△OAB ,△OCD 均为等腰三角形,且∠AOB = ∠COD 结论:;;
核心图形: 核心条件:;;
典型例题:
例1:在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明:(1)△ABE ≌△DBC ;(2)AE=DC ;
(3)AE 与DC 的夹角为60°;(4)△AGB ≌△DFB ;
(5)△EGB ≌△CFB ;(6)BH 平分∠AHC ;GF ∥AC H
F G
E
D
例2:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;(4)AE与DC的交点设为H,BH平分∠AHC
A
例3:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;(4)AE与DC的交点设为H,BH平分∠AHC。

几何辅助线之手拉手模型

几何辅助线之手拉手模型

手拉手模型教学目标:1:理解手拉手模型的概念,并掌握其特点2:掌握手拉手模型的应用知识梳理:1、等边三角形条件:△OAB,△OCD均为等边三角形结论:;;导角核心:2、等腰直角三角形条件:△OAB,△OCD均为等腰直角三角形结论:;;导角核心:3、任意等腰三角形条件:△OAB,△OCD均为等腰三角形,且∠AOB = ∠COD 结论:;;核心图形:核心条件:;;典型例题:例1:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;(4)△AGB≌△DFB;(5)△EGB≌△CFB;(6)BH平分∠AHC;GF∥AC例2:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;(4)AE与DC的交点设为H,BH平分∠AHCA例3:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;(4)AE与DC的交点设为H,BH平分∠AHC例4:如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H问:(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等?(3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?F例5:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H.问(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等?(3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?A例6:两个等腰三角形ABD与BCE,其中AB=BD,CB=EB,∠ABD=∠CBE,连接AE与CD. 问(1)△ABE≌△DBC是否成立?(2)AE是否与CD相等?(3)AE与CD之间的夹角为多少度?(4)HB是否平分∠AHC?A例7:如图,分别以△ABC 的边AB、AC 同时向外作等腰直角三角形,其中AB =AE ,AC =AD,∠BAE =∠CAD=90°,点G为BC中点,点F 为BE 中点,点H 为CD中点。

初中数学优质专题:手拉手模型

初中数学优质专题:手拉手模型

初中数学优质专题:手拉手模型手拉手模型是几何中常见的一种模型,通常与旋转结合出现在考试中作为几何综合题目。

下面将介绍两个例子。

例1:如图,△ADC与△EDC都为等腰直角三角形,连接AG、CE,相交于点H。

问题:(1)AG与CE是否相等?(2)AG与CE之间的夹角为多少度?解析:通过观察图形可以发现,△ADC与△XXX的底边DC重合,因此可以连接DE。

由于△ADC与△EDC均为等腰直角三角形,因此∠DAC=∠DEC=45°,∠DCA=∠ECD=90°。

又因为AB=AC,AD=AE,∠BAC=∠DAE=α,因此△ABD≌△XXX。

所以,AG=CE。

又因为∠DAG=∠CAE=α,所以∠AGE=2α。

同理,∠CEH=2α。

因此,∠AGC=∠AGE+∠CEH=4α。

所以,AG与CE之间的夹角为4α。

例2:如图,直线AB的同一侧作△ABD和△BCE都为等边三角形,连接AE、CD,二者交点为H。

问题:(1)△ABE≌△DBC;(2)AE=DC;(3)∠DHA=60°;(4)△AGB≌△DFB;(5)△EGB≌△CFB;(6)连接GF,GF∥AC;(7)连接HB,HB平分∠AHC。

解析:首先,由于△ABD和△BCE都为等边三角形,因此AB=BD=BE,BC=BE=CE。

又因为AE=CF,所以△ABE≌△DBC,AE=DC。

连接AH,可以发现△AHD为等边三角形,因此∠DHA=60°。

连接GF,可以发现∠AGF=∠ACB=60°,因此GF∥AC。

又因为△ABD为等边三角形,所以∠ABD=∠BDA=60°,因此∠BDC=120°。

连接DF,可以发现△DFB为等腰三角形,因此FD=FB。

同理,连接EG,可以发现△EGB为等腰三角形,因此GE=GB。

又因为∠DHB=∠AHB=∠AHC/2,因此HB平分∠AHC。

中考数学相似三角形中的重要模型手拉手模型

中考数学相似三角形中的重要模型手拉手模型

相似三角形中的重要模型-手拉手模型相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。

手拉手模型相似是手拉手模型当中相对于手拉手全等模型较难的一种模型,在实际的应用和解题当中出现时,对于同学们来说,都比较困难。

而深入理解模型内涵,灵活运用相关结论可以显著提高解题效率,本专题重点讲解相似三角形的“手拉手”模型(旋转模型)。

手拉手相似证明题一般思路方法:①由线段乘积相等转化成线段比例式相等;②分子和分子组成一个三角形、分母和分母组成一个三角形;③第②步成立,直接从证这两个三角形相似,逆向证明到线段乘积相等; ④第②步不成立,则选择替换掉线段比例式中的个别线段,之后再重复第③步。

模型1.“手拉手”模型(旋转模型)【模型解读与图示】“手拉手”旋转型定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。

1)手拉手相似模型(任意三角形)条件:如图,∠BAC=∠DAE=α,A DA E kA BA C==; 结论:△ADE ∽△ABC ,△ABD ∽△ACE ;E CkB D=.2)手拉手相似模型(直角三角形)条件:如图,90A O BC OD ∠=∠=︒,O C O D kO AO B==(即△COD ∽△AOB );结论:△AOC ∽△BOD ;B DkA C=,AC ⊥BD ,12A B C DS A B C D=⨯.3)手拉手相似模型(等边三角形与等腰直角三角形)条件:M 为等边三角形ABC 和DEF 的中点; 结论:△BME ∽△CMF ;B EC F条件:△ABC 和ADE 是等腰直角三角形; 结论:△ABD ∽△ACE.例1.(2022·山西·寿阳县九年级期末)问题情境:如图1所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,在图1中将ADE 绕A 点顺时针旋转一定角度,得到图2,然后将BD 、CE 分别延长至M 、N ,使DM =12BD ,EN =12CE ,得到图3,请解答下列问题:(1)猜想证明:若AB =AC ,请探究下列数量关系:①在图2中,BD 与CE 的数量关系是_________. ②在图3中,猜想∠MAN 与∠BAC 的数量关系,并证明你的猜想;(2)拓展应用:其他条件不变,若AB ,按上述操作方法,得到图4,请你继续探究:∠MAN 与∠BAC的数量关系?AM 与AN 的数量关系?直接写出你的猜想.例2.(2022•新乡中考模拟)在△ABC中,CA=CB=m,在△AED中,DA=DE=m,请探索解答下列问题.【问题发现】(1)如图1,若∠ACB=∠ADE=90°,点D,E分别在CA,AB上,则CD与BE的数量关系是,直线CD与BE的夹角为;【类比探究】(2)如图2,若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图2所示的位置,则CD 与BE之间是否满足(1)中的数量关系?说明理由.【拓展延伸】(3)在(1)的条件下,若m=2,将△AED绕点A旋转过程中,当B,E,D三点共线.请直接写出CD的长.例3.(2022·山东·九年级课时练习)【问题发现】如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为斜边BC上一点(不与点B,C重合),将线段AD绕点A顺时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是______,位置关系是______;【探究证明】如图2,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,将△ADE绕点A旋转,当点C,D,E在同一条直线上时,BD与CE具有怎样的位置关系,说明理由;【拓展延伸】如图3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,过点C作CA⊥BD于A.将△ACD绕点A顺时针旋转,点C的对应点为点E.设旋转角∠CAE为α(0°<α<360°),当C,D,E在同一条直线上时,画出图形,并求出线段BE的长度.例4.(2022·山东·东营市一模)【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.例5.(2022•长垣市一模)在△AB=AC,点D为AB边上一动点,∠CDE=∠BAC=α,CD=ED,连接BE,EC.(1)问题发现:如图①,若α=60°,则∠EBA=,AD与EB的数量关系是;(2)类比探究:如图②,当α=90°时,请写出∠EBA的度数及AD与EB的数量关系并说明理由;(3)拓展应用:如图③,点E为正方形ABCD的边AB上的三等分点,以DE为边在DE上方作正方形DEFG,点O为正方形DEFG的中心,若OA=,请直接写出线段EF的长度.例6.(2022·成都市·九年级课时练习)一次小组合作探究课上,老师将两个正方形按如图所示的位置摆放(点E 、A 、D 在同一条直线上),发现B ED G=且B ED G⊥.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形A E F G 绕点A 按逆时针方向旋转(如图1),还能得到B E D G=吗?若能,请给出证明,请说明理由;(2)把背景中的正方形分别改成菱形A E F G 和菱形A B C D ,将菱形A E F G 绕点A 按顺时针方向旋转(如图2),试问当E A G ∠与B A D ∠的大小满足怎样的关系时,B ED G=;(3)把背景中的正方形分别改写成矩形A E F G 和矩形A B C D ,且23AE AB AGAD==,2A Ea=,2A Bb=(如图3),连接D E ,B G .试求22D E B G+的值(用a ,b 表示).课后专项训练1.如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD、CE,若AC:BC=3:4,则BD:CE为()A.5:3B.4:3C.√5:2D.2:√32.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB与DE交于点O,AB=4,AC=3,F是DE的中点,连接BD,BF,若点E是射线CB上的动点,下列结论:①△AOD∽△FOB,②△BOD∽△EOA,③∠FDB+∠FBE=90°,④BF=56AE,其中正确的是()A.①②B.③④C.②③D.②③④3、如图,正方形A B C D的边长为8,线段C E绕着点C逆时针方向旋转,且3C E=,连接B E,以B E为边作正方形B E F G,M为A B边的中点,当线段F M的长最小时,ta n E C B∠=______.4.(2022•虹口区期中)如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.5.(2023·浙江·九年级课时练习)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,求证:P A=DC;(2)如图2,当α=120°时,猜想P A和DC的数量关系并说明理由.(3)当α=120°时,若AB=6,BP D到CP的距离.6.(2022·重庆·九年级课时练习)观察猜想(1)如图1,在等边A B C中,点M 是边B C 上任意一点(不含端点B 、C ),连接A M ,以A M 为边作等边A M N,连接C N ,则A B C ∠与A C N ∠的数量关系是______. (2)类比探究:如图2,在等边A B C中,点M 是B C 延长线上任意一点(不含端点C ),(1)中其它条件不变,(1)中结论还成立吗?请说明理由. (3)拓展延伸:如图3,在等腰A B C中,B AB C=,点M 是边B C 上任意一点(不含端点B 、C ),连接A M ,以A M 为边作等腰A M N,使顶角A M NA B C∠=∠.连按C N .试探究A B C ∠与A C N ∠的数量关系,并说明理由.7.(2022·江苏·九年级课时练习)【问题发现】如图1,在Rt △ABC 中,∠BAC =90°,AB =AC ,D 为斜边BC 上一点(不与点B ,C 重合),将线段AD 绕点A 顺时针旋转90°得到AE ,连接EC ,则线段BD 与CE 的数量关系是______,位置关系是______;【探究证明】如图2,在Rt △ABC 和Rt △ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,将△ADE 绕点A 旋转,当点C ,D ,E 在同一条直线上时,BD 与CE 具有怎样的位置关系,说明理由;【拓展延伸】如图3,在Rt △BCD 中,∠BCD =90°,BC =2CD =4,过点C 作CA ⊥BD 于A .将△ACD 绕点A 顺时针旋转,点C 的对应点为点E .设旋转角∠CAE 为α(0°<α<360°),当C ,D ,E 在同一条直线上时,画出图形,并求出线段BE 的长度.8.(2022·山东·九年级课时练习)如图,A B C和A D E是有公共顶点直角三角形,90B A C D A E ∠=∠=︒,点P 为射线B D ,C E 的交点.(1)如图1,若A B C和A D E是等腰直角三角形,求证:C PB D⊥;(2)如图2,若30A D EA B C ∠=∠=︒,问:(1)中的结论是否成立?请说明理由.(3)在(1)的条件下,4A B =,3A D =,若把A D E 绕点A 旋转,当90E A C ∠=︒时,请直接写出P B 的长度9.(2023·广东·深圳市九年级期中)(1)如图1,Rt △ABC 与Rt △ADE ,∠ADE =∠ABC =90°,12A BA DB CD E==,连接BD ,CE .求证:5B DC E=.(2)如图2,四边形ABCD ,∠BAD =∠BCD =90°,且12A B A D=,连接BC ,BC 、AC 、CD 之间有何数量关系?小明在完成本题中,如图3,使用了“旋转放缩”的技巧,即将△ABC 绕点A 逆时针旋转90°,并放大2倍,点B 对应点D .点C 落点为点E ,连接DE ,请你根据以上思路直接写出BC ,AC ,CD 之间的关系. (3)拓展:如图4,矩形ABCD ,E 为线段AD 上一点,以CE 为边,在其右侧作矩形CEFG ,且12A B C EB CE F==,AB=5,连接BE,BF.求BE的最小值.510.(2023·绵阳市·九年级专题练习)在△ABC中,AB=AC,∠BAC=α,点P是△ABC外一点,连接BP,将线段BP绕点P逆时针旋转α得到线段PD,连接BD,CD,AP.观察猜想:的值为,直线CD与AP所成的较小角的度数为°;(1)如图1,当α=60°时,C DA P的值及直线CD与AP所成的较小角的度数;类比探究:(2)如图2,当α=90°时,求出C DA P拓展应用:(3)如图3,当α=90°时,点E,F分别为AB,AC的中点,点P在线段FE的延长线上,点A,D,P三点在一条直线上,BD交PF于点G,CD交AB于点H. 若CD=2BD的长.11.(2023·湖北·九年级专题练习)在A B C和A D E中,B A B C∠=∠=,点=,D A D E=,且A B C A D EαE在A B C的内部,连接EC,EB,EA和BD,并且90∠+∠=︒.A C E AB Eα=︒时,线段BD与CE的数量关系为__________,线段EA,EB,EC的【观察猜想】(1)如图①,当60数量关系为__________.α=︒时,(1)中的结论是否依然成立?若成立,请给出证明,若不成立,【探究证明】(2)如图②,当90请说明理由;【拓展应用】(3)在(2)的条件下,当点E在线段CD上时,若B C=B D E的面积.12.(2023··广西一模)如图,A C B△和D C E均为等腰直角三角形,,.现将D C E绕点C旋转.∠=∠=︒==A CB DC E A C B CD CE C90,(1)如图1,若,,A D E三点共线,A D=B到直线C E的距离;(2)如图2,连接,A EB D,点F为线段B D的中点,连接C F,求证:A E C F⊥;(3)如图3,若点G在线段A B上,且8,==,在A C G内部有一点O,请直接写出A C A G22O C A G++的最小值.13.(2022•南山区校级一模)(1)【问题发现】如图①,正方形AEFG 的两边分别在正方形ABCD 的边AB 和AD 上,连接CF .填空:①线段CF 与DG 的数量关系为 ;②直线CF 与DG 所夹锐角的度数为 .(2)【拓展探究】如图②,将正方形AEFG 绕点A 逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3)【解决问题】如图③,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,AB =AC =10,O 为AC 的中点.若点D 在直线BC 上运动,连接OE ,则在点D 的运动过程中,线段OE 长的最小值为 (直接写出结果).14、某校数学活动小组在一次活动中,对一个数学问题作如下探究:(1)问题发现:如图1,在等边A B C 中,点P 是边B C 上任意一点,连接A P ,以A P 为边作等边A P Q,连接CQ ,BP 与CQ 的数量关系是________; (2)变式探究:如图2,在等腰A B C中,A BB C=,点P 是边B C 上任意一点,以A P 为腰作等腰A P Q,使A PP Q=,A P QA B C∠=∠,连接C Q ,判断A B C ∠和A C Q ∠的数量关系,并说明理由;(3)解决问题:如图3,在正方形A D B C 中,点P 是边B C 上一点,以A P 为边作正方形A P E F ,Q 是正方形A P E F 的中心,连接C Q .若正方形A P E F 的边长为5,2C Q =A DBC 的边长.15、如图,四边形ABCD 和四边形AEFG 都是正方形,C ,F ,G 三点在一直线上,连接AF 并延长交边CD 于点M .(1)求证:△MFC ∽△MCA ;(2)求证△ACF ∽△ABE ; (3)若DM =1,CM =2,求正方形AEFG 的边长.16、已知,ABC 中,AB =AC ,∠BAC =2α°,点D 为BC 边中点,连接AD ,点E 为线段AD 上一动点,把线段CE绕点E顺时针旋转2α°得到线段EF,连接FG,FD.(1)如图1,当∠BAC=60°时,请直接写出B F的值;(2)如图2,当∠BAC=90°时,(1)中的结论是A E否仍然成立?若成立,请给出证明;若不成立,请写出正确的结论,并说明理由;(3)如图3,当点E在AD上移动时,请直接写出点E运动到什么位置时D F的值最小.最小值是多少?(用含α的三角函数表示)D C。

中考数学几何专题——手拉手模型一

中考数学几何专题——手拉手模型一

手拉手模型一、手拉手模型1.手的判别:人站在等腰三角形顶角的位置,张开双臂,左手边的腰为左手,右手边的腰为右手。

2.手拉手模型的定义:两个等顶角的等腰三角形组成的图形,且顶角的顶点为公共顶点。

(顶角相等、等腰三角形、共顶点)条件模型结论特殊结论△ABC与△CDE是等腰三角形,且∠ACB=∠DCE (1)D ACD@D BCE (SSS)(2)AD=BE(左手拉左手,右手拉右手)(3)ÐBHA=ÐBCA(4)HC平分ÐAHE△ABC与△CDE是等腰直角三角形,且∠ACB=∠DCE=90°(5)S D BCD=S D ACE(6)BD2+AE2=AB2+DE2正方形ACBP与正方形CEQD是正方形△ABC 与△CDE是等边三角形(5)D ACM@D BCND DCM@D ECN(6) CM=CN(7)D CMN是等边三角形(8)MN∥AE,CD∥AB, CB∥DE(9) BH+CH=AHDH+CH=EH二、手拉手模型的变形:(两三角形相似,且对应角共顶点)条件模型结论D BAC∽D DAE,且ÐDAE=ÐBAC (1)D BAD∽D CAE(两边对应成比例且夹角相等) (2)BDCE=BACA(3) ÐBHC=ÐBAC【巩固练习】1、如图所示,若△ABC、△ADE都是正三角形,试比较线段BD与线段CE的大小.2、如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正确的是()3、如图,分别以△ABC的三边为边在BC的同侧作三个等边三角形,即△ABD,△BCE,△ACF.请回答下列问题:(1)说明四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,四边形ADEF是菱形?(4)当△ABC满足什么条件时,四边形ADEF是正方形?(5)当△ABC满足什么条件时,以A,D,E,F为顶点的四边形不存在?4、问题情境:如图1,已知△ABC和△DCE中,∠ACB=∠DCE=90°,AC=BC=2,CD=CE=1,点D在AC 边上,点E 在BC 延长线上。

几何辅助线之手拉手模型(初三)

几何辅助线之手拉手模型(初三)

手拉手模型教学目标:1:理解手拉手模型得概念,并掌握其特点2:掌握手拉手模型得应用知识梳理:1、等边三角形条件:△OAB,△OCD均为等边三角形结论:;;导角核心:2、等腰直角三角形条件:△OAB,△OCD均为等腰直角三角形结论:;;导角核心:3、任意等腰三角形条件:△OA B,△OCD 均为等腰三角形,且∠AOB = ∠COD 结论:;; 核心图形:核心条件:;; 典型例题:例1:在直线ABC 得同一侧作两个等边三角形△ABD 与△BCE,连接A E与C D,证明:(1)△AB E≌△DBC;(2)AE =DC;(3)AE 与DC得夹角为60°;(4)△A GB ≌△DFB; (5)△EGB ≌△CFB;(6)BH 平分∠A HC;GF ∥ACH FGE D例2:如果两个等边三角形△ABD 与△BCE,连接AE 与C D,证明: (1)△ABE ≌△DB C;(2)AE=DC;(3)AE 与DC 得夹角为60°; (4)A E与DC 得交点设为H,B H平分∠AHCEBDA例3:如果两个等边三角形△ABD 与△BC E,连接AE 与CD,证明:(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC得夹角为60°;(4)AE与DC得交点设为H,BH平分∠AHC例4:如图,两个正方形ABCD与DEFG,连接AG与CE,二者相交于H问:(1)△ADG≌△CDE就是否成立?(2)AG就是否与CE相等?(3)AG与CE之间得夹角为多少度?(4)HD就是否平分∠AHE?F例5:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H、问 (1)△ADG≌△CDE就是否成立?(2)AG就是否与CE相等?(3)AG与CE之间得夹角为多少度?(4)HD就是否平分∠AHE?A例6:两个等腰三角形ABD与BCE,其中AB=BD,CB=EB,∠ABD=∠CBE,连接AE与CD、问(1)△ABE≌△DBC就是否成立?(2)AE就是否与CD相等?(3)AE与CD之间得夹角为多少度?(4)HB就是否平分∠AHC?DEHABC例7:如图,分别以△ABC得边AB、AC同时向外作等腰直角三角形,其中 AB =AE ,AC =AD,∠BAE =∠CAD=90°,点G为BC中点,点F 为BE 中点,点H 为CD中点。

中考数学几何专题之手拉手模型(初三数学)

中考数学几何专题之手拉手模型(初三数学)

手拉手模型【课堂导入】什么是手拉手相似基本图形?与手拉手全等的基本图形类似,手拉手相似要比手拉手全等更具有一般性。

在上面右侧的四个图形中,每一个图形中都存在两对相似三角形,△ADE∽△ABC,△ADB∽△AEC,这两对相似三角形是可以彼此转化的。

【例1】 已知:△ABC ,△DEF 都是等边三角形,M 是 BC 与 EF 的中点,连接 AD ,BE.(1)如图 1,当 EF 与 BC 在同一条直线上时,直接写出 AD 与 BE 的数量关系和位置关系;(2)△ABC 固定不动,将图 1 中的△DEF 绕点M 顺时针旋转 ( 0o ≤ ≤ 90o )角,如图 2 所示,判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立, 说明理由;【例2】以平面上一点O为直角顶点,分别①如图 1,当点D 、C 分别在 AO 、BO 的延长线上时EM FM ②如图 2,将图 1 中的△AOB 绕点 O 沿顺时针方向旋转60度 角,其他条件不变,判断EMFM 的值是否发生变化,并对你的结论进行证明;【例3】 如图 1,在△ABC 中,∠ACB=90°,BC=2,∠A=30°,点 E ,F 分别是线段 BC ,AC 的中点,连结 EF . (1)线段 B E 与 A F 的位置关系是_______, BEAF =_______. (2)如图2,当△CEF绕点C顺时针旋转α时(°<α<【例4】 如图 1,在四边形 ABCD 中,点 E 、F 分别是 AB 、CD 的中点,过点 E 作 AB 的垂线,过点 F 作 CD 的垂线,两垂线交于点G ,连接 AG 、BG 、CG 、DG ,且∠AGD=∠BGC . (1) 求证:AD=BC . (2) 求证:△AGD ∽△EGF . (3) 如图 2,若 AD 、BC 所在直 线互相垂直,求 E F A D 的值.【例5】 如图1,△A B C为等腰直角三角形,∠A C B =90°,(1)①猜想图 1 中线段 BF 、AD 的数量关系及所在直线的位置关系,直接写出结论;②将图 1 中的正方形 CDEF ,绕着点 C 按顺时针(或逆时针)方向旋转任意角度α,得到如图 2、图 3 的情形.图 2 中 BF 交 AC 于点 H ,交 AD 于点 O ,请你判断①中得到的结论是否仍然成立,并选取图 2 证明你的判断.(2)将原题中的等腰直角三角形 ABC 改为直角三角形 ABC ,∠ACB=90∘,正方形 CDEF 改为矩形 CDEF ,如图4,且 AC=4,BC=3,CD= 4 ,CF=1,BF 交 AC 于点H ,交 AD 于点O ,连接 BD 、AF ,求 BD 2 +AF 2 的值.3手拉手(二)【例1】如图,B ,C ,E 三点共线,且ABC 与DCE 是等边三角形,连结BD ,AE 分别交AC ,DC 于M ,N 点.求证:CM= CN .【例2】如图,点C 为线段AB 上一点,ACM 、CBN 是等边三角形,求证:DE∥AB .【例3】如图,点C 为线段AB 上一点,ACM 、CBN 是等边三角形,求证:CF 平分 AFB .B【例4】如图,已知△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE = 90︒,AB =AC ,AD =AE ..连接BD 交AE 于M ,连接CE 交AB 于N ,BD 与CE 交点为F ,连接AF .(1)如图1 ,求证:BD=CE ;(2)如图1 ,求证:FA 是∠CFD 的平分线;(3)如图2 ,当当AC = 2 ,∠BCE =15︒时,求CF 的长.【例5】已知△ABC,以 AC 为边在△ABC 外作等腰△ACD,其中 AC=AD(1)如图①,若∠DAC=2∠ABC,AC=BC,四边形A BCD 是平行四边形,则∠ABC= (2)如图②,若∠ABC=30°,△ACD 是等边三角形,AB=3,BC=4,求BD 的长(3)如图③,若∠ACD 为锐角,做AH⊥BC 于H,当BD2 = 4AH2 + BC2时,∠DAC=2∠ABC是否成立?若不成立,请说明你的理由;若成立,请证明你的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

手拉手模型教学目标:
1:理解手拉手模型的概念,并掌握其特点
2:掌握手拉手模型的应用
知识梳理:
1、等边三角形
条件:△OAB,△OCD均为等边三角形
结论:;;
导角核心:
2、等腰直角三角形
条件:△OAB,△OCD均为等腰直角三角形
结论:;;
导角核心:
3、任意等腰三角形
条件:△OAB,△OCD均为等腰三角形,且∠AOB = ∠COD
结论:;;
核心图形:
核心条件:;;
典型例题:
例1:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC;
(3)AE与DC的夹角为60°;(4)△AGB≌△DFB;
(5)△EGB≌△CFB;(6)BH平分∠AHC;GF∥AC
例2:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:
(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;
(4)AE与DC的交点设为H,BH平分∠AHC
例3:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:
(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;
(4)AE与DC的交点设为H,BH平分∠AHC
例4:如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H
问:(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等?
(3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?
例5:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H.问(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等?
(3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?
例6:两个等腰三角形ABD与BCE,其中AB=BD,CB=EB,∠ABD=∠CBE,连接AE与CD. 问(1)△ABE≌△DBC是否成立?
(2)AE是否与CD相等?(3)AE与CD之间的夹角为多少度?
(4)HB是否平分∠AHC?
例7:如图,分别以△ABC 的边AB、AC 同时向外作等腰直角三角形,其中 AB =AE ,
AC =AD,∠BAE =∠CAD=90°,点G为BC中点,点F 为BE 中点,点H 为CD中点。


索GF 与GH 的位置及数量关系并说明理由。

例8:如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD任意一点(P与A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD 于点E.
(1)如图1,猜想∠QEP=_______°;
(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;
(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.
例9:在△ABC中,AB AC
=,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD AE
=,DAE BAC
∠=∠,连接CE.
1)如图1,当点D在线段CB上,且90
∠=_______度;
BAC
∠=︒时,那么DCE
(2)设BACα
∠=.
∠=,DCEβ
①如图2,当点D在线段CB上,90
∠≠︒时,请你探究α与β之间的数量关系,并证明
BAC
你的结论;
②如图3,当点D在线段CB的延长线上,90
∠≠︒时,请将图3补充完整,并直接写出
BAC
此时α与β之间的数量关系.
(3)结论:α与β之间的数量关系是____________.
例10:在ABC
∆绕点D顺
ABC
∠=︒,BD为斜边AC上的中线,将ABD
==,90
AB BC
∆中,2
时针旋转α(0180
α
∆,其中点A的对应点为点E,点B的对应点为点F,BE ︒<<︒)得到EFD
与FC相交于点H.
(1)如图1,直接写出BE与FC的数量关系:____________;
(2)如图2,M、N分别为EF、BC的中点.求证:MN=__________;
(3)连接BF,CE,如图3,直接写出在此旋转过程中,线段BF、CE与AC之间的数量关系:.
当堂练习:
1:在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为
边作正方形ADEF ,使点E 与点B 在直线AD 的异侧,射线BA 与射线CF 相交于点G .若点D 在线段BC 上,①依题意补全图1;
②判断BC 与CG 的数量关系与位置关系,并加以证明;
2:已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.CG 、CH 分别是ACN ∆、MCB ∆ 的高.求证:CG CH =.
3:如图,已知ABC ∆和ADE ∆都是等边三角形,B 、C 、D 在一条直线上,
试说明CE 与AC CD +相等的理由.
4:已知,如图,P 是正方形ABCD 内一点,且::1:2:3PA PB PC =,求APB ∠的度数.
5:如图所示,P 是等边ABC ∆中的一点,2PA =,PB =4PC =,试求ABC ∆的边长. 6:在Rt △ABC 中,90ACB ∠=︒,D 是AB 的中点,DE ⊥BC 于E ,连接CD .
(1)如图1,如果30A ∠=︒,那么DE 与CE 之间的数量关系是___________.
(2)如图2,在(1)的条件下,P 是线段CB 上一点,连接DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连接BF ,请猜想DE 、BF 、BP 三者之间的数量关系,并证明你的结论.
(3)如图3,如果A α∠=(090α︒<<︒),P 是射线CB 上一动点(不与B 、C 重合),连接DP ,将线段DP 绕点D 逆时针旋转2α,得到线段DF ,连接BF ,请直接写出DE 、BF 、BP 三者之间的数量关系(不需证明).
课后练习:
1:在ABC △中,AB AC =,BAC ∠=α()060︒<α<︒,将线段BC 绕点B 逆时针旋转60︒得到线段BD .
(1)如图1,直接写出ABD ∠的大小(用含α的式子表示);
(2)如图2,150BCE ∠=︒,60ABE ∠=︒,判断ABE △的形状并加以证明;
(3)在(2)的条件下,连结DE ,若45DEC ∠=︒,求α的值
2:如图,△ABC 中,∠BAC=90°,AB=AC ,边BA 绕点B 顺时针旋转α角得到线段BP ,连结PA ,PC ,过点P 作PD ⊥AC 于点D .
(1)如图1,若α=60°,求∠DPC 的度数;
(2)如图2,若α=30°,直接写出∠DPC 的度数;
(3)如图3,若α=150°,依题意补全图,并求∠DPC 的度数.
3:在△ABC 中,AB AC =,将线段AC 绕着点C 逆时针旋转得到线段CD ,旋转角为α,且0180α︒<<︒,连接AD 、BD .
(1)如图1,当100BAC ∠=︒,60α=o 时,CBD ∠的大小为_________;
(2)如图2,当100BAC ∠=︒,20α=︒时,求CBD ∠的大小;
(3)已知∠BAC 的大小为()60120m m ︒<<︒,若CBD ∠的大小与(2)中的结果相同,请直接写出α的大小
4:如图1,正方形ABCD 与正方形AEFG 的边()AB AE AB AE <、在一条直线上,正方形AEFG 以点A 为旋转中心逆时针旋转,设旋转角为α,在旋转过程中,两个正方形只有点A 重合,
其它顶点均不重合,连接BE DG 、.
(1)当正方形AEFG 旋转至如图2所示的位置时,求证:=BE DG ;
(2)当点C 在直线BE 上时,连接FC ,直接写出FCD ∠的度数;
(3)如图3,如果45242AB AE α=︒==,,,求点G 到BE 的距离
5:将等腰Rt ABC △和等腰Rt ADE △按图1方式放置,90A ∠=︒,AD 边与AB 边重合,2AB =,4AD =.将ADE △绕点A 逆时针方向旋转一个角度()α0α180︒≤≤︒,BD 的延长线交直线CE 于点P .
(1)如图2,BD 与CE 的数量关系是__________,位置关系是__________;
(2)在旋转的过程中,当AD BD ⊥时,求出CP 的长;
(3)在此旋转过程中,求点P 运动的路线长.
6:△ABC 中,45ABC ∠=︒,AH ⊥BC 于点H ,将△AHC 绕点H 逆时针旋转90°后,点C 的对应点为点D ,直线BD 与直线AC 交于点E ,连接EH .
(1)如图1,当∠BAC 为锐角时,
①求证:BE ⊥AC ;②求∠BEH 的度数;
(2)当∠BAC 为钝角时,请依题意用实线补全图2,并用等式表示出线段EC ,ED ,EH 之间的数量关系.
7:如图1,在ACB ∆和AED ∆中,AC BC =,AE DE =,90ACB AED ∠=∠=︒,点E 在AB 上,F
是线段BD 的中点,连接CE 、FE .
(1)请你探究线段CE 与FE 之间的数量关系(直接写出结果,不需要说明理由);
(2)将图1中的AED ∆绕点A 顺时针旋转,使AED ∆的一边AE 恰好与ACB ∆的边AC 在同一条直线上(如图2),连接BD ,取BD 的中点F ,问(1)中的结论是否仍然成立,并说明理由;
(3)将图1中的AED ∆绕点A 顺时针旋转任意的角度(如图3),连接BD ,取BD 的中点F ,问(1)中的结论是否仍然成立,并说明理由.。

相关文档
最新文档