ansys求解后处理过程
(完整版)ANSYS基本操作-加载求解结果后处理解析

individual entities by picking 选项只删除模型选定的载荷。
删除载荷(续)
当删除实体模型时, ANSYS 将自动删除其上所 有的载荷
删除线上的均 布压力
自动删除以线为边 界各单元均布压力
实体模型
FEA 模型l
删除载荷(续)
两关键点的扩展位移约束载荷例外:
删除两点的约束
在关键点处约束
FEA 模型
在节点加集中力
在节点处约束
加载 (续)
无论采取何种加载方式,ANSYS求解前都将载 荷转化到有限元模型.因此,加载到实体的载荷 将自动转化到 其所属的节点或单元上
沿线均布的压力
均布压力转化到以线为边界的各单元上
实体模型
加载到实 体的载荷 自动转化 到其所属 的节点或 单元上
500 L3
VALI = 500
如果加载后坡度的方向相反, 将 两个压力数值颠倒即可
VALJ = 1000
1000 500
L3 VALI = 1000 VALJ = 500
加载轴对称载荷
轴对称载荷可加载到具有对称轴的3-D 结构 上
3-D 轴对称结构可用一2-D 轴对称模型描述
对称轴
3-D 结构 轴对称模型
加载面力载荷
Main Menu: Solution > -Loads- Apply > Pressure > On Lines
拾取 Line
输入一个压力值 即为均布载荷, 两个数值 定义 坡度压力
加载面力载荷(续)
500
500
L3 VALI = 500
1000
坡度压力载荷沿起始关键点(I) 线性变化到第二个关键点 (J)
ansys使用技巧(后处理)

2009-04-28 14:26ANSYS中查看截面结果的方法一般情况下,对计算结果后处理时,显示得到的云图为结构的外表面信息。
有时候,需要查看结构内部的某些截面云图,这就需要通过各种后处理技巧来获得截面的结果云图。
另外,有时候需要获得截面的结果数据,也需要用到后处理的技巧。
下面对常用的查看截面结果的方法做一个介绍:1. 通过工作平面切片查看截面云图工作平面实现。
这是比较常用的一种方法。
首先确保已经求解了问题,并得到了求解结果。
调整工作平面到需要观察的截面,可通过移动或者旋转工作平面实现。
调整时注意保证工作平面与需要观察的截面平行。
在PlotCtrls菜单中设置观察类型为Section,切片平面为Working Plane。
也可以通过等效的/type以及/cplane命令设置。
在通用后处理器中显示云图,得到需要查看的云图。
更简单地说,我们只需在显示云图命令前加上下面两条命令就可以了:/CPLANE,1 ! 指定截面为WP/TYPE,1,5 ! 结果显示方式选项2. 通过定义截面查看截面云图这种方法也需要用到工作平面与切片,步骤如下:首先确保已经得到了求解结果。
调整工作平面到需要观察的截面。
在PlotCtrls菜单中设置观察类型为Working Plane,或者使用命令/cplane,1。
通过sucr命令定义截面,选择(cplane)。
通过sumap命令定义需要查看的物理量。
通过supl命令显示结果。
3. 通过定义路径查看云图与保存数据首先确保已经得到了求解结果。
通过path与ppath命令定义截面路径。
通过pdef命令映射路径。
通过plpath、prpath与plpagm命令显示及输出结果。
总结:第一种方法是较简单、较常用的方式。
通过这种操作方式,我们也可以更直观地理解工作平面的含义。
以前看书上介绍工作平面总是无法理解到底什么是工作平面,工作平面有什么用途。
第二中方法实质上和第一种方法是一样的,只不过截面是我们自定义的一个平面,不是通过移动、旋转工作平面来实现“切片”的。
ANSYS Workbench 后处理

一、前处理技术
1.2.2 约束类型 固定约束(Fixed Support)——
固定约束可以加载于实体、顶点、边缘、面、 壳或者梁上,从而约束相对应单元的自由度。
一、前处理技术
1.2.2 约束类型 位移约束(Displacement)——
在加载给定位移时要注意: -可以在顶点、体边缘或面上加载已知位移 -允许在x、y和z方向给予强制位移 -当输入“0”值时,代表此方向上被约束 -如果不设定某个方向的值则意味着实体在这个方向上自由运动
是通过惯性力施加到结构上的,而惯性力的方向
与所施加的加速度方向恰好相反,因为惯性力是
阻止加速度所产生的变化的,一定要牢记这一
点!!! 通过鼠标选中
来定义加速度
通过鼠标选中 球重力加速度
通过鼠标选中 ,注意缺省单位为rad/s
来定义标准地 来定义旋转速度
一、前处理技术
1.2.1 载荷类型
➢ 结构载荷(Inertial) 是作用在系统或部件结构上的力或力矩。力载
Selection 图标 –新的命名集将出现在Outline Tree(大纲树)下。
•提示: –在一个指定的命名选择集里只允许出现一种实体类型。例如,在相同的命 名集里就不能同时出现点和边。
一、前处理技术
附: 命名选择集
•在很多细节窗口中可以直接引用命名选择集: •示例(压载荷):
–在Details of Pressure中,把Method由Geometry Selection换成 Named Selection
(1)双击项目A中的A2栏Engineering Data项,进入下图所示 的材料参数设置界面,在该界面下即可进行材料参数设置。
一、前处理技术
添加材料库
ANSYS后处理(结果查看)

一、显示某个时间点的温度云图1、General Postproc →Read Result →By Time/Freq2、在跳出的窗口中输入时间点,点击OK按钮3、然后点Plot Results按下图操作3、然后点击plot →Replot即可显示该时刻的云图二、提取某个节点的数值1、首先通过下列命令,选择部分单元nsel,s,loc,x,0,0.025esln,all然后读取所需节点的编号。
2、点击时间历程后处理器TimeHist postproc弹出如箭头所指对话框。
点击图对话框左上角的绿色增加按钮弹出对话框点击ok按钮,在弹出的对话框中输入节点编号,或者鼠标点击选择节点即可将新的数据读入对话框中如下图所示然后即可通过窗口上的按钮对数据进行操作处理。
/POST1set,last !定义数据集从结果文件中读出,last表示读取最后的数据集plnsol,s,eqv !以连续的轮廓线形式显示结果,S表示应力,EQV表示等效应力查看某个截面的云图!-----------------选取节点结果/post1!seltol,1.0e-10set,,,,,2.5!nsel,s,loc,y,0.1,0.1nsel,s,loc,x,0.02/page,99999,132,99999,240!-------------------显示某个截面wprota,,,90wpoffs,,,0.02/CPLANE,1 !指定截面为WP/TYPE,1,5 !结果显示方式选项工作平面移回全局坐标原点WPCSYS,-1nsel,s,loc,x,0,0.025esln,,1,ACTIVE。
ANSYS后处理(结果查看)

一、显示某个时间点的温度云图1、General Postproc →Read Result →By Time/Freq2、在跳出的窗口中输入时间点,点击OK按钮3、然后点Plot Results按下图操作3、然后点击plot →Replot即可显示该时刻的云图二、提取某个节点的数值1、首先通过下列命令,选择部分单元nsel,s,loc,x,0,0.025esln,all然后读取所需节点的编号。
2、点击时间历程后处理器TimeHist postproc弹出如箭头所指对话框。
点击图对话框左上角的绿色增加按钮弹出对话框点击ok按钮,在弹出的对话框中输入节点编号,或者鼠标点击选择节点即可将新的数据读入对话框中如下图所示然后即可通过窗口上的按钮对数据进行操作处理。
/POST1set,last !定义数据集从结果文件中读出,last表示读取最后的数据集plnsol,s,eqv !以连续的轮廓线形式显示结果,S表示应力,EQV表示等效应力查看某个截面的云图!-----------------选取节点结果/post1!seltol,1.0e-10set,,,,,2.5!nsel,s,loc,y,0.1,0.1nsel,s,loc,x,0.02/page,99999,132,99999,240!-------------------显示某个截面wprota,,,90wpoffs,,,0.02/CPLANE,1 !指定截面为WP/TYPE,1,5 !结果显示方式选项工作平面移回全局坐标原点WPCSYS,-1nsel,s,loc,x,0,0.025esln,,1,ACTIVE。
ANSYS求解后处理

连杆
后处理
说明 • 练习按查询和路径操作. • 检查误差量级, 重新划分网格并重新求解. 比较两组结果.
1. 以“conn-rod”为作业名,进入ANSYS。 2. 恢复数据库文件“conn-rod.db” :
– Utility Menu > File > Resume from … • 选择“conn-rod.db” 文件, 按 [OK]
9. 求解完成后, 进入通用后处理器,画von Mises 应力 (SEQV): – Main Menu > General Postproc > Plot Results > -Contour Plot- Nodal Solu … • 选择“Stress” 和“von Mises SEQV”, 按 [OK]
3. 进入求解器,在大孔的表面施加法向约束:
– Main Menu > Solution > -Loads- Apply > -Structural- Displacement > -Symmetry B.C.- On Areas + • 拾取孔的表面 (面号 8、 9), 按 [OK]
4. 在Y=0的所有表面上施加对称约束边界条件:
说明
• 在下图所示的三维支架上施加载荷,并用PCG迭代求解器求解. 模型已用20节点的 SOLID95 划分了网格, 杨氏模量为30e6 psi.
载荷
1. 用 “bracket-3d”作为作业名,进入ANSYS。 2. 恢复 “bracket-3d.db1”数据库文件 :
– Utility Menu > File > Resume from … • 选择 “bracket-3d.db1”数据库文件,按 [OK]
ansys命令流--前后处理和求解常用命令之求解与后处理
ansys命令流--前后处理和求解常用命令之求解与后处理any命令流----前后处理和求解常用命令之求解与后处理.t某t都是一个山的狐狸,你跟我讲什么聊斋,站在离你最近的地方,眺望你对别人的微笑,即使心是百般的疼痛只为把你的一举一动尽收眼底.刺眼的白色,让我明白什么是纯粹的伤害。
3/oluu/olu进入求解器3.1加边界条件uD,node,lab,value,value2,nend,ninc,lab2,lab3,lab6定义节点位移约束Node:预加位移约束的节点号,如果为all,则所有选中节点全加约束,此时忽略nend和ninc.Lab:u某,uy,uz,rot某,roty,rotz,allValue,value2:自由度的数值(缺省为0)3.2设置求解选项uantype,tatu,ldtep,ubtep,actionantype:taticor1静力分析buckleor2屈曲分析modalor3模态分析tranor4瞬态分析tatu:new重新分析(缺省),以后各项将忽略ret再分析,仅对tatic,fulltranion有效ldtep:指定从哪个荷载步开始继续分析,缺省为最大的,runn数(指分析点的最后一步)ubtep:指定从哪个子步开始继续分析。
缺省为本目录中,runn文件中最高的子步数action,continue:继续分析指定的ldtep,ubtep说明:继续以前的分析(因某种原因中断)有两种类型ingleframeretart:从停止点继续需要文件:jobname.db必须在初始求解后马上存盘jobname.emat单元矩阵jobname.eav或.oav:如果.eav坏了,将.oav改为.eavreultfile:不必要,但如果有,后继分析的结果也将很好地附加到它后面注意:如果初始分析生成了.rdb,.ldhi,或rnnn文件。
必须删除再做后继分析步骤:(1)进入anay以同样工作名(2)进入求解器,并恢复数据库(3)antype,ret(4)指定附加的荷载(5)指定是否使用现有的矩阵(jobname.trl)(缺省重新生成)kue:1用现有矩阵(6)求解multiframeretart:从以有结果的任一步继续(用不着)upred,key,--,lkey..在非线性分析中是否打开预测器key:off不作预测(当有旋转自由度时或使用olid65时缺省为off)on第一个子步后作预测(除非有旋转自由度时或使用olid65时缺省为on)--:未使用变量区lkey:off跨越荷载步时不作预测(缺省)on跨越荷载步时作预测(此时key必须同时on)注意:此命令的缺省值假定olcontrol为onuautot,key是否使用自动时间步长key:on:当olcontrol为on时缺省为onoff:当olcontrol为off时缺省为off 1:由程序选择(当olcontrol为on且不发生autot命令时在.log文件中纪录“1”注意:当使用自动时间步长时,也会使用步长预测器和二分步长uNROPT,option,--,adptky指定牛顿拉夫逊法求解的选项OPTION:AUTO:程序选择FULL:完全牛顿拉夫逊法MODI:修正的牛顿拉夫逊法INIT:使用初始刚阵UNSYM:完全牛顿拉夫逊法,且允许非对称刚阵ADPTKY:ON:使用自适应下降因子OFF:不使用自适应下降因子uNLGEOM,KEYKEY:OFF:不包括几何非线性(缺省)ON:包括几何非线性uncnv,ktop,dlim,itlim,etlim,cplim终止分析选项ktop:0如果求解不收敛,也不终止分析1如果求解不收敛,终止分析和程序(缺省)2如果求解不收敛,终止分析,但不终止程序dlim:最大位移限制,缺省为1.0e6itlim:累积迭代次数限制,缺省为无穷多etlim:程序执行时间(秒)限制,缺省为无穷cplim:cpu时间(秒)限制,缺省为无穷uolcontrol,key1,key2,key3,vtol指定是否使用一些非线性求解缺省值key1:on激活一些优化缺省值(缺省)CNVTOLToler=0.5%Minref=0.01(对力和弯矩)NEQIT最大迭代次数根据模型设定在15~26之间ARCLEN如用弧长法则用较any5.3更先进的方法PRED除非有rot某,y,z或olid65,否则打开LNSRCH当有接触时自动打开CUTCONTROLPllimit=15%,npoint=13SSTIF当NLGEOM,on时则打开NROPT,adaptkey关闭(除非:摩擦接触存在;单元12,26,48,49,52存在;当塑性存在且有单元20,23,24,60存在)AUTOS由程序选择off不使用这些缺省值key2:on检查接触状态(此时key1为on)此时时间步会以单元的接触状态(据keyopt(7)的假定)为基础当keyopt(2)=on时,保证时间步足够小key3:应力荷载刚化控制,尽量使用缺省值空:缺省,对某些单元包括应力荷载刚化,对某些不包括(查)nopl:对任何单元不包括应力刚化incp:对某些单元包括应力荷载刚化(查)vtol:uoutre,item,freq,cname规定写入数据库的求解信息item:all所有求解项baic只写nol,rol,nload,trnol节点自由度rol节点作用荷载nload节点荷载和输入的应变荷载(?)tr节点应力freq:如果为n,则每n步(包括最后一步)写入一次none:则在此荷载步中不写次项all:每一步都写lat:只写最后一步(静力或瞬态时为缺省)3.3定义载荷步unubt,nbtp,nbm某,nbmn,carry指定此荷载步的子步数nbtp:此荷载步的子步数uf,node,lab,value,value2,nend,ninc在指定节点加集中荷载node:节点号lab:F某,Fy,Fz,M某,My,Mzvalue:力大小value2:力的第二个大小(如果有复数荷载)nend,ninc:在从node到nend的节点(增量为ninc)上施加同样的力注意:(1)节点力在节点坐标系中定义,其正负与节点坐标轴正向一致ufa,area,lkey,lab,value,value2在指定面上加荷载area:n面号all 所有选中号lkey:如果是体的面,忽略此项lab:prevalue:压力值uSFBEAM,ELEM,LKEY,LAB,VALI,VALJ,VAL2I,VAL2J,IOFFST,JOFFST对梁单元施加线荷载ELEM:单元号,可以为ALL,即选中单元LKEY:面载类型号,见单元介绍。
ANSYS中重要的后处理
ANSYS后处理1.ANSYS后处理时如何按灰度输出云图?1)你可以到utilitymenu-plotctrls-style-colors-window colors试试2)直接utilitymenu-plotctrls-redirect plots2 将云图输出为JPG菜单->PlotCtrls->Redirect Plots->To JPEG Files3.怎么在计算结果实体云图中切面?命令流/cplane/type图形界面操作<1.设置工作面为切面<2.PlotCtrls-->Style-->Hidden line Options将[/TYPE]选项选为section将[/CPLANE]选项选为working plane4.非线性计算过程中收敛曲线实时显示solution>load step opts>output ctrls>grph solu track>on5.运用命令流进行计算时,一个良好的习惯是:使用SELECT COMMEND后.........其后再加上ALLSEL.........6.应力图中左侧的文字中,SMX与SMN分别代表最大值和最小值如你plnsolv,s,eqv则 SMX与SMN分别代表最大值等效应力和最小值等效应力如你要看的是plnsolv,u则SMX与SMN分别代表位移最大值和位移最小值不要被S迷惑mx(max)mn(min)7.在非线性分析中,如何根据ansys的跟踪显示来判断收敛?在ansys output windows 有 force convergence value值和 criterion 值当前者小于后者时,就完成一次收敛你自己可以查看两条线的意思分别是:FL2:不平衡力的2范数 FCRIT:不平衡力的收敛容差,如果前者大于后者说明没有收敛,要继续计算,当然如果你以弯矩M为收敛准则那么就对应 M L2 和 M CRIT希望你现在能明白8.两个单元建成公共节点,就成了刚性连接,不是接触问题了。
第5章 ANSYS分析结果的后处理
K2
EXPAND为Yes,则K1至K2之间的所有节点都将被
约束,即相当于固定了这条边;KEPAND=No则只
固定了K1、K2上的两个节点被约束。
4.2.1.2 在线(或面)上加载位移约束
命令:
DL, LINE, AREA ,Lab , Value ,Value2
DA, AREA, Lab , Value ,Value2
(3)Surface load(表面载荷):为施加于模型某个表面上的分 布载荷。在结构分析中被指定为压力;在热分析中为对流和热 通量。
(4)Body load(体积载荷):为施加于模型上的体积载荷或者 场载荷。在结构分析中为温度;热力分析中为热生产率。
(5)Inertia load(惯性载荷):由物体的惯性引起的载荷, 如重力加速度、角速度、角加速度。主要在结构分析中使用。
左图所示显示了一个需要三个载荷步的载荷历程曲线:第一个载荷步用于 线性载荷,第二个载荷步用于不变载荷,第三个载荷步用于卸载。载荷值 在载荷部的结束点达到全值。
2)载荷子步
子步(Sub step):将一个载荷步分成几个子步施加载荷。
3)时间的作用
在所有静态和瞬态分析中,ANSYS使用时间作为跟踪参数,而不论分 析是否依赖于时间。在指定载荷历程时,在每个载荷步的结束点赋予时间
施加载荷可以通过前处理器 Preprocessor或求解器Solution 中的Loads项 完成。左图示菜单为第一种方式。弹出相应对 话框后:
(1)选择载荷形式:如Displacement(位移) ,Force/Moment(力和力 矩),Pressure(压力)、Temperature(温度)等;
(2)选择加载的对象:如:On Keypoints、On Lines、On Areas、On Nodes、On Element等;
ANSYS基本操作-加载求解结果后处理
individual entities by picking ANSYS基本选操处作项-理加只载删求解除结模果后型选定的载荷。
删除载荷(续)
当删除实体模型时, ANSYS 将自动删除其上所 有的载荷
删除线上的均 布压力
自动删除以线为边 界各单元均布压力
实体模型
FEA 模型l
ANSYS基本操作-加载求解结果后 处理
ANSYS基本操作-加载求解结果后 处理
加载面力载荷(续)
500
500
L3 VALI = 500
坡度压力载荷沿起始关键点(I) 线
1000
性变化到第二个关键点 (J)
500 L3
VALI = 500
如果加载后坡度的方向相反, 将 两个压力数值颠倒即可
VALJ = 1000
1000 500
L3 VALI = 1000 VAALNJS=YS5基00本操作-加载求解结果后
删除载荷(续)
两关键点的扩展位移约束载荷例外:
删除两点的约束
实体 模型
FEA 模ቤተ መጻሕፍቲ ባይዱl
只删除了两角点( CORNER )约束 , 而加载时扩展的 ( inside ) 节点 约束必须手工删除
ANSYS基本操作-加载求解结果后 处理
第二部分: 求 解
ANSYS基本操作-加载求解结果后 处理
求解过程
处理
将载荷转化到有限元模型上
下面将载荷转化到节点和单元上,不进行求解:
Main Menu: Solution > -Loads-Operate
这些选项出现的信息大致相同
ANSYS基本操作-加载求解结果后 处理
删除载荷
Main Menu: Solution > -Loads- Delete
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输入数据 数据库 结果数据
求解器
结果
结果文件
September 01, 2003
Introduction to ANSYS - Release 5.7(001128)
M4-20
求解时模型是否准备就绪?
在求解初始化前,应进行分析数据检查,包括下面内容: • 统一的单位 • 单元类型和选项 • 材料性质参数
Axis of symmetry
September 01, 2003
3-D 结构
2-D 有限元模型
Total Force = 2pr = 47,124 lb.
Introduction to ANSYS - Release 5.7(001128)
M4-11
加载 (续)
1. ..... 2. ..... 3. .....
M4-8
500 L3
500 L3
1000 L3
September 01, 2003
加载 (续)
加载面力载荷(续)
500 VALI = 500
1000 VALI = 500 VALJ = 1000
坡度压力载荷沿起始关键点(I) 线性变化到第二个关键点 (J)。
如果加载后坡度的方向相反, 将 两个压力数值颠倒即可。
M4-15
1. ..... 2. ..... 3. .....
Procedure
删除载荷
4-2c. 删除载荷
Objective
Main Menu: Solution > -Loads- Delete
All Load Data 选项可同时删除模型 中的任一类载荷。
September 01, 2003
加载、求解、结果后处理
September 01, 2003
Introduction to ANSYS - Release 5.7(001128)
M4-1
Lesson 1 加载
September 01, 2003
Introduction to ANSYS - Release 5.7(001128)
M4-2
M4-7
加载 (续)
加载面力载荷
Main Menu: Solution > -Loads- Apply > Pressure > On Lines
拾取
Line
输入一个
压力值即为
均布载荷,
两个数值
定义
坡度压力
说明:压力数值为正表示其方向指向表面
September 01, 2003
Introduction to ANSYS - Release 5.7(001128)
弱化。如果刚度减小到零或更小时,求解存在奇异性,因为整个结 构已发生屈曲。
实体模型
记住这 一关系?
FEA 模型l
September 01, 2003
Introduction to ANSYS - Release 5.7(001128)
M4-17
删除载荷(续)
两关键点的扩展位移约束载荷例外:
删除两点的约束
实体 模型
FEA 模型l
只删除了两角点 ( CORNER ) 约束, 而加载 时扩展的 ( inside ) 节点 约束必须手工删 除.
procedure
加载约束载荷 在关键点加载位移约束:
Main Menu: Solution > -Loads- Apply -StructuralDisplacement > On Keypoints +
拾取 keypoints
Expansion option 可使相同的载荷加 在位于两关键点连线的所有节点上
500
VALI = 1000 VALJ = 500
Introduction to ANSYS - Release 5.7(001128)
M4-9
加载 (续)
加载轴对称载荷
• 轴对称载荷可加载到具有对称轴的3-D 结构上。 • 3-D 轴对称结构可用一2-D 轴对称模型描述。
对称轴
3-D 结构
轴对称模型
• 面载荷 - 作用在表面的分布载荷 (结构分析_压力、热分析_热对流、 电磁分析_magnetic Maxwell surfaces等)
• 体积载荷 - 作用在体积或场域内 (热分析_ 体积膨胀、内生成热、电 磁分析_ magnetic current density等)
• 惯性载荷 - 结构质量或惯性引起的载荷 (重力、角速度等)
September 01, 2003
或通过 listing列表载荷: Utility Menu: List > Loads
Introduction to ANSYS - Release 5.7(001128)
M4-14
将载荷转化到有限元模转化到有限元模 型中的节点和单元上。
均布压力转化到以线为边界 的各单元上
FEA 模型
September 01, 2003
Introduction to ANSYS - Release 5.7(001128)
M4-6
加载 (续)
1. .....
实体模型加载:
2. .....
3. .....
Main Menu: Solution > -Loads- Apply >
载荷分类
4-1. 列表和分类载荷
Objective
ANSYS中的载荷可分为:
• 自由度DOF - 定义节点的自由度( DOF ) 值 (结构分析_位移、热分 析_ 温度、电磁分析_磁势等)
• 集中载荷 - 点载荷 (结构分析_力、热分析_ 热导率、电磁分析_ magnetic current segments)
3. .....
步骤
Main Menu: Solution > -Loads- Apply -Structural-
Displacement > On Lines + OR On Areas+
September 01, 2003
Introduction to ANSYS - Release 5.7(001128)
September 01, 2003
Introduction to ANSYS - Release 5.7(001128)
M4-3
加载
4-2a. 加载.
Objective
可在实体模型或 FEA 模型 (节点和单元) 上加载.
沿线均布的压力
沿单元边界均布的压力
实体模型 在关键点加集中力
September 01, 2003
September 01, 2003
Introduction to ANSYS - Release 5.7(001128)
M4-21
进行求解
4-3. 描述求解过程
Objective
1. ..... 求解过程: 2. ..... 1. 求解前保存数据库
3. .....
2. 将Output 窗口提到最前面观看求解信息 Procedure 3. Main Menu: Solution > -Solve-Current LS.
M4-23
进行求解(续)
没有获得结果的原因是什么? 往往是求解输入的模型不完整或存在 错误,典型原因有:
• 约束不够! (通常出现的问题)。 • 当模型中有非线性单元 (如缝隙 gaps、滑块sliders、铰hinges、索
cables等),整体或部分结构出现崩溃或“松脱”。 • 材料性质参数有负值, 如密度或瞬态热分析时的比热值。 • 未约束铰接结构,如两个水平运动的梁单元在竖直方向没有约束。 • 屈曲 - 当应力刚化效应为负(压)时,在载荷作用下整个结构刚度
September 01, 2003
例
K6
要固定一边,只 要拾取关键点6、 7,并设置 all DOFs = 0 和
KEXPND = yes.
Introduction to ANSYS - Release 5.7(001128)
K7
M4-12
加载 (续)
加载约束载荷(续)
1. .....
2. ..... 在线和面上加载位移约束:
September 01, 2003
Introduction to ANSYS - Release 5.7(001128)
M4-18
Lesson 2 求解
September 01, 2003
Introduction to ANSYS - Release 5.7(001128)
M4-19
求解
求解结果保存在数据库中并输出到结果文件 (Jobname.RST, Jobname.RTH, Jobname.RMG, or Jobname.RFL)
September 01, 2003
Introduction to ANSYS - Release 5.7(001128)
M4-22
进行求解(续)
在求解过程中,应将OUTPUT窗口提到最前面。 ANSYS 求解过程 中的一系列信息都将显示在此窗口中,主要信息包括:
• 模型的质量特性- 模型质量是精确的 - 质心和 质量矩的值有一定误 差。
1. ..... 下面将载荷转化到节点和单元上,不进行求解:
2. .....
3. .....
Main Menu: Solution > -Loads-Operate
Procedure
这些选项出现的信息大致相同
September 01, 2003
Introduction to ANSYS - Release 5.7(001128)
M4-13
校验载荷