医学统计学t检验
医学统计学:第八章 t检验

(1)建立检验假设
H0:μ =μ0 ,即该托儿所男婴的体重发育状
况与全国九城市的同期水平相同。
H1: μ≠μ0 ,即该托儿所男婴的体重发育状
况与全国九城市的同期水平不同。
α =0.05(双侧)
(2)计算u值 本例因总体标准差σ已知,故
可用u检验。
本例n=47, 样本均数=11, 总体均数=11.18,总
验)
一、单样本t检验(样本均数与总体均数比较的t检验)
即样本均数代表的未知总体均数与已知的 总体均数(一般为理论值、标准值或经过大量 观察所得的稳定值等)进行比较。
这时检验统计量t值的计算在H0成立的前提
条件下为:
t X 0
Sn
例3.3 根据调查,已知健康成年男子脉搏的 均数为72次/分钟,某医生在一山区随机测量 了25名健康成年男子脉搏数,求得其均数为 74.2次/分钟,标准差为6.5次/分钟,能否认 为该山区成年男子的脉搏数与一般健康成年 男子的脉搏数不同?
二、配对资料的t检验
配对实验设计得到的资料称为配对资料。
医学科研中配对资料的四种主要类型: ➢ 同一批受试对象治疗前后某些生理、生化指标
的比较; ➢ 同一种样品,采用两种不同的方法进行测定,
来比较两种方法有无不同; ➢ 配对动物试验,各对动物试验结果的比较等。 ➢ 同一观察对象的对称部位。
配对资料的 t 检验
之间收缩压均数有无差别?
(1)建立检验假设
H0:μ1 =μ2 ,即该地20~24岁健康女子和
男子之间收缩压均数相同;
H1: μ1≠μ2 ,即该地20~24岁健康女子和男
子之间收缩压均数不同。 α =0.05(双侧)
(2)计算u值
卫生统计学专题八:t检验

专题八 t 检验⒈t 检验基础t 检验是一种以t 分布为基础,以t 值为检验统计量资料的假设检验方法。
⑴t 检验的基本思想:假设在H 0成立的条件下做随机抽样,按照t 分布的规律得现有样本统计量t 值的概率为P ,将P 值与事先设定的检验水准进行比较,判断是否拒绝H 0。
⑵t 检验的应用条件:①样本含量较少(n <50);②样本来自正态总体(两样本均数比较时还要求两样本的总体方差相等,即方差齐性)。
【注】实际应用时,与上述条件略有偏离,只要其分布为单峰近似对称分布,对结果影响不大。
⑶t 检验的主要应用:①单个样本均数与总体均数的比较;②配对设计资料的差值均数与总体均数0的比较;③成组设计的两样本均数差异的比较。
⑷单样本t 检验基本公式:t=x0s x μ-=nsx 0μ- υ=n-1⒉z 检验z 分布(标准正态分布)是t 分布的特例,当样本n ≥50或者总体σ已知时用z 检验。
⑴单样本z 检验基本公式:z=nsx 0μ- 或 z=nx 0σμ-⑵单样本z 检验的步骤与单样本t 检验的基本相似。
⒊配对设计均数的比较 配对设计是为了控制某些非处理因素对实验结果的影响而采用的设计方式,应用配对设计可以减少实验误差和个体差异对结果的影响,提高统计处理的效率。
⑴配对设计的主要四种情况:①配对的两受试对象分别接受两种处理,如在动物实验中,常先将动物按照窝别、体重等配对成若干对,同一对的两受试对象随机分配到实验组和对照组,然后观察比较两组的实验结果。
②同一样品用两种不同方法测量同一指标或接受不同处理。
③自身对比,即将同一受试对象(实验或治疗)前后的结果进行比较。
④同一对象的两个部位给予不同处理。
⑵对配对资料的分析:一般用配对t 检验,其检验假设为:差值的总体均数为0即μd =0。
计算统计量的公式为:t=ns 0d d-,υ=n-1式中d 为差值的均数;s d 为差值的标准差;n 为对子数。
⑶关于自身对照(同体比较)的t 检验:①在医学研究中,我们常常对同一批患者治疗前后的某些生理、生化指标进行测量以观察疗效,对于这些资料可以按照配对t 检验。
医学统计学-第六章t检验

t
X1 X2
S
2 C
1 n1
1 n2
n1 n2 2
S
2 C
n1
1S
2 1
n 2
1S
2 2
n1 n2 2
两本均数比较的t检验亦称为成组t检验,又称为独立样本t检验
(independent samples t-test)。 适用于比较按完全随机设计而得到的两组资料,比较的目的是推断它们
各自所代表的总体均数和是否相等。
➢ 假设检验的基本思想
➢ 假设检验的基本思想是小概率反证法思想。
➢ 小概率事件(P≤0.05)是指在一次试验中基本上不大会发生的
事件。 ➢ 小概率事件原理:一个事件如果发生的概率很小,那么它在一次
试验中是实际不会发生的。在数学上,我们称这个原理为小概率 事件原理。 ➢ 反证法思想是先提出假设,再用适当的统计方法确定假设成立的 可能性大小,如可能性小,则认为假设不成立,若可能性大,则还 不能认为假设不成立。
α =0.05
SC2=699.725,t=-3.764
3.确定P值 ,作出推断结论
υ =20+20-2=38 , 查 t 界 值 表 , 得 t0.05/2,38=2.024, 现 |t|=3.764>t0.05/2,23=2.069,故P<0.05。按α=0.05水准,拒绝 H0,,接受H1,差异有统计学意义。
F
S12 (较大) S( 22 较小)
υ1为分子自由度,υ2为分母自由度
F统计量服从F分布,可以查F界值表,附表3-3。F值越大, 对应的P值越小。
1.建立假设,确定检验水准
2.计算统计量
F
S12 (较大)=26.82/26.12 =1.051 S( 22 较小)
医学统计学t检验

操作步骤
检验正态性
单样本t检验
具体步骤
1 分析——非参数检验——旧对话框——单个样本检验 2 分析——比较均值——单个样本t检验
结
论
1 分析得出的概率值有无统计学意义
2 若有意义,比较样本均数与总体均数 的大小
配对样本t检验(Paired t-test)
将比较组受试对象某些影响结果的因素(如年龄,性别等),按 特征相似配成对子,测定某指标结果。
0.681
0.5/ 2,38
P 0.50
结论:按=0.05 水准,p>0.50不拒绝H0
,差别无统计学意义。还不能认为阿卡波糖 胶囊与拜唐苹胶囊对空腹血糖的降糖效果有 不同。
本次内容结束
LOREM IPSUM DOLOR
Lorem ipsum dolor sit amet, consectetur adipisicing elit.
对象 编号
1 2 3
试验组(n=20) (阿卡波糖胶囊)
基线 8周后 5 4.3 7 4.5 8 5.2
对照组(n=20) (拜唐苹胶囊) 基线 8周后 85 64 6.5 4.2
.
20
9 10.2
75
两独立样本t检验的步骤
两组基本统计量的计算
s
nx
试验组
20
3.0601
2.065
对照组
20
合2并.4方20差5 计算
2.625
sc2
s12 (n1 1) s22 (n1 n1 n2 2
1)
sc2
3.0601 2 (20 1) 2.4205 20 20 2
2 (20
1)
医学统计学-t检验和u检验

统计学常见问题
在医学统计学研究中,常见的问题包括样本大小确定、假设检验的选择、结 果解释等。了解这些问题能够提高研究的可靠性和科学性。
统计学误差的分类
统计学误差可分为随机误差和系统误差。随机误差是由随机因素引起的结果 波动,而系统误差是由于观测方法、仪器校准等常规因素引起的偏差。
假设检验的基本原理
案例分析:t检验的应用
使用t检验分析两种治疗方法在疾病治愈率方面的差异,以指导临床决策和改 善患者疗效。
案例分析:u检验的应用
使用u检验比较两种不同药物治疗疾病的有效性,以指导合理用药和提高疗效。
数据处理软件
统计学常用的数据处理软件包括SPSS、R、Python等。它们提供了丰富的统计 分析函数和可视化工具,以帮助研究人员进行数据分析。
医学统计学-t检验和u检 验
介绍医学统计学中的t检验和u检验。包括基础概念、历史、优缺点、应用领 域等内容,以及与t检验的比较,以案例分析和数据处理软件为重点。
统计学的基础
统计学是研究如何收集、整理、分析和解释数据的科学。它是医学研究中不可或缺的工具,用于推断和验证假 设。
t检验的概念及历史
t检验是一种用于比较两个样本均值是否有显著差异的统计方法。它由英国统计学家威廉·塞特尔于1908年提出, 被广泛应用于医学研究中。
t检验的优缺点
1 优点
适用于小样本和正态分布的数据,能够比较 样本之间的差异。
2 缺点
对数据的要求较高,可能受到异常值的影响, 不适用于非正态分布的数据。
t检验的前提条件
独立样本t检验
两个样本之间独立且符合正态分布。
配对样本t检验
两个样本之间相关,如同一组受试者的前后观察。
方差分析中的t检验
卫生统计学专题八:t检验

专题八 t 检验⒈t 检验基础t 检验是一种以t 分布为基础,以t 值为检验统计量资料的假设检验方法。
⑴t 检验的基本思想:假设在H 0成立的条件下做随机抽样,按照t 分布的规律得现有样本统计量t 值的概率为P ,将P 值与事先设定的检验水准进行比较,判断是否拒绝H 0。
⑵t 检验的应用条件:①样本含量较少(n <50);②样本来自正态总体(两样本均数比较时还要求两样本的总体方差相等,即方差齐性)。
【注】实际应用时,与上述条件略有偏离,只要其分布为单峰近似对称分布,对结果影响不大。
⑶t 检验的主要应用:①单个样本均数与总体均数的比较;②配对设计资料的差值均数与总体均数0的比较;③成组设计的两样本均数差异的比较。
⑷单样本t 检验基本公式:t=x0s x μ-=nsx 0μ- υ=n-1⒉z 检验z 分布(标准正态分布)是t 分布的特例,当样本n ≥50或者总体σ已知时用z 检验。
⑴单样本z 检验基本公式:z=nsx 0μ- 或 z=nx 0σμ-⑵单样本z 检验的步骤与单样本t 检验的基本相似。
⒊配对设计均数的比较 配对设计是为了控制某些非处理因素对实验结果的影响而采用的设计方式,应用配对设计可以减少实验误差和个体差异对结果的影响,提高统计处理的效率。
⑴配对设计的主要四种情况:①配对的两受试对象分别接受两种处理,如在动物实验中,常先将动物按照窝别、体重等配对成若干对,同一对的两受试对象随机分配到实验组和对照组,然后观察比较两组的实验结果。
②同一样品用两种不同方法测量同一指标或接受不同处理。
③自身对比,即将同一受试对象(实验或治疗)前后的结果进行比较。
④同一对象的两个部位给予不同处理。
⑵对配对资料的分析:一般用配对t 检验,其检验假设为:差值的总体均数为0即μd =0。
计算统计量的公式为:t=ns 0d d-,υ=n-1式中d 为差值的均数;s d 为差值的标准差;n 为对子数。
⑶关于自身对照(同体比较)的t 检验:①在医学研究中,我们常常对同一批患者治疗前后的某些生理、生化指标进行测量以观察疗效,对于这些资料可以按照配对t 检验。
医学统计学第八章-t检验

配对设计t检验(例8.2)
• 24名儿童接种卡介苗,按照年龄、性别配成12对,每对中的一 人接种新制品,另外一人接种标准品;经相同部位注射,72小 时后观察结核菌素皮肤反应的直径,请问两种疫苗的反应结果 有无差别?
编号
1 2 3 4 5 6 7 8 9 10 11 12
标准品
12.0 14.5 15.5 12.0 13.0 12.0 10.5 7.5 9.0 15.0 13.0 10.5
• a=0.05;双侧
• t计= 算d =检验d 统计= 量3.2t5 = 4.520; = 11
S d
sd / nd
2.491 / 12
• 查表,t 0.05/2,11 = 2.201,所以 P<0.05(P=8.7×10-4);在a=0.05的水
准上,拒绝H ,两种疫苗的反应结果
3.成组t检验
2
t检验
• 在假设检验中使用了t统计量,所以就称之为 t检验
• t检验的使用是有条件的,什么样的资料可以 计算t值?
3
t检验的使用条件
• 数值(计量资料、定量变量)变量 • 正态分布或近似正态分布 • 总体方差齐性(两样本资料) • 在满足上述条件下,如果总体标准差未知,而
且样本含量较小(n≤100),考虑使用t检验; 而如果已知总体标准差或样本含量较大(n>100 )则可以使用Z检验
• 在a=0.05的水准上,不拒绝H0,尚不认为农 村新生儿的出生体重与该地平均水平不同。
2.配对设计的t检验
• 何为配对设计? • 有时影响试验或研究结果的不仅仅是
我们所观察的因素,例如要比较两种 药物的疗效,如果两组患者在开始时 的病情严重程度相差较大,那么即使 最终两药的治愈情况不同,也不能归 结于药物差别;在这里患者的病情称 之为非处理因素或“混杂”因素 • 配对设计就是研究者为了控制可能存 在的非处理因素对研究结果的影响而 采用的一种“均衡”的设计方法
第9章t检验

第9章t 检验t检验(t—tests)又称Student t检验(学生氏t检验),它用以检验单样本均数与总体均数间的差异性,两独立样本均数的差异性(独立样本t检验,又称成组t检验,团体t检验)和两样本配对样本t检验(自身对照)。
它以t分布为其理论基础,具体假设依各种问题的不同而异。
9.1 单样本均数t检验单样本均数t检验(one—Sample t-test for a Mean)可以对单样本均数与已知总体均数(一般为理论值、标准值或经过大量观察所得的稳定值等)进行比较,目的是推断样本所代表的未知总体均数与已知的总体均数有无差别(即样本均数与总体均数的比较)。
[例9—1] 已知某水样中含CaC03的真值(均数)为20.7mg/L,现用某方法重复测定该水样11次,CaC03的含量(mg/L)如下:20.99,20.41,20.10,20.00,20.91,22.60,20q99,20.41,20,00,23.00,22.00问该方法测得的均数是否偏高?(杨树勤。
中国医学百科全书/医学统计学。
上海:上海科学技术出版社,1985.10.3)(1)进入SAS/Win(v8)系统,单击Solutions-Analysis-Analyst,显示分析家窗口。
建立如图9—1所示的SAS数据集文件Sasuser.CaCO3。
A为变量CaCO3;,并保存为Sasuser.CaCO3。
(2)单击Statistics-Hypothesis(假设检验) -one—Samplet-test for a Mean (单样本均数t检验),得到图9.2所示对话框。
图9.1数据文件(部分) 图9—2 one—Sample t-test for a Mean:Cac03(单样本均数t检验)对话框在图9—2所示对话框中可进行如下设置。
、V ariable,待选变量为A(CaCO3)(单击A—Variable)。
Hypotheses,假设检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Paired t test
例7-2 某项研究评估咖啡因对运动者的心肌血流 量的影响,先后测定了12名男性志愿者饮用咖啡 前后运动状态下的心肌血流量(ml/min/g),数 据如表7-1所示,问饮用咖啡前后运动者的心肌血 流量有无差异。
Paired t test
3.检验步骤
Paired t test
1.配对样本均数t 检验原理
Paired t test
配对设计的资料具有对子内数据一一对应的特征, 研究者关心是对子的效应差值。
配对样本t检验的基本原理是假设两种处理的效应
相同,理论上差值d 的总体均数μd 为 0,现有的 不等于0差值样本均数可以来自μd = 0的总体,也可 以来μd ≠ 0的总体。
本例已知总体均数0=3.30kg,但总体标准差未知 ,n=35为小样本, S=0.40kg,故选用单样本t检验。
3.检验步骤
One sample t test
(1) 建立检验假设,确定检验水准
H0:0,该地难产儿与一般新生儿平均出生
体重相同;
H1:0,该地难产儿与一般新生儿平均出生
体重不同;
0.05。
配对设计(paired design)是将受试对象按某些重 要特征相近的原则配成对子,每对中的两个个体 随机地给予两种处理。
Paired t test
应用配对设计可以减少实验的误差和控制非处理 因素,提高统计处理的效率。
配对设计处理分配方式主要有两种情况: ①异源配对:将两个同质受试对象配对分别接受 两种处理,如把同窝、同性别和体重相近的动 物配成一对,或把同性别、年龄相近及病情相 同的病人配成一对。 ②同源配对:同一受试对象或同一标本的两个部 分,随机分配接受两种不同处理。
三、两独立样本t 检验
两独立样本t检验(two-sample t-test),又称成 组 t 检验。适用于完全随机设计的两样本均数 的比较,其目的是检验两样本所来自总体的均数 是否相等。
准不拒绝H0,根据现有样本信息,尚不能认为该 地难产儿与一般新生儿平均出生体重不同。
二、配对样本均数t检验
配对样本均数t检验简称配对t检验(paired t test), 又称非独立两样本均数t检验,适用于配对设计计 量资料均数的比较,其比较目的是检验两相关样本 均数所代表的未知总体均数是否有差别。
(1)建立检验假设,确定检验水准
H0:d=0,饮用咖啡前后运动者的平均心肌血流
量差异为零;
H1:d0,饮用咖啡前后运动者的平均心肌血流
量差异不为零;
0.05
(2)计算检验统计量
本例: d 9.6 d 2 13.72
计算差值均数:
d d / n 9.6 /12 0.8
Paired t test
• 25例糖尿病患者 随机分成两组,甲 组单纯用药物治疗,总体 乙组采用药物治疗 合并饮食疗法,二 个月后测空腹血糖 (mmol/L) 问两种 疗法治疗后患者血 糖值是否相同? 样本
药物治疗
1
? =
药物治疗合 并饮食疗法
2
推断
甲组
n1=12
XX1 =15.21
乙组 n2=13 X 2 =10.85
Paired t test
可将该检验理解为差值样本均数与已知总体均数 μd(μd = 0)比较的单样本t检验.其检验统计量为 :
t d d d 0 d
S d
S d
Sd n
式中d为每对数据的差值,为差值样本的均数,Sd 为差值样本的标准差,即差值样本的标准误,n为 配对样本的对子数。
2.实例分析
t分布——t 值与t分布的引入
样本均数正态分布
N(,2 ) X
N(,2) 观察值正态分布
-3
-2
-1
X t
S X
t分布
0
1
2
3
u X
-3
-2
-1
0
1
2
3
X
u X
S代替
X
u X
N(0,1) 标准正态分布
0.025
0.025
-1.96
0
1.96
一、单个样本t 检验
又称单样本均数t检验(one sample t test),适用于 样本均数与已知总体均数μ0的比较,比较目的是检 验样本均数所代表的总体均数μ是否与已知总体 均数μ0有差别。
医学统计学
第七章 t 检验
第一节 t 检验
假设检验是通过两组或多组的样本统计量的差别 或样本统计量与总体参数的差异来推断他们相应 的总体参数是否相同;
医疗卫生实践中最常见的是计量资料两组比较的 问题,如两种疗法治疗糖尿病的疗效比较;
t检验 (one-sample t-test) 是用于计量资料两组 比较的最常用的假设检验方法。
(2)计算检验统计量 在μ=μ0成立的前提条件下,计算统计量为:
One sample t test
t X 0 X 0 3.42 3.30 1.77
SX
S n 0.40 35
(3)根据P值,做出推断结论
查附表2,得t0.05/2,34=2.032。因为t t0.05/2,34,
故P0.05,表明差异无统计学意义,按 0.05水
S X
Sn
=n-1
One sample t test
未知总体
已知总体
0
样本
X
2.实例分析
One sample t test
例7-1 以往通过大规模调查已知某地新生儿出生 体重为3.30kg.从该地难产儿中随机抽取35名新生 儿作为研究样本,平均出生体重为3.42kg,标准差为 0.40kg,问该地难产儿出生体重是否与一般新生儿 体重不同?
计算差值标准差:
d 2
2
d
9.62
13.72
Sd
n n 1
12 0.741 12 1
计算差值的标准误:
Sd
Sd n
0.741 0.214 12
计算t值得:
d 0.8
t
3.738
Sd 0.214
Paired t test
(3)根据P 值,作出推断结论 查附表2,t0.05/2,11 = 2.201,t > t0.05,11,P < 0.05, 差别有统计学意义,拒绝H0,接受H1,可以认为 饮用咖啡前后运动者的心肌血流量存在差异。
已知总体均数μ0一般为标准值、理论值或经大量 观察得到的较稳定的指标值。
单样t检验的应用条件是总体标准未知的小样本
资料( 如n<50),且服从正态分布。Biblioteka 1.单个样本 t 检验原理
在 H0 : =0的假定下,
可以认为样本是从已知总 体中抽取的,根据t分布的 原理,单个样本t检验的公 式为:
t X 0 X 0