博山2017届中考数学一模

合集下载

2017中考数学模拟试卷

2017中考数学模拟试卷

2017中考数学模拟试卷A卷(共100分)一.选择题(本大题共10个小题,每小题3分,共30分)1.9的平方根是()A.﹣3 B. ±3 C. 3 D.2.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()3.用科学记数法表示0.0000061,结果是()A.6.1×10﹣5B.6.1×10﹣6C.0.61×10﹣5D.61×10﹣74.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是()(A)25台(B)50台(C)75台(D)100台5.如图所示,在菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A. 6cm B. 4cm C. 3cm D. 2cm6.抛物线y=x2+2x﹣3的顶点在第()象限.A.一B.二C.三D.四7.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形8.不等式组的解在数轴上表示为()A.B.C.D.9.函数y=+中自变量x的取值范围是()A.x≤2B.x≤2且x≠1C. x<2且x≠1D.x≠110.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB 交于点P,则∠ADP的度数为()A. 40°B. 35°C. 30°D. 45°二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.二次函数y=﹣(x﹣1)(x+3)的对称轴是直线.12.如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.13.对于下面四个结论:①CH⊥BE;②HO BG;③S正方形ABCD:S正方形ECGF=1:;④EM:MG=1:(1+),其中正确结论的序号为.14.如图是由火柴棒搭成的几何图案,则第n个图案中有根火柴棒.(用含n的代数式表示)三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每小题6分)(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+.(2)解方程:x(x﹣2)+x﹣2=016. (本小题满分6分)已知x=1是关于x的一元二次方程x2﹣4mx+m2=0的根,求代数式的值.17.(本小题满分8分)我市准备在相距2千米的M,N两工厂间修一条笔直的公路,但在M地北偏东45°方向、N地北偏西60°方向的P处,有一个半径为0.6千米的住宅小区(如图),问修筑公路时,这个小区是否有居民需要搬迁?(参考数据:≈1.41,≈1.73)18. (本小题满分8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式;(2)求△CDE的面积.19. (本小题满分10分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~10;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1500名考生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组只有一名是女生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.20、(本小题满分10分)已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.(1)求证:△ABE≌△BCF;(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE 在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于点D、C两点,若直线y=﹣x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为.22.二次函数的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2008在y轴的正半轴上,点B1,B2,B3,…,B2008在二次函数位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,则△A2007B2008A2008的边长=.23.如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上.其中正确的结论的序号是(把所有正确结论的序号都填在横线上).24.已知实数a,b满足:a2+1=,b2+1=,则2015|a﹣b|=.25.(1)填空:(a﹣b)(a3+a2b+ab2+b3)=.(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2=.二、解答题(本大题共3个小题,共30分,解答过程写在大题卡上)26、(本小题满分8分)为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益Z(元)会相应降低且Z与x之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益w(元)最大,政府应将每台补贴款额x定为多少并求出总收益w的最大值.27、(本小题满分10分)如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.28、(本小题满分12分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A 为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.。

2017中考数学一模模拟题备考(汇总)

2017中考数学一模模拟题备考(汇总)

2017年中考数学一模模拟题备考(汇总)【参考定理】【点、线、角】【平行四边形的判定定理】【三角形内角定理【全等三角形的判定定理】【角的平分线定理】【等腰三角形判定】【轴对称图形判定定理】【切线的判定定理】【直角三角形定理】【几何定理】【直线的公式定理】【正割的基础公式定理】【圆及有关概念公式定理】【圆的切线几何公式定理】【菱形的判定公式定理】【试题练习】(一)A级基础题1.若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点( )A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c 的值为( )A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=2【点击整套练习】(二)A级基础题1.合作交流是学习教学的重要方式之一,某校九年级每个班合作学习小组的个数分别是:8,7,7,8,9,7,这组数据的众数是( )A.7B.7.5C.8D.92.某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是( )A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定3.下列调查中,须用普查的是( )A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况【点击整套练习】(三)1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( )A.(15+a)万人B.(15-a)万人C.15a万人D.15a万人2.若x=1,y=12,则x2+4xy+4y2的值是( )A.2B.4C.32D.12精心整理,仅供学习参考。

2017年淄博市中考数学试卷(含答案解析版)

2017年淄博市中考数学试卷(含答案解析版)

2017年山东省淄博市中考数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)﹣23的相反数是( ) A .32 B .−32 C .23 D .﹣232.(4分)C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为( )A .1×106B .100×104C .1×107D .0.1×1083.(4分)下列几何体中,其主视图为三角形的是( )A .B .C .D .4.(4分)下列运算正确的是( )A .a 2•a 3=a 6B .(﹣a 2)3=﹣a 5C .a 10÷a 9=a (a ≠0)D .(﹣bc )4÷(﹣bc )2=﹣b 2c 25.(4分)若分式|x|−1x+1的值为零,则x 的值是( ) A .1 B .﹣1 C .±1 D .26.(4分)若a +b=3,a 2+b 2=7,则ab 等于( )A .2B .1C .﹣2D .﹣17.(4分)将二次函数y=x 2+2x ﹣1的图象沿x 轴向右平移2个单位长度,得到的函数表达式是( )A .y=(x +3)2﹣2B .y=(x +3)2+2C .y=(x ﹣1)2+2D .y=(x ﹣1)2﹣28.(4分)若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( )A .k >﹣1B .k >﹣1且k ≠0C .k <﹣1D .k <﹣1或k=09.(4分)如图,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合,若BC=4,则图中阴影部分的面积是( )A .2+πB .2+2πC .4+πD .2+4π10.(4分)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果m ,n 满足|m ﹣n |≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( )A .38B .58C .14D .1211.(4分)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h 与注水时间t 之间的变化情况的是( )A .B .C .D .12.(4分)如图,在Rt △ABC 中,∠ABC=90°,AB=6,BC=8,∠BAC ,∠ACB 的平分线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,则EF 的长为( )A .52B .83C .103D .154二、填空题(本大题共5小题,每小题4分,共20分)13.(4分)分解因式:2x 3﹣8x= .14.(4分)已知α,β是方程x 2﹣3x ﹣4=0的两个实数根,则α2+αβ﹣3α的值为 .15.(4分)运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是 .16.(4分)在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则DE +DF= .17.(4分)设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=13. 如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=16; 如图3,分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD 3F 3E 3,其面积S 3=110; …按照这个规律进行下去,若分别将AC ,BC 边(n +1)等分,…,得到四边形CD n E n F n ,其面积S= .三、解答题(本大题共7小题,共52分)18.(5分)解不等式:x−22≤7−x 3. 19.(5分)已知:如图,E ,F 为▱ABCD 对角线AC 上的两点,且AE=CF ,连接BE ,DF ,求证:BE=DF .20.(8分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km 的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h ,求汽车原来的平均速度.21.(8分)为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数(ω)30 40 70 80 90 110 120 140 天数(t ) 1 2 3 5 7 6 4 2 说明:环境空气质量指数(AQI )技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数 ,中位数 ;(2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?22.(8分)如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=kx(k>0)的图象经过BC边的中点D(3,1)(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E 在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.23.(9分)如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC 上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP 的长.24.(9分)如图1,经过原点O 的抛物线y=ax 2+bx (a ≠0)与x 轴交于另一点A (32,0),在第一象限内与直线y=x 交于点B (2,t ). (1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C ,满足以B ,O ,C 为顶点的三角形的面积为2,求点C 的坐标;(3)如图2,若点M 在这条抛物线上,且∠MBO=∠ABO ,在(2)的条件下,是否存在点P ,使得△POC ∽△MOB ?若存在,求出点P 的坐标;若不存在,请说明理由.2017年山东省淄博市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)(2017•淄博)﹣23的相反数是( ) A .32 B .−32 C .23 D .﹣23【考点】14:相反数.【分析】直接根据相反数的定义即可得出结论.【解答】解:∵﹣23与23是只有符号不同的两个数, ∴﹣23的相反数是23. 故选C .【点评】本题考查的是相反数的定义,熟知只有符号不同的两个数叫互为相反数是解答此题的关键.2.(4分)(2017•淄博)C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为( )A .1×106B .100×104C .1×107D .0.1×108【考点】1I :科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将100万用科学记数法表示为:1×106.故选:A .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(4分)(2017•淄博)下列几何体中,其主视图为三角形的是( )A.B.C.D.【考点】U1:简单几何体的三视图.【分析】找出四个选项中几何体的主视图,由此即可得出结论.【解答】解:A、圆柱的主视图为矩形,∴A不符合题意;B、正方体的主视图为正方形,∴B不符合题意;C、球体的主视图为圆形,∴C不符合题意;D、圆锥的主视图为三角形,∴D符合题意.故选D.【点评】本题考查了简单几何体的三视图,牢记圆锥的主视图为三角形是解题的关键.4.(4分)(2017•淄博)下列运算正确的是()A.a2•a3=a6B.(﹣a2)3=﹣a5C.a10÷a9=a(a≠0)D.(﹣bc)4÷(﹣bc)2=﹣b2c2【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2•a3=a5,故A错误;B、(﹣a2)3=﹣a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(﹣bc)4÷(﹣bc)2=b2c2,故D错误;故选C.【点评】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.5.(4分)(2017•淄博)若分式|x|−1x+1的值为零,则x的值是()A.1B.﹣1C.±1D.2【考点】63:分式的值为零的条件.【分析】直接利用分式的值为零,则分子为零,分母不为零,进而得出答案.【解答】解:∵分式|x|−1x+1的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.6.(4分)(2017•淄博)若a+b=3,a2+b2=7,则ab等于()A.2B.1C.﹣2D.﹣1【考点】4C:完全平方公式.【分析】根据完全平方公式得到(a+b)2=9,再将a2+b2=7整体代入计算即可求解.【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.(4分)(2017•淄博)将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A.y=(x+3)2﹣2B.y=(x+3)2+2C.y=(x﹣1)2+2D.y=(x﹣1)2﹣2【考点】H6:二次函数图象与几何变换.【分析】根据题目中的函数解析式,可以先化为顶点式,然后再根据左加右减的方法进行解答即可得到平移后的函数解析式.【解答】解:∵y=x2+2x﹣1=(x+1)2﹣2,∴二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是:y=(x+1﹣2)2﹣2=(x﹣1)2﹣2,故选D.【点评】本题考查二次函数的图象与几何变换,解答本题的关键是明确二次函数平移的特点,左加右减、上加下减,注意一定将函数解析式化为顶点式之后再平移.8.(4分)(2017•淄博)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<﹣1D.k<﹣1或k=0【考点】AA:根的判别式.【分析】利用一元二次方程的定义和判别式的意义得到k≠0且△=(﹣2)2﹣4k•(﹣1)>0,然后其出两个不等式的公共部分即可.【解答】解:根据题意得k≠0且△=(﹣2)2﹣4k•(﹣1)>0,解得k>﹣1且k≠0.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.(4分)(2017•淄博)如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()A .2+πB .2+2πC .4+πD .2+4π【考点】MO :扇形面积的计算;KW :等腰直角三角形.【分析】如图,连接CD ,OD ,根据已知条件得到OB=2,∠B=45°,根据三角形和扇形的面积公式即可得到结论. 【解答】解:如图,连接CD ,OD , ∵BC=4, ∴OB=2, ∵∠B=45°, ∴∠COD=90°,∴图中阴影部分的面积=S △BOD +S 扇形COD =12×2×2+90⋅π×22360=2+π,故选A .【点评】本题考查了扇形的面积的计算,等腰直角三角形的性质,正确的作出辅助线是解题的关键.10.(4分)(2017•淄博)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果m ,n 满足|m ﹣n |≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( )A .38B .58C .14D .12【考点】X6:列表法与树状图法;15:绝对值.【分析】画出树状图列出所有等可能结果,由树状图确定出所有等可能结果数及两人“心领神会”的结果数,根据概率公式求解可得. 【解答】解:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,∴两人“心领神会”的概率是1016=58,故选:B.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.11.(4分)(2017•淄博)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A.B.C.D.【考点】E6:函数的图象.【分析】根据用一注水管沿大容器内壁匀速注水,即可分段求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢. 故选:D .【点评】此题主要考查了函数图象,关键是问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.12.(4分)(2017•淄博)如图,在Rt △ABC 中,∠ABC=90°,AB=6,BC=8,∠BAC ,∠ACB 的平分线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,则EF 的长为( )A .52B .83C .103D .154【考点】S9:相似三角形的判定与性质;KF :角平分线的性质;KJ :等腰三角形的判定与性质.【分析】延长FE 交AB 于点D ,作EG ⊥BC 、作EH ⊥AC ,由EF ∥BC 可证四边形BDEG 是矩形,由角平分线可得ED=EH=EG 、∠DAE=∠HAE ,从而知四边形BDEG 是正方形,再证△DAE ≌△HAE 、△CGE ≌△CHE 得AD=AH 、CG=CH ,设BD=BG=x ,则AD=AH=6﹣x 、CG=CH=8﹣x ,由AC=10可得x=2,即BD=DE=2、AD=4,再证△ADF ∽△ABC 可得DF=163,据此得出EF=DF ﹣DE=103.【解答】解:如图,延长FE 交AB 于点D ,作EG ⊥BC 于点G ,作EH ⊥AC 于点H ,∵EF ∥BC 、∠ABC=90°, ∴FD ⊥AB , ∵EG ⊥BC ,∴四边形BDEG 是矩形,∵AE 平分∠BAC 、CE 平分∠ACB , ∴ED=EH=EG ,∠DAE=∠HAE , ∴四边形BDEG 是正方形, 在△DAE 和△HAE 中, ∵{∠DAE =∠HAE AE =AE ∠ADE =∠AHE ,∴△DAE ≌△HAE (SAS ), ∴AD=AH ,同理△CGE ≌△CHE , ∴CG=CH ,设BD=BG=x ,则AD=AH=6﹣x 、CG=CH=8﹣x , ∵AC=√AB 2+AC 2=√62+82=10, ∴6﹣x +8﹣x=10, 解得:x=2,∴BD=DE=2,AD=4, ∵DF ∥BC , ∴△ADF ∽△ABC ,∴AD AB =DF BC ,即46=DF 8, 解得:DF=163,则EF=DF ﹣DE=163﹣2=103,故选:C .【点评】本题主要考查相似三角形的判定与性质、全等三角形的判定与性质及正方形的判定与性质,熟练掌握角平分线的性质和正方形的判定与性质、相似三角形的判定与性质是解题的关键.二、填空题(本大题共5小题,每小题4分,共20分)13.(4分)(2017•淄博)分解因式:2x 3﹣8x= 2x (x ﹣2)(x +2) .【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2x,再对余下的项利用平方差公式分解因式.【解答】解:2x3﹣8x,=2x(x2﹣4),=2x(x+2)(x﹣2).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.运用平方差公式进行因式分解的多项式的特征:(1)二项式;(2)两项的符号相反;(3)每项都能化成平方的形式.14.(4分)(2017•淄博)已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为0.【考点】AB:根与系数的关系.【专题】11 :计算题.【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)﹣3α,然后利用整体代入的方法计算即可.【解答】解:根据题意得α+β=3,αβ=﹣4,所以原式=a(α+β)﹣3α=3α﹣3α=0.故答案为0.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣ba,x1x2=ca.15.(4分)(2017•淄博)运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是﹣959.【考点】1M :计算器—基础知识.【分析】根据计算器的按键顺序,写出计算的式子.然后求值. 【解答】解:根据题意得:(3.5﹣4.5)×312+√4=﹣959, 故答案为:﹣959.【点评】本题目考查了计算器的应用,根据按键顺序正确写出计算式子是关键.16.(4分)(2017•淄博)在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则DE +DF= 2√3 . 【考点】KK :等边三角形的性质.【分析】作AG ⊥BC 于G ,根据等边三角形的性质得出∠B=60°,解直角三角形求得AG=2√3,根据S △ABD +S △ACD =S △ABC 即可得出DE +DF=AG=2√3. 【解答】解:如图,作AG ⊥BC 于G , ∵△ABC 是等边三角形, ∴∠B=60°,∴AG=√32AB=2√3,连接AD ,则S △ABD +S △ACD =S △ABC , ∴12AB•DE +12AC•DF=12BC•AG , ∵AB=AC=BC=4, ∴DE +DF=AG=2√3, 故答案为:2√3.【点评】本题考查了等边三角形的性质,解直角三角函数以及三角形面积等,根据S △ABD +S △ACD =S △ABC 即可得出DE +DF=AG 是解题的关键.17.(4分)(2017•淄博)设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=13.如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=16;如图3,分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD 3F 3E 3,其面积S 3=110; …按照这个规律进行下去,若分别将AC ,BC 边(n +1)等分,…,得到四边形CD n E n F n ,其面积S= 2(n+1)(n+2).【考点】38:规律型:图形的变化类;K3:三角形的面积.【分析】先连接D 1E 1,D 2E 2,D 3E 3,依据D 1E 1∥AB ,D 1E 1=12AB ,可得△CD 1E 1∽△CBA ,且D 1E 1BF 1=D 1E 1AB =12,根据相似三角形的面积之比等于相似比的平方,即可得到S △CD1E1=14S △ABC =14,依据E 1是BC 的中点,即可得出S △D1E1F1=13S △BD1E1=13×14=112,据此可得S 1=13;运用相同的方法,依次可得S 2=16,S 2=16;根据所得规律,即可得出四边形CD n E n F n ,其面积S n =1(n+1)2+1(n+1)2×n ×11+n+1,最后化简即可.【解答】解:如图所示,连接D 1E 1,D 2E 2,D 3E 3, ∵图1中,D 1,E 1是△ABC 两边的中点,∴D 1E 1∥AB ,D 1E 1=12AB ,∴△CD 1E 1∽△CBA ,且D 1E 1BF 1=D 1E 1AB =12,∴S △CD1E1=14S △ABC =14,∵E 1是BC 的中点,∴S △BD1E1=S △CD1E1=14,∴S △D1E1F1=13S △BD1E1=13×14=112,∴S 1=S △CD1E1+S △D1E1F1=14+112=13,同理可得:图2中,S 2=S △CD2E2+S △D2E2F2=19+118=16,图3中,S 3=S △CD3E3+S △D3E3F3=116+380=110,以此类推,将AC ,BC 边(n +1)等分,得到四边形CD n E n F n ,其面积S n =1(n+1)+1(n+1)×n ×11+n+1=2(n+1)(n+2),故答案为:2(n+1)(n+2).【点评】本题主要考查了图形的变化类问题以及三角形面积的计算,解决问题的关键作辅助线构造相似三角形,依据相似三角形的性质进行计算求解.解题时注意:相似三角形的面积之比等于相似比的平方.三、解答题(本大题共7小题,共52分)18.(5分)(2017•淄博)解不等式:x−22≤7−x 3.【考点】C6:解一元一次不等式.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】不等式去分母,去括号,移项合并,把x 系数化为1,即可求出解集. 【解答】解:去分母得:3(x ﹣2)≤2(7﹣x ), 去括号得:3x ﹣6≤14﹣2x , 移项合并得:5x ≤20, 解得:x ≤4.【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.19.(5分)(2017•淄博)已知:如图,E ,F 为▱ABCD 对角线AC 上的两点,且AE=CF ,连接BE ,DF ,求证:BE=DF .【考点】L5:平行四边形的性质;KD :全等三角形的判定与性质. 【分析】证明△AEB ≌△CFD ,即可得出结论. 【解答】证明:∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AB=DC . ∴∠BAE=∠DCF .在△AEB 和△CFD 中,{AB =CD ∠BAE =∠DCFAE =CF ,∴△AEB ≌△CFD (SAS ). ∴BE=DF .【点评】本题考查平行四边形的性质和全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(8分)(2017•淄博)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km 的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h ,求汽车原来的平均速度. 【考点】B7:分式方程的应用.【分析】求的汽车原来的平均速度,路程为420km ,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了2h .等量关系为:原来时间﹣现在时间=2.【解答】解:设汽车原来的平均速度是x km/h ,根据题意得:420x ﹣420(1+50%)x=2,解得:x=70经检验:x=70是原方程的解. 答:汽车原来的平均速度70km/h .【点评】本题考查了分式方程的应用.应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.(8分)(2017•淄博)为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图: 空气污染指数(ω) 3040708090110120140 天数(t )12357642说明:环境空气质量指数(AQI )技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,… 根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数 90 ,中位数 90 ; (2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?【考点】VC :条形统计图;V5:用样本估计总体;VB :扇形统计图;W4:中位数;W5:众数.【分析】(1)根据众数的定义就可以得出这组数据的众数为90,由30各数据中排在第15和第16两个数的平均数就可以得出中位数为90;(2)根据统计表的数据分别计算出,优、良及轻度污染的时间即可;(3)由条形统计图分别计算出优、良及轻度污染的百分比及圆心角的度数即可;(4)先求出30天中空气污染指数在100以下的比值,再由这个比值乘以365天就可以求出结论.【解答】解:(1)在这组数据中90出现的次数最多7次,故这组数据的众数为90;在这组数据中排在最中间的两个数是90,90,这两个数的平均数是90,所以这组数据的中位数是90;故答案为:90,90.(2)由题意,得轻度污染的天数为:30﹣3﹣15=12天.(3)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°(4)该市居民一年(以365天计)中有适合做户外运动的天数为:18÷30×365=219天.【点评】本题是一道数据分析试题,考查了中位数,众数的运用,条形统计,扇形统计图的运用,样本数据估计总体数据的运用,解答时根据图表数据求解是关键.22.(8分)(2017•淄博)如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=kx(k>0)的图象经过BC边的中点D(3,1)(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E 在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.【考点】GB:反比例函数综合题.【分析】(1)由D点坐标可求得k的值,可求得反比例函数的表达式;(2)①由中心对称的性质可知△ABC≌△EFG,由D点坐标可求得B点坐标,从而可求得BC和AC的长,由全等三角形的性质可求得GE和GF,则可求得E点坐标,从而可求得OF的长;②由条件可证得△AOF≌△FGE,则可证得AF=EF=AB,且∠EFA=∠FAB=90°,则可证得四边形ABEF为正方形.【解答】解:(1)∵反比例函数y=kx(k>0)的图象经过点D(3,1),∴k=3×1=3,∴反比例函数表达式为y=3 x ;(2)①∵D为BC的中点,∴BC=2,∵△ABC与△EFG成中心对称,∴△ABC≌△EFG,∴GF=BC=2,GE=AC=1,∵点E在反比例函数的图象上,∴E(1,3),即OG=3,∴OF=OG﹣GF=1;②如图,连接AF、BE,∵AC=1,OC=3,∴OA=GF=2,在△AOF和△FGE中{AO=FG∠AOF=∠FGE OF=GE∴△AOF≌△FGE(SAS),∴∠GFE=∠FAO=∠ABC,∴∠GFE+∠AFO=∠FAO+∠BAC=90°,∴EF∥AB,且EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.【点评】本题为反比例函数的综合应用,涉及待定系数法、中心对称的性质、全等三角形的判定和性质、正方形的判定等知识.在(1)中注意待定系数法的应用,在(2)①中求得E点坐标是解题的关键,在(2)②中证得△AOF≌△FGE 是解题的关键.本题考查知识点较多,综合性较强,难度适中.23.(9分)(2017•淄博)如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.【考点】MR:圆的综合题.【分析】(1)根据折叠的性质可知,MN垂直平分线段BP,即∠BFN=90°,由矩形的性质可得出∠C=90°=∠BFN,结合公共角∠FBN=∠CBP,即可证出△BFN∽△BCP;(2)①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可;②设⊙O与BC的交点为E,连接OB、OE,由△MDP为直角三角形,可得出AP 为⊙O的直径,根据BM与⊙O相切,可得出MP⊥BM,进而可得出△BMP为等腰直角三角形,根据同角的余角相等可得出∠PMD=∠MBA,结合∠A=∠PMD=90°、BM=MP,即可证出△ABM≌△DMP(AAS),根据全等三角形的性质可得出DM=AB=4、DP=AM,设DP=2a,根据勾股定理结合半径为直径的一半,即可得出关于a的方程,解之即可得出a值,再将a代入OP=2a中求出DP的长度.【解答】(1)证明:∵将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合,∴MN垂直平分线段BP,∴∠BFN=90°.∵四边形ABCD为矩形,∴∠C=90°.∵∠FBN=∠CBP,∴△BFN∽△BCP.(2)解:①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可.如图所示.②设⊙O与BC的交点为E,连接OB、OE,如图3所示.∵△MDP为直角三角形,∴AP为⊙O的直径,∵BM与⊙O相切,∴MP⊥BM.∵MB=MP,∴△BMP为等腰直角三角形.∵∠AMB+∠PMD=180°﹣∠AMP=90°,∠MBA+∠AMB=90°,∴∠PMD=∠MBA.在△ABM和△DMP中,{∠MBA=∠PMD∠A=∠PMD=90°BM=MP,∴△ABM≌△DMP(AAS),∴DM=AB=4,DP=AM.设DP=2a,则AM=2a,OE=4﹣a,BM=√AB2+AM2=2√4+a2.∵BM=MP=2OE,∴2√4+a2=2×(4﹣a),解得:a=3 2,∴DP=2a=3.【点评】本题考查了相似三角形的判定、矩形的性质、角的计算、切线的性质、全等三角形的判定与性质以及勾股定理,解题的关键是:(1)根据矩形的性质结合翻折的性质,找出∠C=90°=∠BFN;(2)①利用尺规作图,画出⊙O;②根据全等三角形的判定定理AAS证出△ABM≌△DMP.24.(9分)(2017•淄博)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(32,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;(2)过C 作CD ∥y 轴,交x 轴于点E ,交OB 于点D ,过B 作BF ⊥CD 于点F ,可设出C 点坐标,利用C 点坐标可表示出CD 的长,从而可表示出△BOC 的面积,由条件可得到关于C 点坐标的方程,可求得C 点坐标;(3)设MB 交y 轴于点N ,则可证得△ABO ≌△NBO ,可求得N 点坐标,可求得直线BN 的解析式,联立直线BM 与抛物线解析式可求得M 点坐标,过M 作MG ⊥y 轴于点G ,由B 、C 的坐标可求得OB 和OC 的长,由相似三角形的性质可求得OM OP的值,当点P 在第一象限内时,过P 作PH ⊥x 轴于点H ,由条件可证得△MOG ∽△POH ,由OM OP =MG PH =OG OH的值,可求得PH 和OH ,可求得P 点坐标;当P 点在第三象限时,同理可求得P 点坐标.【解答】解:(1)∵B (2,t )在直线y=x 上,∴t=2,∴B (2,2),把A 、B 两点坐标代入抛物线解析式可得{4a +2b =294a +32b =0,解得{a =2b =−3, ∴抛物线解析式为y=2x 2﹣3x ;(2)如图1,过C 作CD ∥y 轴,交x 轴于点E ,交OB 于点D ,过B 作BF ⊥CD 于点F ,∵点C 是抛物线上第四象限的点,∴可设C (t ,2t 2﹣3t ),则E (t ,0),D (t ,t ),∴OE=t ,BF=2﹣t ,CD=t ﹣(2t 2﹣3t )=﹣2t 2+4t ,。

2017年中考数学模拟试题及答案

2017年中考数学模拟试题及答案

2021年中考模拟试题数学试题卷本卷共六大题,24小题,共120分。

考试时间120分钟一、选择题〔本大题共6小题,每题3分,共18分〕1、比-2021小1的数是〔〕A、-2021B、2021C、-2021 D、20212、如图,直线l1∥l2,∠1=40°,∠2=75°,那么∠3=〔〕A、70°B、65°C、60°D、55°3、从棱长为aa的小正方体,得到一个如下图的零件,那么这个零件的左视图是〔〕A、 B、 C、 D、4、某红外线遥控器发出的红外线波长为0.000 00094m,用科学计数法表示这个数是〔〕×10-7m ×107m ×10-8m ×108m5、以下计算正确的选项是〔〕A、(2a-1)2=4a2-1B、3a6÷3a3=a2C、(-2)4=-a4b6D、-2a+(2a-1)=-16、某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。

某天,一位零售商分别用去240元,160元来购进四星级及五星级这两种枇杷,其中,四星级枇杷比五星级枇杷多购进10千克。

假设零售商当天购进四星级枇杷x千克,那么列出关于x的方程为〔〕A、+4=B、-4=C、+4=D、-4=二、填空题〔本大题共8小题,每题3分,共24分〕7、因式分解:2-x=。

8、x=1是关于x的方程x2+x+2k=0的一个根,那么它的另一个根是。

9、=,那么分式的值为。

312l1l2AFCBGDE正面10、如图,正五边形,∥交的延长线于点F ,那么∠= 度。

11、x =-1,2) ,y =+1,2) ,那么x 2++y 2的值为 。

12、分式方程+=1的解为。

13、现有一张圆心角为108°,半径为作成一个底面半径为10的圆锥形纸帽〔接缝处不重叠〕,那么剪去的扇形纸片的圆心角θ为 。

14、如图,正方形及正方形起始时互相重合, 现将正方形绕点A 逆时针旋转,设旋转角∠=α 〔0°<α<360°〕,那么当α= 时,正方形的 顶点F 会落在正方形的对角线或所在直线上。

2017中考数学一模备考试卷(有答案)

2017中考数学一模备考试卷(有答案)

2017中考数学一模备考试卷(有答案)A级基础题1.已知点P(1,-3)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.3B.-3C.13D.-132.对于反比例函数y=3x,下列说法正确的是()A.图象经过点(1,-3)B.图象在第二、四象限C.x>0时,y随x的增大而增大D.x 3.在同一直角坐标系下,直线y=x+1与双曲线y=1x的交点的个数为()A.0个B.1个C.2个D.不能确定4.当a≠0时,函数y=ax+1与函数y=ax在同一坐标系中的图象可能是()A正比例函数B反比例函数C相交D垂直5.已知反比例函数y=bx(b为常数),当x>0时,y随x的增大而增大,则一次函数y=x+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.矩形的长为x,宽为y,面积为9,则y与x之间的函数关系用图象表示大致为()A正方形B长方形C圆D梯形7已知A(2,y1),B(3,y2)是反比例函数y=-2x图象上的两点,则y1____y2(填“>”或“ 8如图3­3­10,已知A点是反比例函数y=kx(k≠0)的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为________.9.已知一个函数的图象与y=6x的图象关于y轴成轴对称,则该函数的解析式为__________.10.已知反比例函数的图象经过点(m,2)和(-2,3),则m的值为______.11.某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?B级中等题12如图3­3­11,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=kx(x>0)的图象经过顶点B,则k的值为()A.12B.20C.24D.3213.下列图形中,阴影部分面积最大的是()ABCD14如图3­3­12,已知一次函数y1=kx+b与反比例函数y2=mx 的图象交于A(2,4),B(-4,n)两点.(1)分别求出y1和y2的解析式;(2)写出当y1=y2时,x的值;(3)写出当y1>y2时,x的取值范围.C级拔尖题15.如图3­3­13,等腰梯形ABCD放置在平面直角坐标系中,已知A(-2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位长度后,使点B恰好落在双曲线上,求m的值.反比例函数1.B2.D3.C4.C5.B6.C解析:由矩形的面积知xy=9,可知它的长x与宽y之间的函数关系式为y=9x(x>0),是反比例函数图象,且其图象在第一象限.故选C.7. 11.(1)由题意,得y=360x,把y=120代入y=360x,得x=3;把y=180代入y=360x,得x=2,∴自变量的取值范围为2≤x≤3.∴y=360x(2≤x≤3).(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意,得360x-360x+0.5=24,解得x=2.5或x=-3.经检验x=2.5或x=-3均为原方程的根,但x=-3不符合题意,故舍去.x+0.5=2.5+0.5=3(万米3)答:原计划每天运送2.5万米3,实际每天运送3万米3.12.D13.C14.解:(1)将A(2,4)代入反比例解析式,得m=8,∴反比例函数解析式为y2=8x.将B(-4,n)代入反比例解析式,得n=-2,即B(-4,-2),将点A与点B坐标代入一次函数解析式,得2k+b=4,-4k+b=-2,解得k=1,b=2.则一次函数解析式为y1=x+2.(2)联立两函数解析式,得y=x+2,y=8x,解得x=2,y=4,或x=-4,y=-2.则当y1=y2时,x的值为2或-4.(3)利用图象,得当y1>y2时,x的取值范围为-42.15.解:(1)如图8,过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE.∴△AOD≌△BEC(HL).∴AO=BE=2.∵BO=6,∴DC=OE=4,∴C(4,3).设反比例函数的解析式为y=kx(k≠0),∵反比例函数的图象经过点C,∴3=k4,解得k=12.∴反比例函数的解析式为y=12x.(2)将等腰梯形ABCD向上平移m个单位长度后得到梯形A′B′C′D′,如图9,∴点B′(6,m).∵点B′(6,m)恰好落在双曲线y=12x上,∴当x=6时,m=126=2.即m=2.这篇中考数学一模备考试卷的内容,希望会对各位同学带来很大的帮助。

2017中考数学一模模拟试题(有答案)

2017中考数学一模模拟试题(有答案)

2017中考数学一模模拟试题(有答案)学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。

因此,小编为大家整理了2017中考数学一模模拟试题,供大家参考。

A级基础题1.下列各条件中,不能作出唯一三角形的条件是()A.已知两边和夹角B.已知两边和其中一条边所对的角C.已知两角和夹边D.已知两角和其中一角的对边2.(2013年四川遂宁)如图6­3­10,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M 和N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC 的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC∶S△ABC=1∶3.其中正确的个数是()A.1个B.2个C.3个D.4个3.(2013年河北)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:①以点C为圆心,AB的长为半径画弧;②以点A为圆心,BC的长为半径画弧;③两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图6­3­11).乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图6­3­12).对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对4.(2013年福建三明)如图6­1­13,在△ABC中,∠C=90°,∠CAB=60°.按以下步骤作图:①分别以A,B为圆心,以大于12AB的长为半径作弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=________.5.(2013年甘肃白银)两个城镇A,B与两条公路l1,l2的位置如图6­3­14.电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在下图中,用尺规作图找出所有符合条件的点C(不写已知、求作、作法,只保留作图痕迹).6.(2012年贵州铜仁)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A,B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A,B,C的位置如图6­3­15,请在原图上利用尺规作图作出音乐喷泉M的位置(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图).B级中等题7.已知△ABC,且∠ACB=90°.(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明).①以点A为圆心,BC边的长为半径作⊙A;②以点B为顶点,在AB边的下方作∠ABD=∠BAC.(2)请判断直线BD与⊙A的位置关系(需证明).8.(2013年江苏宿迁)如图6­3­17,在平行四边形ABCD中,AD>AB.(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.w求证:四边形ABFE为菱形.C级拔尖题9.(2013年山东德州)(1)如图6­3­18(1),已知△ABC,以AB,AC为边向△ABC外作等边三角形ABD和等边三角形ACE.连接BE,CD.请你完成图形,并证明:BE=CD(尺规作图,不写做法,保留作图痕迹);(2)如图6­3­18(2),已知△ABC,以AB,AC为边向外作正方形ABFD和正方形ACGE.连接BE,CD.BE与CD有什么数量关系?简单说明理由;(3)运用(1)(2)解答中积累的经验和知识,完成下题:如图6­3­18(3),要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE 的长.(1)(2)(3)尺规作图1.B2.D3.A4.85.解:作线段AB的垂直平分线,作两条公路夹角的平分线,两线分别交于点C1,C2.如图48,所以点C1、C2就是符合条件的点.6.解:如图49,点M为所求.7.解:(1)如图50.(2)直线BD与⊙A相切.证明如下:∵∠ABD=∠BAC,∴AC∥BD.∵∠ACB=90°,⊙A的半径等于BC,∴点A到直线BD的距离等于BC.∴直线BD与⊙A相切.8.解:(1)如图51.(2)∵BE平分∠ABC,∴∠ABO=∠FBO.∵AF⊥BE于点O,∴∠AOB=∠FOB=∠AOE=90°.又∵BO=BO,∴△AOB≌△FOB.∴AO=FO,AB=FB.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEO=∠FBO.∴△AOE≌△FOB.∴AE=BF.又∵AE∥BF,∴四边形ABFE是平行四边形.又∵AB=FB,∴平行四边形ABFE是菱形.11.(1)证明:如图52.∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°.∴∠BAD+∠BAC=∠CAE+∠BAC.即∠CAD=∠EAB.∴△CAD≌△EAB.∴BE=CD.图52图53(2)解:BE=CD.理由:∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°.∴∠CAD=∠EAB.∴△CAD≌△EAB.∴BE=CD.(3)解:如图53,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100,∠ABD=45°.∴BD=1002.连接CD,则由(2)可知BE=CD.∵∠ABC=45°,在Rt△DBC中,BC=100,BD=1002.∴CD=1002+10022=1003.∴BE的长为1003米.这篇2017中考数学一模模拟试题的内容,希望会对各位同学带来很大的帮助。

2017年九年级数学中考模拟试卷


ACB=∠ ECD=90°.
∵ BC=kAC, CD=kCE,∴
=k.∴△ BCD∽△ ACE.∴ BD=kAE。
第 10 页 共 10 页
∵点 P、M、 N 分别为 AD、AB、 DE的中点,∴ PM= BD, PN= AE.∴ PM=kPN.
第 11 页 共 11 页
22.
第 9页 共 9页
23. 解:( 1) PM=PN, PM⊥PN,理由如下: ∵△ ACB和△ ECD是等腰直角三角形,∴ AC=BC, EC=CD,∠ ACB=∠ ECD=90°.
在△ ACE和△ BCD中
,∴△ ACE≌△ BCD( SAS),
∴ AE=BD,∠ EAC=∠CBD,
∵点 M、N 分别是斜边 AB、 DE的中点,点 P 为 AD的中点,∴ PM= BD, PN= AE,
∵点 P、M、 N 分别为 AD、AB、 DE的中点,∴ PM= BD, PM∥ BD;
PN= AE, PN∥ AE.∴ PM=PN.∴∠ MGE∠+ BHA=180°.∴∠ MGE=9°0 .
∴∠ MPN=90°.∴ PM⊥ PN. ( 3) PM=kPN∵△ ACB和△ ECD是直角三角形,∴∠ ∴∠ ACB+∠ BCE=∠ECD+∠ BCE.∴∠ ACE=∠ BCD.
故 P 点的坐标为( 1﹣ ,﹣ 3)或( 1+ ,﹣ 3).
19.
第 8页 共 8页
20. 解:( 1)设函数关系式为 v=kt -1 , ∵ t=5 , v=120,∴ k=120 ×5=600,∴ v 与 t 的函数关系式为 v=600t -1 (5≤ t ≤ 10); ( 2)①依题意,得 3( v+v﹣ 20) =600,解得 v=110,经检验, v=110 符合题意. 当 v=110 时, v﹣ 20=90.答:客车和货车的平均速度分别为 110 千米 / 小时和 90 千米 / 小时; ②当 A加油站在甲地和 B加油站之间时, 110t ﹣( 600﹣ 90t ) =200,解得 t=4 ,此时 110t=110 ×4=440; 当 B加油站在甲地和 A加油站之间时, 110t+200+90t=600 ,解得 t=2 ,此时 110t=110 ×2=220. 答:甲地与 B加油站的距离为 220 或 440 千米. 21.

山东省淄博市沂源县2017年中考数学一模试卷(含解析)

2017年山东省淄博市沂源县中考数学一模试卷一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题4分,共48分,错选、不选或选出的答案超过一个,均记0分.1.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有()个.A.1个B.2个C.3个D.4个2.小军将一个直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()A.B.C.D.3.下列计算正确的是()A.2+3=5B.()(1﹣)=1C.(xy)﹣1(xy)2=xy D.﹣(﹣a)4÷a2=a24.如图,一束光线与水平面成60°的角度照射地面,现在地面AB上支放一个平面镜CD,使这束光线经过平面镜反射后成水平光线,则平面镜CD与地面AB所成角∠DCB的度数等于()A.30° B.45° C.50° D.60°5.甲、乙两人5次射击命中的环数如下:则以下判断中正确的是()=乙,S甲2=S乙2.B.甲=乙,S甲2>S乙2.A.=乙,S甲2<S乙2.D.甲<乙,S甲2<S乙2.C.6.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m与n的关系是()A.m+n=8 B.m+n=4 C.m=n=4 D.m=3,n=57.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D8.用计算器计算时,下列说法错误的是()A.计算“﹣1”的按键顺序是B.计算“3×105﹣28”的按键顺序是C.“已知SinA=0.3,求锐角A”的按键顺序是D.计算“()5”的按键顺序是9.如图,AB是⊙的直径,弦CD垂直平分OB,则∠BDC=()A.15° B.20° C.30° D.45°10.已知一列数:1,﹣2,3,﹣4,5,﹣6,7,…将这列数排成下列形式:第1行 1第2行﹣2 3第3行﹣4 5﹣6第4行 7﹣8 9﹣10第5行 11﹣12 13﹣14 15…按照上述规律排下去,那么第100行从左边数第5个数是( ) A .﹣4955 B .4955 C .﹣4950 D .495011.函数y=和y=在第一象限内的图象如图,点P 是y=的图象上一动点,PC ⊥x 轴于点C ,交y=的图象于点B .给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA=AP .其中所有正确结论的序号是( )A .①②③B .②③④C .①③④D .①②④12.如图,在矩形ABCD 中,BC=8,AB=6,经过点B 和点D 的两个动圆均与AC 相切,且与AB 、BC 、AD 、DC 分别交于点G 、H 、E 、F ,则EF+GH 的最小值是( )A .6B .8C .9.6D .10二、填空题:本题共5小题,每小题4分,共20分,只要求填写最后结果. 13.因式分解(a+b )(a+b ﹣1)﹣a ﹣b+1的结果为 .14.已知a 2﹣a ﹣2=0,则代数式﹣的值为 .15.如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC 与△A 1B 1C 1是位似图形,且顶点都在格点上,则位似中心的坐标是 .16.如图,三角板ABC的两直角边AC,BC的长分别是40cm和30cm,点G在斜边AB上,且BG=30cm,将这个三角板以G为中心按逆时针旋转90°,至△A′B′C′的位置,那么旋转后两个三角板重叠部分(四边形EFGD)的面积为cm2.17.如图,在以AB为直径的半圆中,有一个边长为1的内接正方形CDEF,则以AC和BC的长为两根的一元二次方程是.三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.如图,直线a∥b,Rt△ABC的顶点B在直线a上,∠C=90°,∠β=55°,求∠α的度数.19.某校对九年级学生进行了一次数学学业水平测试,成绩评定分为A、B、C、D四个等级(注:等级A、B、C、D分别代表优秀、良好、合格、不合格),学校从九年级学生中随机抽取50名学生的数学成绩进行统计分析,并绘制成扇形统计图(如图所示).根据图中所给的信息答下列问题:(1)随机抽取的九年级学生数学学业水平测试中,D等级人数的百分率和D等级学生人数分别是多少?(2)这次随机抽样中,学生数学学业水平测试成绩的中位数落在哪个等级?(3)若该校九年级学生有800名,请你估计这次数学学业水平测试中,成绩达合格以上(含合格)的人数大约有多少人?20.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.21.一元二次方程x2﹣2x﹣=0的某个根,也是一元二次方程x2﹣(k+2)x+=0的根,求k的值.22.如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.2m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过估算说明.(参考数据:≈1.7)23.已知抛物线y=ax2+bx+c的顶点为(1,0),且经过点(0,1).(1)求该抛物线对应的函数的解析式;(2)将该抛物线向下平移m(m>0)个单位,设得到的抛物线的顶点为A,与x轴的两个交点为B、C,若△ABC为等边三角形.①求m的值;②设点A关于x轴的对称点为点D,在抛物线上是否存在点P,使四边形CBDP为菱形?若存在,写出点P的坐标;若不存在,请说明理由.24.在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,sin∠EMP=.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A,C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出x的取值范围;(3)若△AME∽△ENB,求AP的长.2017年山东省淄博市沂源县中考数学一模试卷参考答案与试题解析一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题4分,共48分,错选、不选或选出的答案超过一个,均记0分.1.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有()个.A.1个B.2个C.3个D.4个【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称和中心对称图形的概念求解.【解答】解:根据中心对称图形的概念,观察可知,第一个不是轴对称图形,是中心对称图形;第二个既是轴对称图形,也是中心对称图形;第三个既是轴对称图形,也是中心对称图形;第四个是轴对称图形,不是中心对称图形.所以既是轴对称图形又是中心对称图形的有2个.故选B.2.小军将一个直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()A.B.C.D.【考点】I2:点、线、面、体.【分析】先根据面动成体得到圆锥,进而可知其侧面展开图是扇形.【解答】解:直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个圆锥,那么它的侧面展开得到的图形是扇形.故选:D.3.下列计算正确的是()A.2+3=5B.()(1﹣)=1C.(xy)﹣1(xy)2=xy D.﹣(﹣a)4÷a2=a2【考点】79:二次根式的混合运算;47:幂的乘方与积的乘方;48:同底数幂的除法;49:单项式乘单项式;6F:负整数指数幂.【分析】根据二次根式的混合运算,幂的乘方与积的乘方的运算方法,以及同底数幂的除法的运算方法,逐项判定即可.【解答】解:∵2+3=5,∴选项A不符合题意;∵()(1﹣)=﹣1,∴选项B不符合题意;∵(xy)﹣1(xy)2=xy,∴选项C符合题意;∵﹣(﹣a)4÷a2=﹣a2,∴选项D不符合题意.故选:C.4.如图,一束光线与水平面成60°的角度照射地面,现在地面AB上支放一个平面镜CD,使这束光线经过平面镜反射后成水平光线,则平面镜CD与地面AB所成角∠DCB的度数等于()A.30° B.45° C.50° D.60°【考点】K8:三角形的外角性质;JA:平行线的性质;K7:三角形内角和定理.【分析】根据入射角等于反射角,角平分线的性质以及平行线的性质计算.【解答】解:∵入射角等于反射角,∴∠1=∠2,∵光线经过平面镜CD反射后成水平光线平行,∴∠2=∠4,又∵∠1=∠3(对顶角相等),∴∠3=∠4,∴∠2=∠3,∵光线与水平面成60°的角度照射地面,∴∠3=60°÷2=30°,∴∠4=30°,即∠DCB=30°.故选A.5.甲、乙两人5次射击命中的环数如下:则以下判断中正确的是()=乙,S甲2=S乙2.B.甲=乙,S甲2>S乙2.A.=乙,S甲2<S乙2.D.甲<乙,S甲2<S乙2.C.【考点】W7:方差;W1:算术平均数.【分析】四个选项中主要比较的是算术平均数与方差,求出甲乙的算术平均数与方差比较即可解答.=(7+9+8+6+10)÷5=8,乙,=(7+8+9+8+8)÷5=8,甲=乙,【解答】解:S甲2= [(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=2.S乙2= [(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=0.4.S甲2>S乙2.故选B.6.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m与n的关系是()A.m+n=8 B.m+n=4 C.m=n=4 D.m=3,n=5【考点】X4:概率公式.【分析】由于每个球都有被摸到的可能性,故可利用概率公式求出摸到白球的概率与摸到的球不是白球的概率,列出等式,求出m、n的关系.【解答】解:根据概率公式,摸出白球的概率,,摸出不是白球的概率,,由于二者相同,故有=,整理得,m+n=8,故选:A.7.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D【考点】R2:旋转的性质.【分析】连接PP1、NN1、MM1,分别作PP1、NN1、MM1的垂直平分线,看看三线都过哪个点,那个点就是旋转中心.【解答】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选B.8.用计算器计算时,下列说法错误的是()A.计算“﹣1”的按键顺序是B.计算“3×105﹣28”的按键顺序是C.“已知SinA=0.3,求锐角A”的按键顺序是D.计算“()5”的按键顺序是【考点】T6:计算器—三角函数;1N:计算器—有理数.【分析】根据计算器上分数、科学计数法、三角函数及乘方的计算方法可得.【解答】解:A、计算“﹣1”的按键顺序是,正确;B、计算“3×105﹣28”的按键顺序是,正确;C、“已知SinA=0.3,求锐角A”的按键顺序是,正确;D、计算“()5”的按键顺序是,错误;故选:D.9.如图,AB是⊙的直径,弦CD垂直平分OB,则∠BDC=()A.15° B.20° C.30° D.45°【考点】M5:圆周角定理;M2:垂径定理.【分析】连接OC,BC,根据弦CD垂直平分OB,得OC=BC,又OC=OB,所以△OCB是等边三角形,得∠COB=60°,根据圆周角定理得∠D=30°.【解答】解:连接OC,BC∵弦CD垂直平分OB∴OC=BC∵OC=OB∴△OCB是等边三角形∴∠COB=60°∴∠D=30°.故选C.10.已知一列数:1,﹣2,3,﹣4,5,﹣6,7,…将这列数排成下列形式:第1行 1第2行﹣2 3第3行﹣4 5﹣6第4行 7﹣8 9﹣10第5行 11﹣12 13﹣14 15…按照上述规律排下去,那么第100行从左边数第5个数是()A.﹣4955 B.4955 C.﹣4950 D.4950【考点】37:规律型:数字的变化类.【分析】分析可得:第n行有n个数,此行第一个数的绝对值为+1;且奇数为正,偶数为负;故第100行从左边数第1个数绝对值为4951,故这个数为4951,那么从左边数第5个数等于4955.【解答】解:∵第n行有n个数,此行第一个数的绝对值为+1;且奇数为正,偶数为负,∴第100行从左边数第1个数绝对值为4951,从左边数第5个数等于4955.故选B.11.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是()A.①②③B.②③④C.①③④D.①②④【考点】G5:反比例函数系数k的几何意义.【分析】由于A、B是反比函数y=上的点,可得出S△OBD=S△OAC=,故①正确;当P的横纵坐标相等时PA=PB,故②错误;根据反比例函数系数k的几何意义可求出四边形PAOB的面积为定值,故③正确;连接PO,根据底面相同的三角形面积的比等于高的比即可得出结论.【解答】解:∵A、B是反比函数y=上的点,∴S△OBD=S△OAC=,故①正确;当P的横纵坐标相等时PA=PB,故②错误;∵P是y=的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正确;连接OP,===4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正确;综上所述,正确的结论有①③④.故选C.12.如图,在矩形ABCD中,BC=8,AB=6,经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是()A.6 B.8 C.9.6 D.10【考点】MC:切线的性质;J4:垂线段最短;KQ:勾股定理.【分析】如图,设GH的中点为O,过O点作OM⊥AC,过B点作BN⊥AC,垂足分别为M、N,根据∠B=90°可知,点O为过B点的圆的圆心,OM为⊙O的半径,BO+OM为直径,可知BO+OM ≥BN,故当BN为直径时,直径的值最小,即直径GH也最小,同理可得EF的最小值.【解答】解:如图,设GH的中点为O,过O点作OM⊥AC,过B点作BN⊥AC,垂足分别为M、N,在Rt△ABC中,BC=8,AB=6,∴AC==10,由面积法可知,BN•AC=AB•BC,解得BN=4.8,∵∠B=90°,∴GH为⊙O的直径,点O为过B点的圆的圆心,∵⊙O与AC相切,∴OM为⊙O的半径,∴BO+OM为直径,又∵BO+OM≥BN,∴当BN为直径时,直径的值最小,此时,直径GH=BN=4.8,同理可得:EF的最小值为4.8,∴EF+GH的最小值是9.6.故选C.二、填空题:本题共5小题,每小题4分,共20分,只要求填写最后结果.13.因式分解(a+b)(a+b﹣1)﹣a﹣b+1的结果为(a+b﹣1)2.【考点】53:因式分解﹣提公因式法.【分析】此题应先把原式变形添加带负号的括号,再提公因式得出结果.【解答】解:(a+b)(a+b﹣1)﹣a﹣b+1,=(a+b)(a+b﹣1)﹣(a+b﹣1),=(a+b﹣1)(a+b﹣1),=(a+b﹣1)2.14.已知a2﹣a﹣2=0,则代数式﹣的值为﹣.【考点】6D:分式的化简求值.【分析】已知等式变形得:a2﹣a=2,计算异分母分式化简为﹣代入即可求出所求式子的值.【解答】解:已知等式变形得:a2﹣a=2,﹣=﹣=﹣=﹣=﹣.故答案为﹣.15.如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC与△A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是(9,0).【考点】SC:位似变换.【分析】连接任意两对对应点,看连线的交点为那一点即为位似中心.【解答】解:连接BB1,A1A,易得交点为(9,0).故答案为:(9,0).16.如图,三角板ABC的两直角边AC,BC的长分别是40cm和30cm,点G在斜边AB上,且BG=30cm,将这个三角板以G为中心按逆时针旋转90°,至△A′B′C′的位置,那么旋转后两个三角板重叠部分(四边形EFGD)的面积为144 cm2.【考点】R2:旋转的性质;KQ:勾股定理;S9:相似三角形的判定与性质.【分析】把所求重叠部分面积看作△A′FG与△A′DE的面积差,并且这两个三角形都与△ABC相似,根据勾股定理求对应边的长,根据相似三角形的面积比等于相似比的平方求面积即可.【解答】解:由勾股定理得AB===50,又∵BG=30,∴AG=AB﹣BG=20,由△ADG∽△ABC得, ==,即==,解得DG=15,AD=25,A′D=A′G﹣DG=AG﹣GD=20﹣15=5,由△A′DE∽△A′B′C′,可知==,由△A′GF∽△A′C′B′,可知根据相似三角形面积比等于相似比的平方,可知S四边形EFGD=S△A′FG﹣S△A′DE=S△A′B′C′﹣S△A′B′C′=××40×30=144cm2.17.如图,在以AB为直径的半圆中,有一个边长为1的内接正方形CDEF,则以AC和BC的长为两根的一元二次方程是如:x2﹣x+1=0 .【考点】AB:根与系数的关系;KQ:勾股定理;LE:正方形的性质;M5:圆周角定理;S9:相似三角形的判定与性质.【分析】连接AD,BD,OD,由AB为直径与四边形DCFE是正方形,即可证得△ACD∽△DCB,则可求得AC•BC=DC2=1,又由勾股定理求得AB的值,即可得AC+BC=AB,根据根与系数的关系即可求得答案.注意此题答案不唯一.【解答】解:连接AD,BD,OD,∵AB为直径,∴∠ADB=90°,∵四边形DCFE是正方形,∴DC⊥AB,∴∠ACD=∠DCB=90°,∴∠ADC+∠CDB=∠A+∠ADC=90°,∴∠A=∠CDB,∴△ACD∽△DCB,∴,又∵正方形CDEF的边长为1,∵AC•BC=DC2=1,∵AC+BC=AB,在Rt△OCD中,OC2+CD2=OD2,∴OD=,∴AC+BC=AB=,以AC和BC的长为两根的一元二次方程是x2﹣x+1=0.故答案为:此题答案不唯一,如:x2﹣x+1=0.三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.如图,直线a∥b,Rt△ABC的顶点B在直线a上,∠C=90°,∠β=55°,求∠α的度数.【考点】JA:平行线的性质.【分析】先过点C作CE∥a,可得CE∥a∥b,然后根据两直线平行,内错角相等,即可求得答案.【解答】解:过点C作CE∥a,∵a∥b,∴CE∥a∥b,∴∠BCE=∠α,∠ACE=∠β=55°,∵∠C=90°,∴∠α=∠BCE=∠ABC﹣∠ACE=35°.19.某校对九年级学生进行了一次数学学业水平测试,成绩评定分为A、B、C、D四个等级(注:等级A、B、C、D分别代表优秀、良好、合格、不合格),学校从九年级学生中随机抽取50名学生的数学成绩进行统计分析,并绘制成扇形统计图(如图所示).根据图中所给的信息答下列问题:(1)随机抽取的九年级学生数学学业水平测试中,D等级人数的百分率和D等级学生人数分别是多少?(2)这次随机抽样中,学生数学学业水平测试成绩的中位数落在哪个等级?(3)若该校九年级学生有800名,请你估计这次数学学业水平测试中,成绩达合格以上(含合格)的人数大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;W4:中位数.【分析】(1)根据扇形统计图即可求得D等级人数所占的百分比,再根据总人数求得D等的人数;(2)根据中位数的概念,分别求得各部分的人数,则中位数应是第25个和26个的平均数,即可分析得到结论;(3)根据样本中的合格所占的百分比,估计总体中的合格人数.【解答】解:(1)∵1﹣30%﹣48%﹣18%=4%,∴D等级人数的百分率为4%.∵4%×50=2,∴D等级学生人数为2人.(2)∵A等级学生人数30%×50=15人,B等级学生人数48%×50=24人,C等级学生人数18%×50=9人,D等级学生人数4%×50=2人.∴中位数落在B等级.(3)合格以上人数=800×(30%+48%+18%)=768.∴成绩达合格以上的人数大约有768人.20.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.【考点】KD:全等三角形的判定与性质;KH:等腰三角形的性质;L7:平行四边形的判定与性质.【分析】(1)运用AAS证明△ABD≌△CAE;(2)易证四边形ADCE是矩形,所以AC=DE=AB,也可证四边形ABDE是平行四边形得到AB=DE.【解答】证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE(AAS);(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.21.一元二次方程x2﹣2x﹣=0的某个根,也是一元二次方程x2﹣(k+2)x+=0的根,求k的值.【考点】A3:一元二次方程的解.【分析】利用配方法求出方程x2﹣2x﹣=0的解,将求出的解代入x2﹣(k+2)x+=0中,得到关于k的方程,求出方程的解即可得到k的值.【解答】解:x2﹣2x﹣=0,移项得:x2﹣2x=,配方得:x2﹣2x+1=,即(x﹣1)2=,开方得:x﹣1=±,解得:x1=,x2=﹣,△=(k+2)2﹣9≥0,即k≥1或k≤﹣5,①根据题意把x=代入x2﹣(k+2)x+=0得:()2﹣(k+2)+=0,解得:k=;②把x=﹣代入x2﹣(k+2)x+=0得:(﹣)2+(k+2)+=0,解得:k=﹣7,综上所述,k的值为﹣7或.22.如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.2m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过估算说明.(参考数据:≈1.7)【考点】7B:二次根式的应用.【分析】首先在AB之间找一点F,且BF=2.5,过点F作GF⊥AB交CD于点G,只要求得GF 的数值,进一步与货车高相比较得出答案即可.【解答】解:如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,∵AB=3.2m,CA=0.7m,BF=2.5m,∴CF=AB﹣BF+CA=1.4m,∵∠ECA=60°,∴tan60°=,∴GF=CAtan60°=1.4≈2.38m,∵2.38<3∴这辆货车在不碰杆的情况下,不能从入口内通过.23.已知抛物线y=ax2+bx+c的顶点为(1,0),且经过点(0,1).(1)求该抛物线对应的函数的解析式;(2)将该抛物线向下平移m(m>0)个单位,设得到的抛物线的顶点为A,与x轴的两个交点为B、C,若△ABC为等边三角形.①求m的值;②设点A关于x轴的对称点为点D,在抛物线上是否存在点P,使四边形CBDP为菱形?若存在,写出点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)根据抛物线的顶点坐标及函数经过点(0,1),利用待定系数法求解即可.(2)①先写出平移后的函数解析式,然后得出A、B、C三点的坐标,过点A作AH⊥BC于H,根据△ABC为等边三角形,可得出关于m的方程,解出即可;②求出点D坐标,分两种情况进行讨论,①PD为对角线,②PD为边,根据菱形的性质求解即可.【解答】解:(1)由题意可得,,解得,故抛物线对应的函数的解析式为y=x2﹣2x+1;(2)①将y=x2﹣2x+1向下平移m个单位得:y=x2﹣2x+1﹣m=(x﹣1)2﹣m,令y=x2﹣2x+1﹣m=(x﹣1)2﹣m=0,解得x=1﹣或x=1+,可知A(1,﹣m),B(1﹣,0),C(1+,0),BC=2,过点A作AH⊥BC于H,∵△ABC为等边三角形,∴BH=HC=BC,∠CAH=30°,∴AH=,即=m,由m>0,解得m=3.②在抛物线上存在点P,能使四边形CBDP为菱形.理由如下:∵点D与点A关于x轴对称,∴D(1,3),①当DP为对角线时,显然点P在点A位置上时,符合题意,故此时点P坐标为(1,﹣3);②当DP为边时,要使四边形CBDP为菱形,需DP∥BC,DP=BC.由点D的坐标为(1,3),DP=BC=2,可知点P的横坐标为1+2,当x=1+2时,y=x2﹣2x+1﹣m=x2﹣2x﹣2=﹣2(1+2)﹣2=11≠3,故不存在这样的点P.综上可得,存在使四边形CBDP为菱形的点P,坐标为(1,﹣3).24.在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,sin∠EMP=.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A,C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出x的取值范围;(3)若△AME∽△ENB,求AP的长.【考点】SO:相似形综合题.【分析】((1)本题需先根据已知条件得出AC的值,再根据CP⊥AB求出CP,从而得出CM的值.(2)本题需先根据EN,根据sin∠EMP=,设出EP的值,从而得出EM和PM的值,再得出△AEP∽△ABC,即可求出=,求出a的值,即可得出y关于x的函数关系式,并且能求出函数的定义域.(3)本题需先设EP的值,得出则EM和MP的值,然后分①点E在AC上时,根据△AEP∽△ABC,求出AP的值,从而得出AM和BN的值,再根据△AME∽△ENB,求出a的值,得出AP 的长;②点E在BC上时,根据△EBP∽△ABCC,求出AP的值,从而得出AM和BN的值,再根据△AME∽△ENB,求出a的值,得出AP的长.【解答】解:(1)∵∠ACB=90°,∴AC===40,∵CP⊥AB,∴=,∴=,∴CP=24,∴CM===26;(2)∵sin∠EMP=,∴设EP=12a,则EM=13a,PM=5a,∵EM=EN,∴EN=13a,PN=5a,∵△AEP∽△ABC,∴,∴=∴x=16a,∴a=,∴BP=50﹣16a,∴y=50﹣21a,=50﹣21×,=50﹣x,∵当E点与A点重合时,x=0.当E点与C点重合时,x=32.∴函数的定义域是:(0<x<32);(3)①当点E在AC上时,如图2,设EP=12a,则EM=13a,MP=NP=5a,∵△AEP∽△ABC,∴=,∴=,∴AP=16a,∴AM=11a,∴BN=50﹣16a﹣5a=50﹣21a,∵△AME∽△ENB,∴=∴=,∴a=,∴AP=16×=22,②当点E在BC上时,如图(备用图),设EP=12a,则EM=13a,MP=NP=5a,∵△EBP∽△ABC,∴=,即=,解得BP=9a,∴BN=9a﹣5a=4a,AM=50﹣9a﹣5a=50﹣14a,∵△AME∽△ENB,∴=,即=,解得a=,∴AP=50﹣9a=50﹣9×=42.所以AP的长为:22或42.。

安徽省2017届中考数学一模试卷(解析版)

2017年安徽省中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣D.2.二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)3.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.14.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A. B.C.D.5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.6.某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米7.已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<28.如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2 B.3 C.4 D.59.如图,在扇形AOB 中,∠AOB=90°,=,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,则阴影部分的面积为( )A .2π﹣4B .4π﹣8C .2π﹣8D .4π﹣410.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是( )A .abc <0B .a ﹣b +c <0C .b 2﹣4ac >0D .3a +c >0二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)二次函数y=x 2+1的最小值是 .12.(5分)如图,点A 、B 、C 在⊙O 上,∠A=36°,则∠O= .13.(5分)如图,△ABC 与△A ′B ′C ′都是等腰三角形,且AB=AC=5,A ′B ′=A ′C ′=3,若∠B +∠B ′=90°,则△ABC 与△A ′B ′C ′的面积比为 .14.(5分)如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折痕DE 分别交AB ,AC 于点E 、G ,连接GF ,有下列结论:①∠AGD=112.5°;②tan ∠AED=+1;③四边形AEFG 是菱形;④S △ACD =S △OCD .其中正确结论的序号是 .(把所有正确结论的序号都填在横线上)三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:2cos60°﹣|﹣4sin45°|16.(8分)如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.18.(8分)某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)20.(10分)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.六、解答题(本题满分12分)21.(12分)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.七、解答题(本题满分12分)22.(12分)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.八、解答题(本题满分14分)23.(14分)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B 的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.2017年安徽省滁州市全椒县中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣D.【考点】反比例函数图象上点的坐标特征.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(2,﹣1)代入解析式得﹣1=,解得k=﹣2.故选A.【点评】此题主要考查了反比例函数图象上点的坐标特征.把已知点的坐标代入可求出k值,即得到反比例函数的解析式.2.二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)【考点】二次函数的性质.【分析】把二次函数化成顶点式,可得出二次函数的顶点坐标.【解答】解:∵y=x2﹣2x=(x﹣1)2﹣1,∴其顶点坐标为(1,﹣1),故选D.【点评】本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式y=a(x﹣h)2+k的顶点坐标为(h,k)是解题的关键.3.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.1【考点】特殊角的三角函数值.【分析】根据AB=2BC直接求sinB的值即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA===;∴∠A=30°∴∠B=60°∴sinB=故选C.【点评】本题考查了锐角三角函数的定义,解决本题时,直接利用正弦的定义求解即可.4.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看是一个实线的同心圆,故选:C.【点评】本题考查了简单组合体的三视图,俯视图是从上边看得到的图形.5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.【考点】概率公式.【分析】根据概率公式可得答案.【解答】解:∵﹣3,﹣2,﹣1,1,2,3的六张卡片中,大于﹣2的有﹣1,1,2,3这4张,∴所抽卡片上的数大于﹣2的概率是=,故选:D.【点评】本题主要考查概率公式,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.6.某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米【考点】解直角三角形的应用﹣坡度坡角问题.【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边.根据题意可得tan∠A=,AB=10m,可解出直角边BC,即得到位置升高的高度.【解答】解:由题意得,BC:AC=1:2.∴BC:AB=1:.∵AB=6m,∴BC=m.故选B.【点评】本题主要考查坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化.7.已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<2【考点】抛物线与x轴的交点.【分析】根据二次函数图象与x轴有交点可得出关于x的一元二次方程有解,根据根的判别式结合二次项系数非零即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,∴一元二次方程(k﹣2)x2+2x+1=0有解,∴,解得:k≤3且k≠2.故选:C.【点评】本题考查了抛物线与x轴的交点、根的判别式以及解一元一次不等式组,根据根的判别式△≥0结合二次项系数非零找出关于k的一元一次不等式组是解题的关键.8.如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2 B.3 C.4 D.5【考点】相似三角形的判定与性质;矩形的性质.【分析】根据勾股定理求出BD,得到DE的长,根据相似三角形的性质得到比例式,代入计算即可求出DF的长,求出CF的长度.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,又AB=CD=6,BC=AD=8,∴BD==10,∵BE=6,∴DE=10﹣6=4,∵AB∥CD,∴=,即=,解得,DF=4,则CF=CD﹣DF=6﹣4=2,故选:A.【点评】本题考查的是矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.9.如图,在扇形AOB中,∠AOB=90°,=,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣4【考点】扇形面积的计算;正方形的性质.【分析】连接OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣△ODC的面积,依此列式计算即可求解.【解答】解:连接OC,如图所示:∵在扇形AOB中∠AOB=90°,=,∴∠COD=45°,∴OD=CD,∴OC==4,∴阴影部分的面积=扇形BOC的面积﹣△ODC的面积=﹣×(2)2=2π﹣4.故选:A.【点评】此题考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是()A.abc<0 B.a﹣b+c<0 C.b2﹣4ac>0 D.3a+c>0【考点】二次函数图象与系数的关系.【分析】A.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,由a与0的关系并结合抛物线的对称轴判断b与0的关系,即可得出abc与0的关系;B.由二次函数的图象可知当x=﹣1时y<0,据此分析即可;C.利用抛物线与x轴的交点的个数进行分析即可;D.由对称轴x=﹣=1,可得b=﹣2a,又由B知a﹣b+c<0,可得3a+c<0,可判断.【解答】解:A、由抛物线开口向下,可得a<0,由抛物线与y轴的交点在x轴的上方,可得c>0,由抛物线的对称轴为x=1,可得﹣>0,则b>0,∴abc<0,故A正确,不符合题意;B.当x=﹣1时,y<0,则a﹣b+c<0,故B正确,不符合题意;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故C正确,不符合题意;D.∵对称轴x=﹣=1,∴b=﹣2a,∵a﹣b+c<0,∴3a+c<0,故D错误,符合题意;故选D.【点评】本题考查了二次函数图象与系数的关系.关键是熟记二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题(本大题共4小题,每小题5分,满分20分)11.二次函数y=x2+1的最小值是1.【考点】二次函数的最值.【分析】根据二次函数解析式得特点可知,当x=0时取得最小值1.【解答】解:由二次函数y=x2+1得到:该抛物线的开口方向向上,且顶点坐标是(0,1).所以二次函数y=x2+1的最小值是1.故答案是:1.【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.12.如图,点A、B、C在⊙O上,∠A=36°,则∠O=72°.【考点】圆周角定理.【分析】根据同弧所对的圆心角是圆周角的2倍得出结论.【解答】解:由图形得:∠O=2∠A=2×36°=72°;故答案为:72°,【点评】本题考查了圆周角与圆心角的关系,属于基础题,比较简单,明确在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.13.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为25:9.【考点】解直角三角形;等腰三角形的性质.【分析】先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论.【解答】解:过A作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC :S△A′B′C′=25:9,故答案为:25:9.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和三角形面积公式.14.如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD 落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:①∠AGD=112.5°;②tan∠AED=+1;③四边形AEFG是菱形;④S△ACD=S△OCD.其中正确结论的序号是①②③.(把所有正确结论的序号都填在横线上)【考点】翻折变换(折叠问题);菱形的性质;解直角三角形.【分析】根据翻转变换的性质、正方形的性质进行计算,判断即可.【解答】解:∵四边形ABCD是正方形,∴∠ADB=45°,由折叠的性质可知,∠ADE=∠BDE=22.5°,∴∠AGD=180°﹣90°﹣22.5°=112.5°,①正确;设AE=x,∵△BEF是等腰直角三角形,∴BE=EF=AE=x,∴x+x=1,解得,x=﹣1,∴tan∠AED==+1,②正确;由同位角相等可知,GF∥AB,EF∥AC,∴四边形AEFG是平行四边形,由折叠的性质可知,EA=EF,∴四边形AEFG是菱形,③正确;=2S△OCD,④错误,由正方形的性质可知,S△ACD故答案为:①②③.【点评】本题考查的是翻转变换的性质、菱形的性质、解直角三角形的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15.计算:2cos60°﹣|﹣4sin45°|【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简即可得到结果.【解答】解:原式=2×﹣=1﹣.【点评】此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A 按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.【考点】轨迹;等腰三角形的性质;旋转的性质.【分析】由△ABD绕点A按逆时针方向旋转,AB与AC重合知旋转角为45°,根据弧长公式可得答案.【解答】解:∵△ABD绕点A按逆时针方向旋转,AB与AC重合,∴旋转角为45°,∴的长为=π.【点评】本题主要考查旋转的性质、弧长公式,熟练掌握旋转的性质得出旋转角度数是解题的关键.四、解答题(本大题共2小题,每小题8分,满分16分)17.如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.【考点】垂径定理;勾股定理.【分析】作OH⊥AB于H,根据垂径定理得AH=BH=AB=,再在Rt△BOH中,根据勾股定理得OH=1,由AC=AB得AC=,则CH=AH﹣AC=,然后根据勾股定理可计算出OC的长.【解答】解:作OH⊥AB于H,如图,∵OH⊥AB,∴AH=BH,∴AH=BH=AB=×2=,在Rt△BOH中,OB=2,BH=,∴OH==1,∵AC=AB=×2=,∴CH=AH﹣AC=﹣=,在Rt△OHC中,OC==.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.18.某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.【考点】列表法与树状图法.【分析】(1)由已确定A打第一场,再从其余三队中随机选取一队,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中B、C两队进行比赛的情况,再利用概率公式即可求得答案.【解答】解:(1)∵已确定A打第一场,再从其余三队中随机选取一队,∴恰好选中D队的概率;(2)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴P(B、C两队进行比赛)==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)(2017•全椒县一模)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)【考点】解直角三角形的应用.【分析】延长BA,CD交于点P,解直角三角形得到AP=PD•cos30°和BC的长,通过△PAD∽△PCB,得出=,代入数据即可得到结论.【解答】解:如图,延长BA,CD交于点P,∵∠PAD=∠PCB=90°,∠ADC=120°,∴∠P=30°,∵AD=3,∴PD=6,AP=PD•cos30°=3,BC=(18﹣2)÷2+2=10.∵∠P=∠P,∠PAD=∠PCB=90°,∴△PAD∽△PCB,∴=,∴PC==10m,∴CD=PC﹣PD=10﹣6≈11.32m.则应设计11.32m高的灯柱,才能取得最理想的照明效果.【点评】本题考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念,正确的作出辅助线构造相似三角形是解题的关键.20.(10分)(2017•全椒县一模)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.【考点】待定系数法求反比例函数解析式;菱形的性质;坐标与图形变化﹣平移;解直角三角形.【分析】(1)根据菱形性质得出AC⊥OB,OD=BD,AD=CD,解直角三角形即可得出答案;(2)设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),得出k=2(6﹣x)=6(4﹣x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.【解答】解:(1)连接AC,交y轴于D,∵四边形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD,∵OB=4,tan∠BOC=.∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2);(2)B、C落在反比例函数的图象上,设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2),∵B、C落在反比例函数的图象上,∴k=4x=2(1+x),解得x=1,即菱形平移后B的坐标是(1,4),代入反比例函数的解析式得:k=1×4=4,即B、C落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=.【点评】本题考查了矩形性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.六、解答题(本题满分12分)21.(12分)(2017•全椒县一模)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M 于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.【考点】切线的判定;坐标与图形性质.【分析】(1)由点A的坐标可知OA的长度,根据∠ABO的度数可知,AB的长度为4,利用勾股定理即可求出OB的长度,从而求出B的坐标.(2)连接OC、MC、证明∠OCB为直角,根据D为OB的中点,可知∠DCO=∠DOC,易知∠OCM=∠COM,所以∠MCO+∠DCO=∠MCD=90°,即可求证MC⊥CD.【解答】解:(1)∵A的坐标为(0,2)∴OA=2,∵∠ABO=30°,∠AOB=90°,∴AB=2OA=4,∴由勾股定理可知:OB=2,∴B(2,0)(2)连接OC,MC∵OA是⊙M的直径,∴∠ACO=90°,∴∠OCB=90°,在Rt△OCB中,D为OB的中点,∴CD=OB=OD,∴∠DCO=∠DOC,∵MC=MO,∴∠OCM=∠COM∵∠MOC+∠DOC=∠AOB=90°,∴∠MCO+∠DCO=∠MCD=90°即MC⊥CD∴直线CD是⊙M的切线.【点评】本题考查切线的判定,解题的关键是连接MC、OC、根据直角三角形斜边上中线的性质,圆周角定理,等腰三角形的性质求出MC⊥CD,本题属于中等题型.七、解答题(本题满分12分)22.(12分)(2017•全椒县一模)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.【考点】二次函数综合题.【分析】(1)由条件可先求得抛物线解析式,则可求得B点坐标,再利用待定系数法可求得直线AB解析式;(2)由条件可知P、E的横坐标相同,又点E在抛物线上,则可表示出E点坐标;(3)由(2)可用x表示出PE的长,则可用x表示出△ABE的面积,再利用二次函数的性质可求得其最大值.【解答】解:(1)∵抛物线顶点坐标为(1,﹣2),∴可设抛物线解析式为y=a(x﹣1)2﹣2,∵OA=3,且点A在x轴的正半轴上,∴A(3,0),∴0=a(3﹣1)2﹣2,解得a=,∴抛物线解析式为y=(x﹣1)2﹣2=x2﹣x﹣,当x=0时可得y=﹣,∴B(0,﹣),设直线AB解析式为y=kx+b,把A、B坐标代入可得,解得,∴y=x﹣;(2)∵点P为线段AB上的一个动点,且PE⊥x轴,∴点E的横坐标为x,∵点E在抛物线上,∴E点的坐标为(x, x2﹣x﹣);(3)∵点P为线段AB上的一点,∴P(x, x﹣),则E(x, x2﹣x﹣),∴PE=x﹣﹣(x2﹣x﹣)=﹣x2+x,由(2)可知点B到PE的距离x,点A以PE的距离为3﹣x,=PE•x+PE•(3﹣x)=PE•(x+3﹣x)=PE=(﹣x2+x)=﹣x2+x=﹣(x﹣∴S△ABE)2+,∵﹣<0,∴当x=时,S有最大值,最大值为,△ABE∴△ABE面积的最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积及方程思想等知识.在(1)中求得B点坐标是解题的关键,在(2)中注意E点横坐标与P点横坐标相同是解题的关键,在(3)中用P点坐标表示出△ABE的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.八、解答题(本题满分14分)23.(14分)(2017•全椒县一模)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC 绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是矩形,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)根据有一个角是直角的平行四边形进行判断当α=90°时,就是长与宽的比;(2)①利用相似三角形求得CP的比,就可求得BP,PQ的值;②根据勾股定理求得PB′的长,再根据三角形的面积公式进行计算.(3)构造全等三角形和直角三角形,运用勾股定理求得PC的长,进一步求得坐标【解答】解:(1)图1,四边形OA′B′C′的形状是矩形;∵点A的坐标为(﹣8,0),点B(﹣8,6),∴AB∥OC,∵BC∥x轴,∴四边形OABC是平行四边形.又OC⊥OA,∴平行四边形OABC的形状是矩形;当α=90°时,P与C重合,如图1,BP=8,BQ=BP+OC=8+6=14,∴,即是矩形的长与宽的比,则.故答案为矩形,;(2)①图2,∵∠POC=∠B′OA′,∠PCO=∠OA′B′=90°,∴△COP∽△A′OB′.∴,即,∴CP=,BP=BC﹣CP=.同理△B′CQ∽△B′C′O,∴,∴∴CQ=3,BQ=BC+CQ=11.∴,∴;②图3,在△OCP和△B′A′P中,,∴△OCP≌△B′A′P(AAS).∴OP=B′P.设B′P=x,在Rt△OCP中,(8﹣x)2+62=x2,解得x=.=××6=.∴S△OPB′(3)存在这样的点P和点Q,使BP=BQ.点P的坐标是P1(﹣9﹣,6),P2(﹣,6).理由:过点Q作QH⊥OA′于H,连接OQ,则QH=OC′=OC,∵S △POQ =PQ •OC ,S △POQ =OP •QH ,∴PQ=OP .设BP=x ,∵BP=BQ ,∴BQ=2x ,如图4,当点P 在点B 左侧时,OP=PQ=BQ +BP=3x ,在Rt △PCO 中,(8+x )2+62=(3x )2,解得x 1=1+,x 2=1﹣(不符实际,舍去). ∴PC=BC +BP=9+,∴P (﹣9﹣,6).如图5,当点P 在点B 右侧时,∴OP=PQ=BQ ﹣BP=x ,PC=8﹣x .在Rt △PCO 中,(8﹣x )2+62=x 2,解得x=.∴PC=BC ﹣BP=8﹣=, ∴P (﹣,6),综上可知,存在点P (﹣9﹣,6)或(﹣,6),使BP=BQ .。

2017年中考数学模拟试题及答案

本卷共六大题,24小题,共 一、选择题(本大题共 6小题,每小题3分, 1、 比一2013小1的数是( A 、一 2012 2、 如图,直线 A 、70° ---- 品 -------- -- - -2017年中考模拟试题 数学试题卷120分。

考试时间 共18分) 120分钟) B 、2012 C 、一 2014 |1 // |2,/ 1 = 40°,/ 2= 75° B 、65° C 、60 ° ,则/ D 、55 ° l i bD 、 2014 3 =( C 、 A 、 B 、 正面 4、 ’某红外线遥控器发出的红外线波长为 A 、9.4X 10 7m B 、9.4X 107m 5、 下列计算正确的是( ) A 、(2a — 1)2=4a 2— 1 B 、3a 6- 3a 3= a 2 0.000 00094m , C 、9.4X 10—8m D 、 用科学计数法表示这个数是( D 、9.4 X 108m C 、(— ab 2) 4=- a 4b 6 D 、一 2a + (2a — 1) =- 1 4兀。

某天,一一 240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷 10千克。

假设零售商当天购进四星级枇杷 x 千克, 6、 某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低 位零售商分别用去 比五星级枇杷多购进 方程为( ) A 240 , 160 A 、 + 4 = - x x —10 二、填空题(本大题共 240 , 160 —4= _ x x — 10 8小题,每小题3分,共 240 . 160+ 4 = x —10 x 24分)因式分解:xy 2— x= 。

已知x = 1是关于x 的方程x 2+ x + 2k = 0的一个根,则它的另一个根是 已知2y = 3,则分式x —2y 的值为 10、 如图,正五边形 ABCDE , AF // CD 交BD 的延长线 于点F ,则/ DFA = ________ 度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 山东省淄博市博山区2017届中考数学一模试题 本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.满分120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.

注意事项: 1.答题前,考生务必用0.5毫米黑色签字笔将学校、班级、姓名、考试号、座号填写在答题卡和试卷的相应位置. 2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试卷上. 3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;需要在答题卡上作图时,可用2B铅笔,但必须把所画线条加黑. 4.答案不能使用涂改液、胶带纸、修正带修改.不按以上要求作答的答案无效.不允许使用计算器.

第Ⅰ卷(选择题 共48分) 一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确 的.每小题4分,错选、不选或选出的答案超过一个,均记零分. 1.下列关系式正确的是 (A)35.5°=35°5′ (B)35.5°=35°50′ (C)35.5°<35°5′ (D)35.5°>35°5′ 2.运用乘法公式计算(x+3)2的结果是 (A)x2+9 (B)x2-6x+9 (C)x2+6x+9 (D)x2+3x+9 3.到三角形三个顶点的距离都相等的点是这个三角形的 (A)三条高的交点 (B)三条角平分线的交点 (C)三条中线的交点 2

(D)三条边的垂直平分线的交点 4.下列分式中,最简分式是

(A)1122xx (B)112xx

(C)xyxyxyx2222 (D)122362xx 5.把多项式x2+ax+b分解因式,得(x+1)(x-3).则a,b的值分别是 (A)a=2,b=3 (B)a=-2,b=-3 (C)a=-2,b=3 (D)a=2,b=-3 6.下列计算正确的是

(A)3212 (B)2323 (C)xxx3 (D)xx2 7.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论: 甲:b-a<0;乙:a+b>0;丙:|a|<|b|;丁:0ba. 其中正确的是 (A)甲乙 (B)丙丁 (C)甲丙 (D)乙丁

8.估计16的值在 (A)2到3之间 (B)3到4之间 (C)4到5之间 (D)5到6之间 9.已知关于x,y的方程x2m-n-2+4ym+n+1=6是二元一次方程,则m,n的值为 (A)m=1,n=-1 (B)m=-1,n=1 (C)m=31,n=-34 (D)m=-31,n=34 10.如图,矩形ABCD的顶点A,C分别在直线a,b上,且a∥b,∠1=60°,则∠2的度数为 (A)30° (B)45° 3

(C)60° (D)75° 11.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是 (A)(2,-3) (B)(2,3) (C)(3,2) (D)(3,-2)

12.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为 (A)(1,-1) (B)(-1,-1)

(C)(2,0) (D)(0,-2)

第Ⅱ卷(非选择题 共72分) 二、填空题:本题共5小题,满分20分,只要求填写最后结果,每小题填对得4分. 13.若代数式x+2的值为1,则x等于 . 14.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是 .

15.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是 . 4

16.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是 .

17.如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是 mm.

三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤. 18.(本题满分5分) 如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF (1)根据题意,补全原图形; (2)求证:BE=DF. 5

19.(本题满分5分) 已知关于x的一元二次方程x2-6x+(2m+1)=0有实数根. (1)求m的取值范围; (2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.

20.(本题满分8分) 如图,在平面直径坐标系中,反比例函数y=xk(x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图

象于点D,CD=34. (1)求点D的横坐标(用含m的式子表示); (2)求反比例函数的解析式.

21.(本题满分8分) 在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下: 5640 6430 6520 6798 7325 8430 8215 7453 7446 6754 6

7638 6834 7326 6830 8648 8753 9450 9865 7290 7850 对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表: 步数分组统计表 组别 步数分组 频数 A 5500≤x<6500 2

B 6500≤x<7500 10

C 7500≤x<8500 m D 8500≤x<9500 3

E 9500≤x<10500 n 请根据以上信息解答下列问题: (1)求m,n的值; (2)补全频数发布直方图; (3)这20名“健步走运动”团队成员一天行走步数的中位数落在哪一组? (4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数. 7

22.(本题满分8分) 如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上. (1)求斜坡CD的高度DE; (2)求大楼AB的高度(结果保留根号)

23.(本题满分9分) 如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在弧AQ上且不.与A点重合,但Q点可与B点重合.

(1)弧AP的长与弧QB的长之和为定值l,请直接写出l的值; (2)请直接写出点M与AB的最大距离,此时点P,A间的距离;点M与AB的最小距离,此时半圆M的弧与AB所围成的封闭图形面积. (3)当半圆M与AB相切时,求弧AP的长.

(注:结果保留π,cos 35°=63,cos 55°=33) 8

24.(本题满分9分) 设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点

B2(21,0)作x轴的垂线,交抛物线于点A2;„;过点Bn(121n,0)(n为正整数)作x轴的垂

线,交抛物线于点An,连接AnBn+1,得Rt△AnBnBn+1. (1)求a的值; (2)直接写出线段AnBn,BnBn+1的长(用含n的式子表示); (3)在系列Rt△AnBnBn+1中,探究下列问题: ①当n为何值时,Rt△AnBnBn+1是等腰直角三角形? ②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△AkBkBk+1与Rt△AmBmBm+1相似?若存在,求出其相似比;若不存在,说明理由. 9

初四参考答案及评分标准 说明: 1、答案若有问题,请阅卷老师自行修正. 2、解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.各解答题只提供其中一种解法的评分标准,出现不同解法可参照评分标准给分. 3、选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 4、如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分不再给分.

一、选择题:每小题4分,满分48分. DCDAB ACBAC CB 二、填空题:本题共5小题,满分20分,只要求填写最后结果,每小题填对得4分.

13.-1 14.x>3 15.5 16.52或45或5 17.50 三、解答题:本大题共7小题,共52分. 18.(本题满分5分) (1)解:如图. „„„„„1分 (2)证明:平行四边形ABCD中,对角线AC,BD交于点O,∴OB=OD,OA=OC.∵E,F分别是OA,OC的中点,∴OE=21OA,OF=21OC,∴OE=OF.„„„„„3分

∵在△BEO与△DFO中,,∴△BEO≌△DFO(SAS),„4分 ∴BE=DF. „„„„„5分 19.(本题满分5分) 解:(1)根据题意得△=(-6)2-4(2m+1)≥0, „„„„„„„„1分 解得m≤4; „„„„„„„„2分 (2)根据题意得x1+x2=6,x1x2=2m+1, „„„„„„„„3分 而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20, 解得m≥3,„„„„„„4分 而m≤4,所以m的范围为3≤m≤4. „„„„„„„„5分

相关文档
最新文档