初三数学第一学期开学测验试卷及答案

合集下载

广东广雅中学2024~2025学年九年级上学期开学考试数学试题(解析版)

广东广雅中学2024~2025学年九年级上学期开学考试数学试题(解析版)

2024学年第一学期九年级综合素质评估试卷数学本试卷分选择题和非选择题两部分,共4页,共25小题,满分120分,考试用时120分钟.注意事项:1.开考前,考生务必用黑色字迹的钢笔或签字笔将自己的校名、姓名、班级、考号等相关信息填写在答题卡指定区域内.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.第一部分选择题部分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列各式中,属于最简二次根式的是()A. B. C. D.【答案】A【解析】【分析】本题考查了最简二次根式以及二次根式的性质,根据最简二次根式的定义:二次根式的被开方式中不含分母,并且不含有能开得尽方的因式或因数,进行判断即可.【详解】解:AB=C=,不是最简二次根式,不符合题意;D故选:A.2. 一组数据5,4,5,6,5,3,4的众数是()A. 3B. 4C. 5D. 6【答案】C【解析】【分析】此题考查众数的定义,根据众数的概念,找到该组数据中出现次数最多的数即可选出正确答案.【详解】解:数据5出现了3次,最多, 所以众数为5,故选:C .3. 下列各组数据中,是勾股数的是( )A.B. 6,7,8C. 1,2,3D. 9,12,15【答案】D【解析】【分析】本题考查勾股定理逆定理,两条较短线段的平方和等于较长线段的平方.根据勾股定理逆定理判断即可.【详解】解:A 、222+≠,不能组成直角三角形,不符合题意;B 、222678+≠,不能组成直角三角形,不符合题意;C 、123+=,不能组成三角形,不符合题意;D 、22291215+=,能组成直角三角形,符合题意;故选:D .4. 甲、乙、丙、丁四人参加射击比赛,经过几轮初赛后,他们的平均数相同,方差分别为:22220.34,0.21,0.4,0.5s s s s ≡===甲乙丁丙.如果要从这四人中选取成绩稳定的一人参加决赛,你认为最应该派去参加决赛的是( )A. 甲B. 乙C. 丙D. 丁【答案】B【解析】【分析】本题主要考查方差,解题的关键是掌握方差的意义,根据方差的定义进行判断即可得出答案.【详解】解:∵22220.34,0.21,0.4,0.5s s s s ≡===甲乙丁丙, 2222s s s s ∴<<<乙甲丁丙, ∴乙的成绩更加稳定,故选:B .5. 如图,已知四边形ABCD 是平行四边形,下列说法正确的是( )A. 若AB BC ⊥,则ABCD 是菱形B. 若AC BD ⊥,则ABCD 是正方形C. 若AC BD =,则ABCD 是矩形D. 若AB AD =,则ABCD 是正方形【答案】C【解析】 【分析】本题主要考查了矩形和正方形以及菱形的判定,熟练掌握矩形和正方形以及菱形的判定定理是解题的关键.根据矩形和正方形以及菱形的判定定理逐项判断,即可解答.【详解】解:A 、邻边互相垂直的平行四边形不一定是菱形,故A 错误,不符合题意;B 、因为对角线互相垂直的平行四边形是菱形,故B 错误,不符合题意;C 、若AC BD =,则ABCD 是矩形,故C 正确,符合题意;D 、因为邻边相等的平行四边形是菱形,故D 错误,不符合题意;故选:C .6. 已知方程2210kx x +−=有实数根,则k 的取值范围是( )A. 1k ≥−B. 1k ≥C. 1k ≤且0k ≠D. 1k ≥−且0k ≠ 【答案】A【解析】【分析】本题考查了根的判别式.讨论:当0k =时,方程化为一元一次方程,有一个实数解;当0k ≠时,根据根的判别式的意义得到224(1)0k ∆=−×−≥,解得1k ≥−且0k ≠,然后综合两种情况得到k 的取值范围.【详解】解:当0k =时,方程化为210x −=, 解得12x =; 当0k ≠时,则224(1)0k ∆=−×−≥,解得1k ≥−且0k ≠,综上所述,k 取值范围为1k ≥−.故选:A .7. 如图,矩形ABCD 中,8AB =,12AD =,E 为AD 的中点,F 为CD 边上任意一点,G ,H 分别为EF,的BF 的中点,则GH 的长是( )A. 6B. 5.5C. 6.5D. 5【答案】D【解析】 【分析】本题考查矩形的性质,三角形中位线定理,勾股定理,关键是由三角形中位线定理推出12GH BE =,由勾股定理求出BE 的长.连接BE ,由矩形的性质得到90A ∠=°,由勾股定理求出10BE,由三角形中位线定理得到152GH BE ==. 【详解】解:连接BE ,∵四边形ABCD 是矩形,90A ∴∠=°,12AD =∵,E 为AD 中点,162AE AD ∴==, 8AB = ,10BE ∴=,∵G ,H 分别为EF ,BF 中点,GH ∴是BEF △的中位线,152GH BE ∴==. 故选:D .8. 已知直线1l :y kx b =−+与直线2l :3y kx b =−在同一平面直角坐标系中的大致图象可能是( )A. B.C. D.【答案】B【解析】【分析】本题考查了一次函数的图象与性质,掌握一次函数的图象与性质,数形结合是本题的关键.根据两个一次函数的图象逐一分析系数符号即可解决.【详解】解:A 、直线1:l y kx b =−+中0k >,0b >,2:3l y kx b =−中0k >,0b <,b 的取值相矛盾,故本选项不符合题意;B 、直线1:l y kx b =−+中0k <,0b >,2:3l y kx b =−中0k <,0b >,k 、b 的取值一致,故本选项符合题意;C 、直线1:l y kx b =−+中0k >,0b >,2:3l y kx b =−中0k <,0b >,k 的取值相矛盾,故本选项不符合题意;D 、直线1:l y kx b =−+中0k <,0b <,2:3l y kx b =−中0k <,0b >,b 的取值相矛盾,故本选项不符合题意.故选:B .9. 在平面直角坐标系中,以方程组1y x m y x =−+ =−的解为坐标的点位于第三象限,则m 的取值范围是( ) A. 1m <−B. 1m <C. 1m >D. 11m −<<【答案】A【解析】【分析】此题考查了解不等式组、解二元一次方程组,利用了消去的思想,消去的方法有:加减消去法与代入消元法,还考查了点的坐标.先求出方程组1y x m y x =−+ =−的解.根据以方程组的解为坐标的点位于第三象限列出不等式组求解即可; 【详解】解:解方程组1y x m y x =−+ =− 得:1212m x m y + = − =, ∵以方程组1y x m y x =−+ =− 的解为坐标的点位于第三象限, ∴102102m m + < − <, 解得:1m <−,故选:A .10. 如图,在矩形ABCD 中,点E 在BC 上,10AE AD ==,6CD =,作AF DE ⊥于点G ,交CCCC 于F ,则CCCC 的长是( )A. 103B. 83C. 3D. 2【答案】B【解析】【分析】根据题意,10AD BC AE ===,6AB CD ==,可得8BE =,这样得2EC BC BE =−=,设CF x =,则6FE DF x ==−,利用勾股定理计算即可.本题考查了矩形的性质,勾股定理,线段的垂直平分线的判定和性质,熟练掌握勾股定理,线段的垂直平分线的判定和性质是解题的关键.【详解】解:∵矩形 ABCD ,10AD AE ==,6CD =,∴10AD BC AE ===,6AB CD ==,90B C ∠=∠=°,∴8BE =,∴2EC BC BE =−=,∵10AD AE ==,AF DE ⊥,∴直线AF 是线段DE 的垂直平分线,∴FE FD =,设CF x =,则6FE DF x ==−,则()2264x x −=+, 解得83x =, 故选:B .二、填空题(本大题共6小题,每小题3分,共18分.)11. 在实数范围内有意义,则x 的取值范围是__________.【答案】3x ≥【解析】【分析】根据二次根式被开方数的非负性求出答案.【详解】解:由题意得30x −≥,解得3x ≥,故答案为:3x ≥.【点睛】此题考查了二次根式的非负性,熟记二次根式的被开方数大于等于零的性质是解题的关键. 12. 已知()211350mm x x +−+−=是关于x 的一元二次方程,则m 的值为______. 【答案】1−【解析】【分析】此题主要考查了一元二次方程的定义:含有一个未知数,且未知数的最高次幂是2次的整式方程,特别注意二次项系数不为0,正确把握定义是解题关键.直接利用一元二次方程的定义知道二次项系数不为0同时x 的最高次幂为2,得出m 的值进而得出答案.【详解】解:由题意知:212m +=且10m −≠,解得1m =−,故答案为:1−.13. 已知正比例函数的图象过点()2,1A −,则该函数的解析式为______. 【答案】12y x =−【解析】【分析】本题考查的是求解正比例函数的解析式,直接利用待定系数法求解函数解析式即可.【详解】解:设正比例函数解析式为y kx =,∵正比例函数的图象过点()2,1A −21k ∴−=, 解得:12k =−, ∴该函数的解析式为12y x =−; 故答案为:12y x =− 14.已知1x =,1y =−,则22x y −的值为____________.【答案】【解析】【分析】先将22x y −因式分解,然后将1x =+、1y =−代入计算即可.详解】解:()())221111x y x y x y −=+−+++=−+故答案为键.15. 若关于x 的一元二次方程()200ax bx c a ++=≠的两根分别为13x =,22x =−,则方程()()2(1)100a x b x c a −+−+=≠的两根分别为______.【答案】14x =,21x =−【解析】【分析】本题考查一元二次方程的解的概念,根据一元二次方程的解即可求得结果.关键是把方程()()22230a x b x ++++=中的2x +看成一个新的未知数,则关于2x +的方程的解等于关于x 的一元二次方程230ax bx ++=的解. 【详解】解:由题意得:关于1x −的方程()()2(1)100a x b x c a −+−+=≠的解为:13x −=,12x −=−,【解得:14x =,21x =−,故答案为:14x =,21x =−.16. 如图,点()03B ,,A 为x 轴上一动点,将线段AB 绕点A 顺时针旋转90°得到.AC 连接.OC 当OC 取最小值时,点A 的坐标是_______________.【答案】302 −, 【解析】【分析】本题考查了直线与图形的变化,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题;如图,在x 轴的正半轴上取一点H ,使得3OH OB ==,在OB 上取一点D ,使得OD OA =.证明点C 在直线3y x =−上运动,根据垂线段最短即可解决问题.【详解】解:在x 轴的正半轴上取一点H ,使得3OH OB ==,在OB 上取一点D ,使得OD OA =.OB OH = ,OD OA =,BD AH ∴=,90HAC OAB ∠+∠=° ,90OAB ABO∠+∠=°, HAC DBA ∴∠=∠,BA AC = ,()SAS BDA AHC ∴ ≌,AHC ADB ∴∠=∠,OD OA = ,90AOD ∠=°,45ADO ∴∠=°,135AHC ADB ∴∠=∠=°,45CHx ∴∠=°,设直线CH 的解析式为y x b =+,()30H ,,∴直线CH 的解析式为3y x =−,∴点C 在直线3y x =−上运动,作OP CH ⊥于点P ,OP = 此时点3322P − ,,即3322C −,,设()0A m ,, AB AC = ,222233322m m ∴+=−+, 解得32m =−, ∴点302A −, 故答案为:3,02 −. 三、解答题(本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17. ()03π1−−. 【答案】3−【解析】【分析】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式混合运算法则,准确计算. 先算乘除法和零次幂,并化简二次根式,最后合并同类二次根式即可.()03π1+−1= 261=−+3=−18. 如图,在ABCD 中,E ,F 分别是,AB CD 的中点.求证:AF CE =.【答案】见解析【解析】【分析】本题考查平行四边形的判定和性质,线段中点的有关计算,解题的关键是掌握平行四边形的判定和性质.根据平行四边形的判定和性质和线段中点的有关计算,证明四边形AECF 是平行四边形,进而即可证明.【详解】证明: 四边形ABCD 是平行四边形,∴AB CD ∥,AB CD =,E ,F 分别是ABCD 的边AB ,CD 上的中点, ∴12CF CD =,12AE AB =, ∴CF AE =,CF AE ∥,∴四边形AECF 是平行四边形,∴AF CE =.19. 如图,已知CD AB ⊥,垂足为D ,1BD =,2CD =,4=AD .判断ABC 的形状,并说明理由.【答案】ABC 是直角三角形,理由见解析【解析】【分析】根据勾股定理分别求出2BC ,2AC ,再根据勾股定理逆定理,即可得出结论.【详解】解:ABC 是直角三角形.理由:CD AB ⊥ ,垂足为D ,1BD =,2CD =,4=AD .22222125BC BD CD ∴=+=+=,222224220AC AD CD =+=+=.415AB AD BD =+=+= ,22225205AB AC BC ∴==+=+.ABC ∴ 是直角三角形.【点睛】本题主要考查了勾股定理和勾股定理逆定理,解题的关键是掌握直角三角形两直角边平方和等于斜边平方,两边平方和等于第三边平方的三角形是直角三角形.20. (1)化简:24211326x x x x −+ −÷ ++; (2)若x 是一元二次方程2320x x −+=的解,请求出上面化简后的代数式的值.【答案】(1)21x −;(2)2 【解析】【分析】本题考查分式的化简求值、解一元二次方程,解答本题的关键是明确分式化简求值的方法. (1)根据分式的加法和除法可以化简题目中的式子即可;(2)根据因式分解法解一元二次方程,可以得到x 的值,然后将使得原分式有意义的x 的值代入化简后的式子即可解答本题. 【详解】解:(1)24211326x x x x −+ −÷ ++ 234(1)32(3)x x x x +−−÷++ 212(3)3(1)x x x x −+×+− 21x =−; (2)解方程:2320x x −+=∴(1)(2)0x x −−=∴121,2x x ==, ∵1x =时分式无意义∴当xx =2 时,原式2221=−. 21. 某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?【答案】(1)甲50,乙80,丙70;(2)丙.【解析】【分析】本题考查了加权平均数、扇形统计图等知识点,熟记相关公式是解题关键.(1)分别用200乘以三人的得票率,求出三人民主评议的得分各是多少即可.(2)根据加权平均数的计算方法列式计算,分别求出三人的得分各是多少;然后比较大小,判断出三人中谁的得分最高即可.小问1详解】解:甲民主评议得分是:20025%50×=(分); 乙民主评议的得分是:20040%80×=(分); 丙民主评议的得分是:20035%70×=(分). 【小问2详解】解:甲的成绩是:()()7549335034337291072.9×+×+×÷++=÷=(分), 乙的成绩是:()()8047038034337701077×+×+×÷++=÷=(分), 丙的成绩是:()()9046837034337741077.4×+×+×÷++=÷=(分),【的∵77.47772.9>>,∴丙的得分最高.22. 如图,在平面直角坐标中,直线26y x =−+与x 轴相交于点B ,与直线2y x =相交于点A .(1)求AOB 的面积;(2)点P 为y 轴上一点,当PA PB +取最小值时,求点P 的坐标,【答案】(1)92(2)()0,2P【解析】【分析】本题考查两直线相交问题,一次函数的性质以及轴对称−最短线路问题,解题的关键是掌握待定系数法.(1)先求出点B 的坐标,联立两直线解析式构成方程组,得262y x y x=−+= ,解方程组求出3,32A 即可求解; (2)直线26y x =−+与y 轴的交点()3,0B ,作点B 关于y 轴的对称点(3,0)B ′−,连接,AB PB ′,交x 轴于点P ,利用待定系数法求出AB ′的解析式并令函数值为0即可求出点P 的坐标.【小问1详解】解: 026B x =−+, ∴3B x =,即()3,0B ,联立262y x y x =−+ =, 解得:323x y = = ,∴点A 的坐标为3,32, ∴AOB 的面积为:11933222A OB y ⋅=××=; 【小问2详解】解:作点B 关于y 轴的对称点B ′,连接AB ′,交y 轴于点P ,PB PB ′= ,PB PA PB PA ′∴+=+,此时,,,B P A ′三点共线,PB PA +有最小值,()3,0B ,3,32A, (3,0)B ′∴−设直线AB ′的解析式为y k x b ′′=+, 代入(3,0)B ′−,3,32A ,的坐标得03332k b k b ′′′=−+ =+, 解得:223b k ==′′, ∴直线AB ′的解析式为223yx =+, 令0x =,得2y =, ∴点()0,2P 使PB PC +最小.23. 为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元.经过市场调研发现,每台售价为35万元时,年销售量为550台;每台售价为40万元时,年销售量为500台.假定该设备的年销售量y (单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y 与销售单价x 的函数关系式;(2)根据相关规定,此设备的销售单价不得高于60万元,如果该公司想获得8000万元的年利润.则该设备的销售单价应是多少万元?【答案】(1)10900y x =−+ (2)50万元【解析】【分析】(1)设年销售量y 与销售单价x 的函数关系式yy =kkxx +bb (kk ≠0),根据点的坐标,利用待定系数法即可求解;(2)设此设备的销售单价为m 万元/台,则每台设备的利润为()30m −万元,销售数量为()10900m −+台,根据总利润=单台利润×销售数量,即可得出关于m 的一元二次方程,解之取其小于60的值即可得出结论. 【小问1详解】解:设年销售量y 与销售单价x 的函数关系式yy =kkxx +bb (kk ≠0),将()35,550,()40,500代入解析式,得:3555040500k b k b += +=, 解得:10900k b =− =, ∴年销售量y 与销售单价x 的函数关系式为10900y x =−+; 【小问2详解】设此设备的销售单价为m 万元/台,则每台设备的利润为()30m −万元,销售数量为()10900m −+台,根据题意得:()()30109008000m m −−+=, 整理得:212035000m m −+=,解得:150m =, 270m =,此设备的销售单价不得高于60万元,50m ∴=,则该设备的销售单价应是50万元.【点睛】本题考查了待定系数法求一次函数解析式以及一元二次方程的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数关系式;(2)找准等量关系,正确列出一元二次方程.24. 某条城际铁路线共有A ,B ,C 三个车站,每日上午均有两班次列车从A 站驶往C 站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表 车次A 站B 站C 站 发车时刻 到站时刻 发车时刻 到站时刻D 10018:00 9:30 9:50 10:50 G 1002 8:25 途经B 站,不停车10:30 请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______; ②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d −=,求t 的值. 【答案】(1)90,60(2)①56;②75t =或125 【解析】【分析】本题考查了一元一次方程的应用,速度、时间、路程的关系,明确题意,合理分类讨论是解题的关键.(1)直接根据表中数据解答即可;(2)①分别求出D 1001次列车、G 1002次列车从A 站到C 站的时间,然后根据路程等于速度乘以时间求解即可;②先求出2v , A 与B 站之间的路程,G 1002次列车经过B 站时,对应t 的值,从而得出当90110t ≤≤时,D 1001次列车在B 站停车. G 1002次列车经过B 站时,D 1001次列车正在B 站停车,然后分2590t ≤<,90100t ≤≤,100110t <≤,110150t <≤讨论,根据题意列出关于t 的方程求解即可.【小问1详解】解:D 1001次列车从A 站到B 站行驶了90分钟,从B 站到C 站行驶了60分钟,故答案为:90,60;【小问2详解】解:①根据题意得:D 1001次列车从A 站到C 站共需9060150+=分钟,G 1002次列车从A 站到C 站共需356030125++=分钟,∴12150125v v =, ∴1256v v =, 故答案为:56; ②14v = (千米/分钟),1256v v =, 2 4.8v ∴=(千米/分钟).490360×= ,∴A 与B 站之间的路程为360.360 4.875÷=, ∴当100t =时,G 1002次列车经过B 站.由题意可如,当90110t ≤≤时,D 1001次列车在B 站停车.∴G 1002次列车经过B 站时,D 1001次列车正在B 站停车.ⅰ.当2590t ≤<时,12d d >,1212d d d d ∴−=−,()4 4.82560t t ∴−−=,75t =(分钟);ⅱ.当90100t ≤≤时,12d d ≥,1212d d d d ∴−=−,()360 4.82560t ∴−−=,87.5t =(分钟),不合题意,舍去; ⅲ.当100110t <≤时,12d d <,1221d d d d ∴−=−,()4.82536060t ∴−−=,112.5t =(分钟),不合题意,舍去;ⅳ.当110150t <≤时,12d d <,1221d d d d ∴−=−,()()4.825360411060t t ∴−−+−=,125t =(分钟). 综上所述,当75t =或125时,1260d d −=. 25. 如图,等边ABD △中,8AB =.(1)尺规作图:在图1中作点A 关于BD 的对称点C ,连接BC DC ,,并证明四边形ABCD 是菱形; (2)在(1)的条件下,点O 是四边形ABCD 对角线交点,动点E ,F ,G 分别在线段CD AC BC ,,上,且满足EF AD EG EF ⊥∥,,H 是FG 中点;①当OH AB ∥时,求证12OH DE =; ②当OH BC ⊥时,求OH 长度.【答案】(1)作图见解析,证明见解析(2 【解析】【分析】(1)作BAD ∠的平分线,交BD 于O ,截取OC OA =,点C 即为所作;由等边ABD △,可得AC 垂直平分BD ,即AC BD ⊥,OD OB =,进而可证四边形ABCD 是菱形;(2)①由题意证,EF CE =,如图2,作EP CF ⊥,则EP BD ∥,由EF CE =,可得P 是CF 的中点,如图2,连接PH ,则PH CG ∥,由OH AB ∥,AB CD ∥,可得30POH BAC OPH ∠=∠=°=∠,OH CD ∥,则OH PH =,如图2,作HQ EP ∥交EF 于M ,则HQ OD ∥,证明四边形ODQH 是平行四边形,证明四边形MEPH 是平行四边形,证明MEQ △是等边三角形,则QE ME PH ==,由2DE DQ QE OH PH OH =+=+=,可得12OH DE =;②由题意求2BP =,6CP =,2CE CG =,如图3,作EN CF 于H ,连接HN ,延长OH ,交BC 于P ,交EF于Q ,则四边形EGPQ 是矩形,QE PG PQ EG ==,,设CG a PG b ==,,则2EF CE a ==,PQ EG =,12HN a =,QE PG b ==,2FQ EF QE a b =−=−,6a b +=,证明()AAS FHQ GHP ≌,则12QH PH PQ ===,由题意知,2OF OQ =,2ON OH =,由勾股定理得,2FQ a b =−,则OQ =OH =,由QH OQ OH =++,可求a b =,则3a b ==,进而可求OH 的长. 【小问1详解】 解:作BAD ∠的平分线,交BD 于O ,截取OC OA =,点C 即为所作; ∵等边ABD △,∴AC 垂直平分BD ,即AC BD ⊥,OD OB =, 又∵OC OA =,∴四边形ABCD 菱形;【小问2详解】①证明:∵菱形ABCD ,∴30DAC DCA BAC BCA ∠=∠=∠=∠=°,60CDB ∠=°,120ADC ∠=°,BD AC ⊥,AB CD ∥,∵EF AD ∥,∴EFC DAC DCA ∠=∠=∠,120FEC ADC ∠=∠=°,60DEF ∠=°, ∴EF CE =,如图2,作EP CF ⊥,则EP BD∥,是图2∵EF CE =,∴P 是CF 的中点,如图2,连接PH ,∵H 是FG 中点,∴PH CG ∥,∴30OPH ACB ∠=∠=°, ∵OH AB ∥,AB CD ∥,∴30POH BAC OPH ∠=∠=°=∠,OH CD ∥,∴OH PH =,如图2,作HQ EP ∥交EF 于M ,则HQ OD ∥,∴四边形ODQH 是平行四边形,60CQH CDB ∠=∠=°, ∴DQ OH =,∵120EPH EPF OPH ∠=∠+∠=°,1602FEP CEF ∠=∠=°, ∴180EPH FEP ∠+∠=°,∴PH ME ∥,∴四边形MEPH 是平行四边形,∴PH ME =,∵60QEM MQE ∠=°=∠,∴MEQ △是等边三角形, ∴QEME PH ==, ∴2DE DQ QE OH PH OH =+=+=, ∴12OH DE =; ②解:∵菱形ABCD ,8AB =, ∴11422OB BD AB ===, ∵60DBC ∠=°,OHBC ⊥,∴30BOP ∠=°,∴2BP =,6CP =,∵60BCD ∠=°,90EGC FEG ∠=∠=°,∴30CEG ∠=°,∴2CE CG =,如图3,作EN CF 于H ,连接HN ,延长OH ,交BC 于P ,交EF 于Q ,则四边形EGPQ 是矩形,图3∴QE PGPQ EG ==,, 由①可知,EF CE =,HN CG ∥,12HN CG =, ∴90OHN QPC ∠=∠=°,30ONH BCA ∠=∠=°,设CG a PG b ==,,则2EF CE a ==,PQ EG =,12HN a =,QE PG b ==,2FQ EF QE a b =−=−,6a b +=,∵90FQH GPH ∠=°=∠,FHQ GHP ∠=∠,FH GH =, ∴()AAS FHQ GHP ≌,∴12QH PH PQ ===, 由题意知,2OF OQ =,2ON OH =,由勾股定理得,2FQ a b =−,解得,OQ =,同理,OH =, ∵QHOQ OH =+,a ,解得,a b =,∴3a b ==,∴OH =∴OH 【点睛】本题考查了作角平分线,等边三角形的判定与性质,菱形的判定与性质,中位线,等腰三角形的判定与性质,平行四边形的判定与性质,矩形的判定与性质,含30°的直角三角形,勾股定理等知识.熟练掌握作角平分线,等边三角形的判定与性质,菱形的判定与性质,中位线,等腰三角形的判定与性质,平行四边形的判定与性质,矩形的判定与性质,含30°的直角三角形,勾股定理是解题的关键.。

山东省聊城临清市2024-2025学年九年级数学第一学期开学考试试题【含答案】

山东省聊城临清市2024-2025学年九年级数学第一学期开学考试试题【含答案】

山东省聊城临清市2024-2025学年九年级数学第一学期开学考试试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是().A .50元,30元B .50元,40元C .50元,50元D .55元,50元2、(4分)下列式子为最简二次根式的是()A .B .C .D .3、(4分)下列图形中,是轴对称图形的有()①正方形;②菱形;③矩形;④平行四边形;⑤等腰三角形;⑥直角三角形A .6个B .5个C .4个D .3个4、(4分)在下列四个函数中,是一次函数的是()A .y 2x =B .y =x 2+1C .y =2x +1D .y 1x =+65、(4分)如图,在已知的△ABC 中,按以下步骤作图:①分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于两点EF ;②作直线EF 交BC 于点D 连接AD .若AD =AC ,∠C =40°,则∠BAC 的度数是()A .105°B .110°C .I15°D .120°6、(4分)如图,一客轮以16海里/时的速度从港口A 出发向东北方向航行,另一客轮同时以12海里/时的速度从港口A 出发向东南方向航行,离开港口2小时后,则两船相距()A .25海里B .30海里C .35海里D .40海里7、(4分)在平面内,下列图案中,能通过图平移得到的是()A .B .C .D .8、(4分)对于反比例函数2y x =-,下列说法中不正确的是()A .图像经过点(1.-2)B .图像分布在第二第四象限C .x >0时,y 随x 增大而增大D .若点A (11,x y )B (22,x y )在图像上,若12<x x ,则12<y y 二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,直线y=3x 和y=kx+2相交于点P (a ,3),则关于x 不等式(3﹣k )x≤2的解集为_____.10、(4分)已知一次函数y x b =-+的图象过点()8,2,那么此一次函数的解析式为__________.11、(4分)如图,平行四边形ABCO 的顶点O ,A ,C 的坐标分别是(0,0),(a ,0),(b ,c),则顶点坐标B 的坐标为_________.12、(4分)如图,在平面直角坐标系xOy 中,有两点A(2,4),B(4,0),以原点O 为位似中心,把△OAB 缩小得到△OA'B'.若B'的坐标为(2,0),则点A'的坐标为_____.13、(4分)如图,一次函数y=kx+b 与x 轴、y 轴分别交于A 、B 两点,则不等式kx+b ﹣1>0的解集是_____.三、解答题(本大题共5个小题,共48分)14、(12分)先化简,再求值:22121124a a a a ++⎛⎫-÷ ⎪+-⎝⎭,其中a=315、(8分)(1)如图甲,从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证因式分解公式成立的是________;(2)根据下面四个算式:5232=(5+3)×(53)=8×2;11252=(11+5)×(115)=16×6=8×12;15232=(15+3)×(153)=18×12=8×27;19272=(19+7)×(197)=26×12=8×1.请你再写出两个(不同于上面算式)具有上述规律的算式;(3)用文字写出反映(2)中算式的规律,并证明这个规律的正确性.16、(8分)有这样一个问题:探究函数3y x =(22)x -≤≤的图象与性质,小东根据学习函数的经验,对函数的图象与性质进行了探究,下面是小东的探究过程,请补充完整:(1)下表是y 与x 的几组对应值,则m =.x …2-32-1-12-0121322…y …8-278-1-18-0181m 8…(2)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)当0x <时,y 随x 的增大而;当12x -≤≤时,y 的最小值为.17、(10分)如图,已知四边形ABCD 是平行四边形,AE ⊥BC ,AF ⊥DC ,垂足分别是E ,F ,并且BE=DF ,求证;四边形ABCD 是菱形.18、(10分)如图,矩形ABCD 的对角线交于点O ,点E 是矩形外的一点,其中//,//AE BD BE AC .(1)求证:四边形AEBO 是菱形;(2)若030ADB ∠=,连接CE 交于BD 于点F ,连接AF ,求证:AF 平分BAO ∠.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=70°,则∠ECF的度数是_________.20、(4分)现有甲、乙两支篮球队,每支球队队员身高的平均数均为1.85米,方差分别为20.32S=甲,20.36S=乙,则身高较整齐的球队是_______队.21、(4分)若数据10,9,a,12,9的平均数是10,则这组数据的方差是_____22、(4分)已知函数y=(k-1)x|k|是正比例函数,则k=________23、(4分)在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8,S四边形ABCD=16,那么对角线BD=______.二、解答题(本大题共3个小题,共30分)24、(8分)已知一次函数的图象经过点(-2,-7)和(2,5),求该一次函数解析式并求出函数图象与y轴的交点坐标.25、(10分)如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m 为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.26、(12分)在Rt ABC ∆中,90,30,2C BAC BC ∠=∠==,以点B 为旋转中心,把ABC ∆逆时针旋转90,得到''A BC ∆,连接'AA ,求'AA 的长.一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】1出现了3次,出现的次数最多,则众数是1;把这组数据从小到大排列为:20,25,30,1,1,1,55,最中间的数是1,则中位数是1.故选C.2、A【解析】解:选项A,被开方数不含分母;被开方数不含能开得尽方的因数或因式,A符合题意;选项B,被开方数含能开得尽方的因数或因式,B不符合题意;选项C,被开方数含能开得尽方的因数或因式,C不符合题意;选项D,被开方数含分母,D不符合题意,故选A.3、C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【详解】解:①正方形,是轴对称图形;②菱形,是轴对称图形;③矩形,是轴对称图形;④平行四边形,不是轴对称图形;⑤等腰三角形,是轴对称图形;⑥直角三角形,不一定,是轴对称图形,故轴对称图形共4个.故选:C.此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.4、C【解析】依据一次函数的定义进行解答即可.【详解】解:A、y=2x是反比例函数,故A错误;B、y=x2+1是二次函数,故B错误;C、y=2x+1是一次函数,故C正确;D、y=1x+6中,自变量x的次数为﹣1,不是一次函数,故D错误.故选C.本题主要考查的是一次函数的定义,掌握一次函数的定义是解题的关键.5、D【解析】利用基本作图得到EF垂直平分AB,根据垂直平分线的性质可得DA=DB,根据等腰三角形的性质可得∠B=∠DAB,然后利用等腰三角形的性质可得∠ADC=40°,根据三角形外角性质可得∠B=20°,根据三角形内角和定理即可得答案.【详解】由作法得EF垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD=AC,∠C=40°,∴∠ADC=∠C=40°,∵∠ADC=∠B+∠DAB,∴∠B=12∠ADC=20°,∴∠BAC=180°-∠B-∠C=120°.故选:D.本题考查的是基本尺规作图和线段垂直平分线的性质,熟练掌握线段的垂直平分线上的点到线段的两个端点的距离相等的性质是解题的关键.6、D 【解析】首先根据路程=速度×时间可得AC 、AB 的长,然后连接BC ,再利用勾股定理计算出BC 长即可.【详解】解:连接BC ,由题意得:AC=16×2=32(海里),AB=12×2=24(海里),=40(海里),故选:D .本题主要考查了勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.7、B 【解析】把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移.【详解】解:观察四个选项,可知B 选项为原图经过平移所得,形状和方向均未发生改变.故选择B.理解平移只改变位置,不改变图片的形状、大小和方向.8、D【解析】根据反比例函数图象上点的坐标特征及反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.【详解】A.把点(1,-2)代入2y x =-得:-2=-2,故该选项正确,不符合题意,B.∵k=-2<0,∴函数图像分布在第二第四象限,故该选项正确,不符合题意,C.∵k=-2<0,∴x>0时,y 随x 增大而增大,故该选项正确,不符合题意,D.∵反比例函数2y x =-的图象在二、四象限,∴x<0时,y>0,x>0时,y<0,∴x 1<0<x 2时,y 1>y 2,故该选项错误,符合题意,故选D.本题考查反比例函数图象上点的坐标特征及反比例函数的性质,对于反比例函数k y x =,当k>0时,图象在一、三象限,在各象限内,y 随x 的增大而减小;当k<0时,图象在二、四象限,在各象限内,y 随x 的增大而增大;熟练掌握反比例函数的性质是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、x≤2.【解析】【分析】先把点P (a ,3)代入直线y=3x 求出a 的值,可得出P 点坐标,再根据函数图象进行解答即可.【详解】∵直线y=3x 和直线y=kx+2的图象相交于点P (a ,3),∴3=3a ,解得a=2,∴P (2,3),由函数图象可知,当x≤2时,直线y=3x 的图象在直线y=kx+2的图象的下方.即当x≤2时,kx+2≥3x ,即:(3-k )x≤2.故正确答案为:x≤2.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.10、10y x =-+【解析】用待定系数法即可得到答案.【详解】解:把()8,2代入y x b =-+得82b -+=,解得10b =,所以一次函数解析式为10y x =-+.故答案为10y x =-+本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.11、(a+b ,c)【解析】平行四边形的对边相等,B 点的横坐标减去C 点的横坐标,等于A 点的横坐标减去O 点的横坐标,B 点和C 点的纵坐标相等,从而确定B 点的坐标.【详解】∵四边形ABCO 是平行四边形,∴AO=BC ,AO ∥BC ,∴B 点的横坐标减去C 点的横坐标,等于A 点的横坐标减去O 点的横坐标,B 点和C 点的纵坐标相等,∵O ,A ,C 的坐标分别是(0,0),(a ,0),(b ,c),∴B 点的坐标为(a+b ,c).故答案是:(a+b ,c).本题考查平行四边形的性质,平行四边形的对边相等,以及考查坐标与图形的性质等知识点.12、(1,2)【解析】根据位似变换的性质,坐标与图形性质计算.【详解】点B 的坐标为(4,0),以原点O 为位似中心,把△OAB 缩小得到△OA'B',B'的坐标为(2,0),∴以原点O 为位似中心,把△OAB 缩小,得到△OA'B',∵点A 的坐标为(2,4),∴点A'的坐标为(2×,4×),即(1,2),故答案是:(1,2).考查的是位似变换,坐标与图形性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .13、x <1【解析】由一次函数y=kx +b 的图象过点(1,1),且y 随x 的增大而减小,从而得出不等式kx +b ﹣1>1的解集.【详解】由一次函数的图象可知,此函数是减函数,即y 随x 的增大而减小,∵一次函数y =kx +b 的图象与y 轴交于点(1,1),∴当x <1时,有kx +b ﹣1>1.故答案为x <1本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.三、解答题(本大题共5个小题,共48分)14、14【解析】根据分式的运算法则及运算顺序,把所给的分式化为最简分式,再代入求值即可.【详解】原式=221(2)(2)22(1)1a a a a a a a +-+--⨯=+++当3a =时,原式=321314-=+本题考查了分式的化简求值,根据分式的运算法则及运算顺序,把所给的分式化为最简分式是解决问题的关键.15、(1)a 2-b 2=(a +b )(ab );(2)72-52=8×3;92-32=8×9等;(3)规律:任意两个奇数的平方差是8的倍数,证明见解析【解析】(1)利用两个图形,分别求出阴影部分的面积,即可得出关系式;(2)任意写出两个奇数的平方差,右边写出8的倍数的形式即可;(3)两个奇数的平方差一定能被8整除;任意写一个即可,如:(2n+1)2-(2n-1)2=8n.【详解】解:(1)图甲的阴影部分的面积为:a2-b2,图乙平行四边形的底为(a+b),高为(a-b),因此面积为:(a+b)(a-b),所以a2-b2=(a+b)(a-b),故答案为:a2-b2=(a+b)(a-b);(2)32-12=(3+1)×(3-1)=4×2=8×1,172-52=(17+5)×(17-5)=22×12=8×33,(3)两个奇数的平方差一定能被8整除;设较大的奇数为(2n+1)较小的奇数为(2n-1),则,(2n+1)2-(2n-1)2=[(2n+1)+(2n-1)][(2n+1)-(2n-1)]=8n,∴(2n+1)2-(2n-1)2=8n.即:任意两个奇数的平方差是8的倍数本题考查平方差公式及其应用,掌握平方差公式的结构特征是正确应用的前提.16、(1)278;(2)详见解析;(3)增大;1【解析】(1)把x=32代入函数解析式即可得到结论;(2)根据描出的点,画出该函数的图象即可;(3)根据函数图象即可得到结论.【详解】解:(1)把x=32代入y=x3得,y=278;故答案为:27 8;(2)如图所示:(3)根据图象得,当x <0时,y 随x 的增大而增大;当12x -≤≤时,y 的最小值为-1.故答案为:增大;1-.本题考查了函数的图象与性质,正确的画出函数的图形是解题的关键.17、见解析【解析】平行四边形的对角相等,得∠B=∠D ,结合AE ⊥BC ,AF ⊥DC 和BE=DF ,由角边角定理证明△ABE 全等△ADF ,再由全等三角形对应边相等得DA=AB ,最后根据邻边相等的平行四边形是菱形判定四边形ABCD 是菱形.【详解】∵四边形ABCD 是平行四边形,∴∠B=∠D ,∵AE ⊥BC ,AF ⊥DC∴∠AEB=∠AFD=90°又∵BE=DF ,∴△ABE ≌△ADF(AAS)∴DA=AB ,∴平行四边形ABCD 是菱形此题主要考查菱形的判定,解题的关键是熟知全等三角形的判定与性质及菱形的判定定理.18、(1)见解析;(2)见解析.【解析】(1)由矩形可知OA=OB ,由AE ∥BD ,BE ∥AC ,即可得出结论;(2)利用矩形和菱形的性质先证△COF ≌△EBF ,得到OF=BF ,再求得∠AOB=60°,利用有一个角是60°的等腰三角形是等边三角形,得到△AOB 为等边三角形,最后利用三线合一的性质得到AF 平分∠BAO .【详解】证明:(1)∵四边形ABCD 是矩形,∴AC BD =则1122AC BD =,即∴AO BO =又∵//,//AE BD BE AC ,∴四边形ABCD 是平行四边形,∴四边形ABCD 是菱形;(2)∵四边形ABCD 是菱形,∴,//AO EB AO EB =,∴COF EBF ∠=∠,∵四边形ABCD 是矩形,∴AO OC OB OD ===,∴EB OC =,在COF ∆和EBF ∆中CFO EFBCOF EBF CO EB∠=∠⎧⎪∠=∠⎨⎪=⎩∴()COF EBF AAS ∆≅∆,∴OF BF =,∵030,ADB AO OD ∠==,∴030ADB DAO ∠=∠=,∴060AOB ADB DAO ∠=∠+∠=,∵AO OB =,∴AOB ∆是等边三角形,∵OF BF =,∴AF 平分BAO ∠.本题考查了矩形的性质,菱形的判定与性质,等边三角形的判定,三线合一的性质.一、填空题(本大题共5个小题,每小题4分,共20分)19、35°【解析】根据折叠的性质可得∠ECB=∠ECF ,CB=CF ,根据菱形的性质可得CB=CD ,∠B=∠D=70°,∠BCD=180°-∠D=110°,求出等腰三角形DCF 的顶角∠DCF ,即可求出∠ECF 的度数【详解】解:在菱形ABCD 中,CB=CD ,∠B=∠D=70°,∠BCD=180°-∠D=110°,根据折叠可得:∠ECB=∠ECF ,CB=CF ,∴CF=CD ∴∠DCF=180°-70°-70°=40°,∴∠ECF=12(∠BCD-∠DCF )=35°.故答案为35°.本题考查图形的翻折变换,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.20、甲【解析】根据方差的意义解答.方差,通俗点讲,就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】∵2S 甲<2S 乙,∴身高较整齐的球队是甲队。

2024-2025学年河南省安阳市林州市九年级数学第一学期开学检测模拟试题【含答案】

2024-2025学年河南省安阳市林州市九年级数学第一学期开学检测模拟试题【含答案】

学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2024-2025学年河南省安阳市林州市九年级数学第一学期开学检测模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)分式方程-1=的解为()A .x =1B .x =-1C .无解D .x =-22、(4分)如果30x y -=,那么代数式()2222x y x y x xy y +⋅--+的值为()A .27-B .27C .72-D .723、(4分)如图,过点A (4,5)分别作x 轴、y 轴的平行线,交直线y=﹣x +6于B 、C 两点,若函数y=k x (x >0)的图象△ABC 的边有公共点,则k 的取值范围是()A .5≤k ≤20B .8≤k ≤20C .5≤k ≤8D .9≤k ≤204、(4分)如图,在矩形ABCD 中,M 是BC 边上一点,连接AM ,DM.过点D 作DE AM ⊥,垂足为E.若DE DC 1==,AE 2EM =,则BM 的长为()A .1B .233C .12D .2555、(4分)如图,有一直角三角形纸片ABC,∠C=90°,∠B =30°,将该直角三角形纸片沿DE 折叠,使点B 与点A 重合,DE=1,则BC 的长度为()A .2B 2C .3D .26、(4分)小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1.这组数据的中位数和众数分别为()A .8,1B .1,9C .8,9D .9,17、(4分)已知一组数据3,a ,4,5的众数为4,则这组数据的平均数为()A .3B .4C .5D .68、(4分)已知一次函数y=(m+1)x+n-2的图象经过一.三.四象限,则m ,n 的取值范围是()A .m >-1,n >2B .m <-1,n >2C .m >-1,n <2D .m <-1,n <2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)分解因式:x 2-9=_▲.10、(4分)已知函数2(1)3m y m x =-+是关于x 的一次函数,则m 的值为_____.11、(4分)八年级(3)班共有学生50人,如图是该班一次信息技术模拟测试成绩的频数分布直方图(满分为50分,成绩均为整数),若不低于30分为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.12、(4分)某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打_____折.13、(4分)如图所示,在▱ABCD 中,∠C=40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__.三、解答题(本大题共5个小题,共48分)14、(12分)如图,点B E C F ,,,在同一直线上,90A D ∠=∠=︒,BE CF =,AC DE =.求证:ACB DEF ∠=∠.15、(8分)小红同学根据学习函数的经验,对新函数62y x =+的图象和性质进行了如下探究,请帮她把探究过程补充完整.第一步:通过列表、描点、连线作出了函数62y x =+的图象x …-6-5-4-3-1012…y …-1.5-2-3-66321.5…第二步:在同一直角坐标系中作出函数6y x =的图象(1)观察发现:函数62y x =+的图象与反比例函数6y x =的图象都是双曲线,并且形状也相同,只是位置发生了改变.小红还发现,这两个函数图像既是中心对称图形,又是轴对称图形,请你直接写出函数62y x =+的对称中心的坐标.(2)能力提升:函数62y x =+的图象可由反比例函数6y x =的图象平移得到,请你根据学习函数平移的方法,写出函数62y x =+的图象可由反比例函数6y x =的图象经过怎样平移得到?(3)应用:在所给的平面直角坐标系中画出函数62y x =-的图像,若点()11,x y ,()22,x y 在函数62y x =-的图像上,且122x x <<时,直接写出1y 、2y 的大小关系.16、(8分)如图,在正方形ABCD 中,点E 是BC 边上的一动点,点F 是CD 上一点,且CE DF =,AF 、DE 相交于点G .(1)求证:ADF DCE ≌;(2)求AGD ∠的度数(3)若BG BC =,求DG AG 的值.17、(10分)如图,四边形ABCD 的对角线AC ⊥BD 于点E ,AB=BC ,F 为四边形ABCD 外一点,且∠FCA=90°,∠CBF=∠DCB ,(1)求证:四边形DBFC 是平行四边形;(2)如果BC 平分∠DBF ,∠CDB=45°,BD=2,求AC 的长.18、(10分)已知函数y =(2m+1)x+m-3(1)若函数图象经过原点,求m 的值.(2)若函数图象在y 轴的交点的纵坐标为-2,求m 的值.(3)若函数的图象平行直线y=-3x–3,求m 的值.(4)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知平行四边形ABCD 中,∠B +∠D =270°,则∠C =________.20、(4分)分式21x x -与21x x +的最简公分母是__________.21、(4分)甲、乙两支球队队员身高的平均数相等,且方差分别为20.18s =甲,20.32s =乙,则身高罗整齐的球队是________队.(填“甲”或“乙”)22、(4分)某学校八年级3班有50名同学,30名男生的平均身高为170,20cm 名女生的平均身高160cm ,则全班学生的平均身高是__________cm .23、(4分)将直线2y x =向上平移1个单位,那么平移后所得直线的表达式是_______________二、解答题(本大题共3个小题,共30分)24、(8分)现从A ,B 两市场向甲、乙两地运送水果,A ,B 两个水果市场分别有水果35和15吨,其中甲地需要水果20吨,乙地需要水果30吨,从A 到甲地运费50元/吨,到乙地30元/吨;从B 到甲地运费60元/吨,到乙地45元/吨(1)设A 市场向甲地运送水果x 吨,请完成表:运往甲地(单位:吨)运往乙地(单位:吨)A 市场xB 市场(2)设总运费为W 元,请写出W 与x 的函数关系式,写明x 的取值范围;(3)怎样调运水果才能使运费最少?运费最少是多少元?25、(10分)如图1,在矩形ABCD 中,AB=4,AD=5,E 为射线BC 上一点,DF ⊥AE 于F ,连结DE .(1)当E 在线段BC 上时①若DE=5,求BE 的长;②若CE=EF ,求证:AD=AE ;(2)连结BF ,在点E 的运动过程中:①当△ABF 是以AB 为底的等腰三角形时,求BE 的长;②记△ADF 的面积为S 1,记△DCE 的面积为S 2,当BF ∥DE 时,请直接写出S 1:S 2的值.26、(12分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC 中,点O 在线段BC 上,∠BAO=30°,∠OAC=75°,AO=,BO :CO=1:3,求AB 的长.经过社团成员讨论发现,过点B 作BD ∥AC ,交AO 的延长线于点D ,通过构造△ABD 就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥AD ,AO=,∠ABC=∠ACB=75°,BO :OD=1:3,求DC 的长.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C 【解析】解:去分母得:x (x +2)﹣(x ﹣1)(x +2)=3,整理得:2x ﹣x +2=3,解得:x =1,检验:把x =1代入(x ﹣1)(x +2)=0,所以分式方程无解.故选C .点睛:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.2、D 【解析】先把分母因式分解,再约分得到原式=2x y x y +-,然后把x=3y 代入计算即可.【详解】原式=()22x y x y +-•(x-y )=2x y x y +-,∵x-3y=0,∴x=3y ,∴原式=63y y y y +-=72.故选:D .本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.3、A【解析】若反比例函数与三角形交于A(4,5),则k=20;若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故520k ≤≤.故选A.4、D 【解析】由AAS 证明ABM ≌DEA ,得出AM AD =,证出BC AD 3EM ==,连接DM ,由HL 证明Rt DEM ≌Rt DCM ,得出EM CM =,因此BC 3CM =,设EM CM x ==,则BM 2x =,AM BC 3x ==,在Rt ABM 中,由勾股定理得出方程,解方程即可.【详解】解:四边形ABCD 是矩形,AB DC 1∴==,B C 90∠∠==,AD //BC ,AD BC =,AMB DAE ∠∠∴=,DE DC =,AB DE ∴=,DE AM ⊥,DEA DEM 90∠∠∴==,在ABM 和DEA 中,AMB DAE B DEA 90AB DE ∠∠∠∠=⎧⎪==⎨⎪=⎩,ABM ∴≌()DEA AAS ,AM AD ∴=,AE 2EM =,BC AD 3EM ∴==,在Rt DEM 和Rt DCM 中,DM DMDE DC =⎧⎨=⎩,Rt DEM ∴≌()Rt DCM HL ,EM CM ∴=,BC 3CM ∴=,设EM CM x ==,则BM 2x =,AM BC 3x ==,在Rt ABM 中,由勾股定理得:2221(2x)(3x)+=,解得:5x 5=,BM 5∴=.故选D .本题考查了矩形的性质、全等三角形的判定与性质、勾股定理;熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问题的关键.5、C 【解析】分析:先由∠B =30°,将该直角三角形纸片沿DE 折叠,使点B 与点A 重合,DE=1,得到AD=BD=2,再根据∠C=90°,∠B =30°得∠CAD=30°,然后在Rt △ACD 中,利用30°的角所对的直角边是斜边的一半求得CD=1,从而求得BC 的长度.详解:∵△ABC 折叠,点B 与点A 重合,折痕为DE ,∴AD =BD ,∠B =∠CAD=30°,∠DEB=90°,∴AD=BD=2,∠CAD=30°,∴CD=12AD=1,∴BC=BD+CD=2+1=3故选:C .点睛:本题考查了翻折变换,主要利用了翻折前后对应边相等,此类题目,难点在于利用直角三角形中30°的角所对应的直角边是斜边的一半来解决问题.6、D【解析】最中间的数是9,则中位数是9;1出现了3次,出现的次数最多,则众数是1;故选D.考点:众数;中位数.7、B【解析】试题分析:要求平均数只要求出数据之和再除以总的个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.数据3,a,1,5的众数为1,即1次数最多;即a=1.则其平均数为(3+1+1+5)÷1=1.故选B.考点:1.算术平均数;2.众数.8、C【解析】根据一次函数的图象和性质得出m+1>0,n-2<0,解不等式即可.【详解】解:∵一次函数y=(m+1)x+n-2的图象经过一.三.四象限∴m+1>0,n-2<0∴m>-1,n<2,故选:C.本题主要考查了一次函数图象与系数的关系,关键是掌握数形结合思想.二、填空题(本大题共5个小题,每小题4分,共20分)9、(x+3)(x-3)【解析】x2-9=(x+3)(x-3),故答案为(x+3)(x-3).10、-1【解析】根据一次函数的定义,可得答案.【详解】解:由2(1)3m y m x =-+是关于x 的一次函数,得2110m m ⎧=⎨-≠⎩,解得m=-1.本题主要考查了一次函数的定义,一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1.11、70%【解析】利用合格的人数即50-10-5=35人,除以总人数即可求得.【详解】解:该班此次成绩达到合格的同学占全班人数的百分比是5010550--×100%=70%.故答案是:70%.本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.12、1.1.【解析】设打x 折,则售价是500×10x 元.根据利润率不低于10%就可以列出不等式,求出x 的范围.【详解】解:要保持利润率不低于10%,设可打x 折.则500×10x -400≥400×10%,解得x≥1.1.故答案是:1.1.本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.13、50°.【解析】解:∵四边形ABCD 是平行四边形,∴DC ∥AB ,∴∠C=∠ABF .又∵∠C=40°,∴∠ABF=40°.∵EF ⊥BF ,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案为50°.本题考查平行四边形的性质.三、解答题(本大题共5个小题,共48分)14、详见解析【解析】先证出BC FE =,由HL 证明Rt △ABC ≌Rt △DFE ,得出对应边相等即可.【详解】解:证明:90A D ∠=∠=︒,∴△ABC 和△DEF 都是直角三角形,BE CF =,BE EC FC EC ∴+=+即BC EF =,在Rt △ABC 和Rt △DFE 中,BC FE AC DE =⎧⎨=⎩,∴Rt △ABC ≌Rt △DFE (HL ),∴ACB DEF ∠=∠.本题考查了全等三角形的判定与性质;熟练掌握直角三角形全等的判定方法是解决问题的关键.15、(1)观察发现:()2,0-;(2)能力提升:函数62y x =+的图象可由反比例函数6y x =的图象向左平移2个单位平移得到;(3)应用:见解析,12y y >.【解析】(1)根据函数的图象,可得出结论;(2)根据平移的规律即可求解;(3)根据函数图象即可求得.【详解】解:(1)()2,0-(2)函数62y x =+的图象可由反比例函数6y x =的图象向左平移2个单位平移得到.学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………(3)画图如图12y y >本题考查了函数的图象与性质,解题的关键是理解题意,灵活运用所学知识解决问题.16、(1)见解析;(2)∠AGD =90°;(3)12DG AG =.【解析】(1)直接利用正方形的性质得到AD =DC ,∠ADF =∠DCE ,CE DF =,结合全等三角形的判定方法得出答案;(2)根据∠DAF =∠CDE 和余角的性质可得∠AGD =90°;(3)利用全等三角形的判定和性质得出△ABH ≌△ADG (AAS ),即可得出DG AG 的值.【详解】(1)证明:∵四边形ABCD 是正方形,∴AD =DC ,∠ADF =∠DCE =90°,在△ADF 和△DCE 中AD DCADF DCE DF EC=⎧⎪∠=∠⎨⎪=⎩;∴△ADF ≌△DCE (SAS );(2)解:由(1)得△ADF ≌△DCE ,∴∠DAF =∠CDE ,∵∠ADG +∠CDE =90°,∴∠ADG +∠DAF =90°,∴∠AGD =90°,(3)过点B 作BH ⊥AG 于H ∵BH ⊥AG ,∴∠BHA =90°,∴∠BHA =∠AGD ,∵四边形ABCD 是正方形,∴AB =AD =BC ,∠BAD =90°,∵∠ABH +∠BAH =90°,∠DAG +∠BAH =90°,∴∠ABH =∠DAG ,在△ABH 和△ADG 中BHA AGD ABH DAG BA DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≌△ADG (AAS),∴AH =DG ,∵BG =BC ,BA =BC ,∴BA =BG ,∴AH =12AG ,∴DG =12AG ,∴12DG AG =.此题主要考查了正方形的性质以及全等三角形的判定和性质,正确得出△ABH ≌△ADG 是解题关键.17、(1)证明见解析;(2).【解析】(1)证明四边形DBCF 的两组对边分别平行;(2)作CM ⊥BF 于F ,△CFM 是等腰直角三角形,求出CM 的长即可得到AC 的长.【详解】解:(1)证明:∵AC ⊥BD ,∠FCA=90°,∴∠AEB=∠FCA=90°,∴BD ∥CF.∵∠CBF=∠DCB .∴CD ∥BF ,∴四边形DBFC 是平行四边形;(2)解:∵四边形DBFC 是平行四边形,∴CF=BD=2,∠F=∠CDB=45°,∵AB=BC ,AC ⊥BD ,∴AE=CE ,作CM ⊥BF 于F ,∵BC 平分∠DBF ,∴CE=CM ,∴△CFM 是等腰直角三角形,∴CM=2,∴AE=CE=,∴AC=2.18、(1)m=3;(2)m=1;(3)m=-2;(4)m<-12.【解析】(1)把原点坐标代入函数y=(2m+1)x+m-3可解出m ;(2)先确定直线y=(2m+1)x+m-3与y 轴的交点坐标,再根据题意得到m-3=-2,然后解方程;(3)根据两直线平行的问题得到2m+1=-3,然后解方程;(4)根据一次函数的性质得到2m+1<0,然后解不等式.【详解】(1)把(0,0)代入y=(2m+1)x+m-3得m-3=0,解得m=3;(2)把x=0代入y=(2m+1)x+m-3得y=m-3,则直线y=(2m+1)x+m-3与y 轴的交点坐标为(0,m-3),所以m-3=-2,解得m=1;(3)由直线y=(2m+1)x+m-3平行直线y=-3x-3,所以2m+1=-3,解得m=-2;(4)根据题意得2m+1<0,解得m <12-.本题难度中等.主要考查学生对一次函数各知识点的掌握.属于中考常见题型,应加强训练,同时,注意数形结合的应用.一、填空题(本大题共5个小题,每小题4分,共20分)19、45°【解析】试题解析:∵四边形ABCD 为平行四边形,∴AD ∥BC ,∠B =∠D ,180C D ∴∠+∠=,且270,B D ∠+∠=︒135B D ∴∠=∠=,18013545.C ∴∠=-=故答案为45.点睛:平行四边形的对角相等,邻角互补.20、()()11x x x -+【解析】先把分母分解因式,再根据最简公分母定义即可求出.【详解】解:第一个分母可化为(x-1)(x+1)第二个分母可化为x (x+1)∴最简公分母是x (x-1)(x+1).故答案为:x (x-1)(x+1)此题的关键是利用最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作最简公分母.21、甲【解析】根据方差的定义,方差越小数据越稳定.【详解】解:∵S 甲2=0.18,S 乙2=0.32,∴S 甲2<S 乙2,∴身高较整齐的球队是甲;故答案为:甲.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22、166【解析】只要运用求平均数公式:12n x n x x x ++⋯+=即可求得全班学生的平均身高.【详解】全班学生的平均身高是:()301702016016650x cm ⨯+⨯==.故答案为:1.本题考查的是样本平均数的求法.熟记公式是解决本题的关键.23、21y x =+【解析】平移时k 的值不变,只有b 发生变化.【详解】原直线的k=2,b=0;向上平移2个单位长度,得到了新直线,那么新直线的k=2,b=0+1=1,∴新直线的解析式为y=2x+1.故答案为:y=2x+1.本题考查了一次函数图象的几何变换,难度不大,要注意平移后k 值不变.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)W=5x+2025(5≤x≤20);(3)见解析.【解析】(1)根据A 市场共有35吨,运往甲地x 吨,剩下的都运往乙地得到A 市场水果运往乙地的数量;甲地共需要20吨写出从B 市场运送的量,B 市场剩下的都运送到乙地;(2)根据题目数据,利用运送到甲、乙两地的水果的数量乘以单价,整理即可得W 与x 的函数关系式;(3)根据一次函数的性质进行解答即可.【详解】(1)如下表:(2)依题意得:020035050x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩,解得:5≤x ≤20,∴W =50x +30(35﹣x )+60(20﹣x )+45(x ﹣5)=5x +2025(5≤x ≤20);(3)∵W 随x 增大而增大,∴当x =5时,运费最少,最小运费W =5×5+2025=2050元.此时,从A 市场运往甲地5吨水果,运往乙地30吨水果;B 市场的15吨水果全部运往甲地.本题考查了一次函数的应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,利用一次函数求最值时,关键是应用一次函数增减性.25、(1)①BE =2;②证明见解析;(2)①BE =2;②S 1:S 2=1【解析】【分析】(1)①在矩形ABCD 中,∠B =∠DCE =90°,BC =AD =5,DC =AB =4,由勾股定理求得CE 的长,即可求得BE 的长;②证明△CED ≌△DEF ,可得∠CED =∠FED ,从而可得∠ADE =∠AED ,即可得到AD =AE ;(2)①分两种情况点E 在线段BC 上、点E 在BC 延长线上两种情况分别讨论即可得;②S 1:S 2=1,当BF//DE 时,延长BF 交AD 于G ,由已知可得到四边形BEDG 是平行四边形,继而可得S △DEF =12S 平行四边形BEDG ,S △BEF +S △DFG =12S 平行四边形BEDG ,S △ABG =S △CDE ,根据面积的知差即可求得结论.【详解】(1)①在矩形ABCD 中,∠B =∠DCE =90°,BC =AD =5,DC =AB =4,∵DE =5,∴CE ==3,∴BE =BC-CE=5-3=2;②在矩形ABCD 中,∠DCE =90°,AD//BC ,∴∠ADE =∠DEC ,∠DCE =∠DFE ,∵CE =EF ,DE =DE ,∴△CED ≌△DEF (HL ),∴∠CED =∠FED ,∴∠ADE =∠AED ,∴AD =AE ;(2)①当点E 在线段BC 上时,AF =BF ,如图所示:∴∠ABF =∠BAF ,∵∠ABF +∠EBF =90°,∠BAF +∠BEF =90°,∴∠EBF =∠BEF ,∴EF =BF ,∴AF =EF ,∵DF ⊥AE ,∴DE =AD =5,在矩形ABCD 中,CD =AB =4,∠DCE =90°,∴CE =3,∴BE =5-3=2;当点E 在BC 延长线上时,AF =BF ,如图所示,同理可证AF =EF ,∵DF ⊥AE ,∴DE =AD =5,在矩形ABCD 中,CD =AB =4,∠DCE =90°,∴CE =3,∴BE =5+3=8,综上所述,可知BE=2或8;②S 1:S 2=1,解答参考如下:当BF//DE 时,延长BF 交AD 于G ,在矩形ABCD 中,AD//BC ,AD =BC ,AB =CD ,∠BAG =∠DCE =90°,∵BF//DE ,∴四边形BEDG 是平行四边形,∴BE =DG ,S △DEF =12S 平行四边形BEDG ,∴AG =CE ,S △BEF +S △DFG =12S 平行四边形BEDG ,∴△ABG ≌△CDE ,∴S △ABG =S △CDE ,∵S △ABE =12S 平行四边形BEDG ,∴S △ABE =S △BEF +S △DFG ,∴S △ABF =S △DFG ,∴S △ABF +S △AFG =S △DFG +S △AFG 即S △ABG =S △ADF ,∴S △CDE =S △ADF ,即S 1:S 2=1.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理等,综合性较强,有一定的难度,熟练掌握和灵活用相关知识是解题的关键.26、(1)75;;(2)【解析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA 可得出△BOD ∽△COA ,利用相似三角形的性质可求出OD 的值,进而可得出内角和定理可得出∠ABD=75°=∠ADB ,由等角对等边可得出,此题得解;(2)过点B 作BE ∥AD 交AC 于点E ,同(1)可得出Rt △AEB 中,利用勾股定理可求出BE 的长度,再在Rt △CAD 中,利用勾股定理可求出DC 的长,此题得解.【详解】解:(1)∵BD ∥AC ,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA ,∴△BOD ∽△COA ,∴13OD OB OA OC ==.又∵∴OD=13,∴.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB ,∴.(2)过点B 作BE ∥AD 交AC 于点E ,如图所示.∵AC ⊥AD ,BE ∥AD ,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB ,∴△AOD ∽△EOB ,∴BO EO BE DO AO DA ==.∵BO :OD=1:3,∴13EO BE AO DA ==.∵∴,∴.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC ,∴AB=2BE .在Rt △AEB 中,BE 2+AE 2=AB 2,即(2+BE 2=(2BE )2,解得:BE=4,∴AB=AC=8,AD=1.在Rt △CAD 中,AC 2+AD 2=CD 2,即82+12=CD 2,解得:.本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD 的值;(2)利用勾股定理求出BE 、CD 的长度.。

河北省石家庄市四十一中学2024年数学九年级第一学期开学考试试题【含答案】

河北省石家庄市四十一中学2024年数学九年级第一学期开学考试试题【含答案】

河北省石家庄市四十一中学2024年数学九年级第一学期开学考试试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)要判断甲、乙两队舞蹈队的身高哪队比较整齐,通常需要比较这两队舞蹈队身高的()A .方差B .中位数C .众数D .平均数2、(4分)已知一次函数y =kx +b ,-3<x <1时对应的y 值为-1<y <3,则b 的值是()A .2B .3或0C .4D .2成03、(4分)已知关于x 的分式方程329133x mx x x --+=---无解,则m 的值为()A .1m =B .4m =C .3m =D .1m =或4m =4、(4分),那么这个直角三角形的斜边长为()A .6B .7C .2D .25、(4分)如图,平行四边形ABCD 中,DB=DC ,∠C=70°,AE ⊥BD 于E ,则∠DAE 等于().A .20°B .25°C .30°D .35°6、(4分)如果一组数据3-,2-,0,1,x ,6,9,12的平均数为3,则x 为()A .2B .3C .1-D .17、(4分)已知△ABC 和△A′B′C′是位似图形.△A′B′C′的面积为6cm 2,周长是△ABC 的一半.AB =8cm ,则AB 边上高等于()A .3cm B .6cm C .9cm D .12cm 8、(4分)如果分式25x x +有意义,那么x 的取值范围是()A .0x ≠B .5x ≤-C .5x ≥-D .5x ≠-二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若ab <0,____.10、(4分)甲,乙,丙,丁四人参加射击测试,每人10次射击的平均环数都为8.9环,各自的方差见如下表格:甲乙丙丁方差0.2930.3750.3620.398则四个人中成绩最稳定的是______.11、(4分)过n 边形的一个顶点共有2条对角线,则该n 边形的内角和是__度.12、(4分)定义新运算:对于任意实数a ,b 都有:a ⊕b=a (a ﹣b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x <13的解集为________.13、(4分)如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB=2,BC=3,则图中阴影部分的面积为______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,直线l 1:y=﹣2x 与直线l 2:y=kx +b 在同一平面直角坐标系内交于点P .(1)直接写出不等式﹣2x >kx +b 的解集______;(2)设直线l 2与x 轴交于点A ,△OAP 的面积为12,求l 2的表达式.15、(8分)如图,在正方形网格中,每个小正方形的边长都是1,点A 、B 、C 、D 都在格点上.(1)线段AB 的长是______;(2)在图中画出一条线段EF ,使EF ,并判断AB 、CD 、EF 三条线段的长能否成为一个直角三角形三边的长?说明理由.16、(8分)(1)分解因式:a 3-2a 2b +ab 2;(2)解方程:x 2+12x +27=017、(10分)阅读材料,回答问题:材料:将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“22+”分法、“31+”分法、“32+”分法及“33+”分法等.如“22+”分法:ax ay bx by+++()()ax ay bx by =+++()()a x yb x y =+++()()x y a b =++请你仿照以上方法,探索并解决下列问题:分解因式:(1)22x y x y ---;(2)222944m x xy y -+-.18、(10分)如图,正方形ABCD 的边长为6,点E 为BC 的中点,点F 在AB 边上,2BF AF =,H 在BC 延长线上,且CH =AF ,连接DF ,DE ,DH 。

2024年重庆一中九年级上学期开学考数学试题及答案

2024年重庆一中九年级上学期开学考数学试题及答案

重庆市第一中学2024-2025学年九年级上学期数学开学自测模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)在四个实数,0,﹣1,中,最小的数是()A.B.0C.﹣1D.2.(4分)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成,这四个图案中是中心对称图形的是()A.B.C.D.3.(4分)为了解江北区2024年初中毕业年级体育考试成绩情况,从全区20000名初三参考学生中随机抽取1500名学生的体育考试成绩进行分析,下列说法正确的是()A.该调查方式是普查B.该调查中的总体是全区初三学生C.该调查中个体是江北区每位初三学生的体考成绩D.该调查中的样本是抽取的1500名学生4.(4分)估计的值应在()A.2和3之间B.3和4之间C.﹣3和﹣4之间D.﹣3和﹣2之间5.(4分)如图,△ABC与△DEF是位似图形,点O为位似中心,已知BO:OE=2:1,则△ABC与△DEF的面积比是()A.2:1B.3:1C.4:1D.5:16.(4分)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.(4分)已知如图,在▱ABCD中,点E为AD上一点,DE:AE=1:2,CE交对角线BD于点F,若△CDF的面积为3,则△BCF的面积为()A.18B.12C.9D.68.(4分)用字母“C“,“H”按如图所示的规律拼图案,则第⑧个图案中字母“H”的个数为()A.16B.17C.18D.199.(4分)如图,正方形ABCD中,E为BC边上一点,连接DE,将DE绕点E逆时针旋转90°得到EF,连接DF、BF,若∠ADF=α,则∠EFB一定等于()A.αB.45°﹣αC.90°﹣3αD.10.(4分)将x﹣y÷z×m+n(所有字母均不为0)中的任意两个字母对调位置,称为“对调操作”.例如:“x、y 对调操作”的结果为y﹣x÷z×m+n,且“x、y对调操作”和“y、x对调操作”是同一种“对调操作”.下列说法:①只有“x、n对调操作”的结果与原式相等;②若“x、y对调操作”与“n、y对调操作”的结果相等,则x=n或m+z=0;③若y=m=z,则所有的“对调操作”共有5种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:||+30=.12.(4分)在同一平面内,等边△ABC和正五边形BCDEF如图所示,则∠ABF的度数为.13.(4分)已知三角形的两边长为3和5,第三边的长为方程x2﹣5x+4=0的根,则该三角形的周长为.14.(4分)有四张背面完全相同,正面分别是“诚”、“勤”、“立”、“达”的卡牌,洗匀后背面朝上,小明随机抽取一张卡牌后记录卡牌上的汉字并放回,洗匀后再随机抽取一张卡牌,小明第二次抽取的卡牌上的汉字和第一次相同的概率是.15.(4分)如图,△ABC中,AD是∠BAC的角平分线,BD⊥AD,垂足为D,过D作DE∥AC交AB于点E,过D作DF⊥DE交AC于点F,连接EF,已知AB=4,BD=3,则EF=.16.(4分)如图,在正方形ABCD中,AE平分∠BAC,F为CD上一点,连接BF,交AC于点G,连接DG,若DF=CE,则∠DGF=.17.(4分)若关于x的不等式组有解且至多有2个偶数解且关于y的分式方程=3 的解为非负整数,则所有满足条件的整数a的值之和为.18.(4分)一个四位自然数N,各个数位上的数字均不等于0且互不相等,当N的十位数字减去个位数字的差等于N的千位数字减去百位数字的差的2倍时,我们称自然数N为“倍差数”;当N的十位数字与个位数字的和等于N的千位数字与百位数字的和的2倍时,我们称自然数N为“倍和数”;则最小的“倍差数”与最大的“倍和数”的和是;将“倍差数”N的千位数字与百位数字交换位置,十位数字与个位数字交换位置后得到的新“倍差数”为N′,且规定F(N)=,G(N)=,自然数M既是“倍差数”又是“倍和数”,且F(M)和G(M)均为正整数,则满足条件的数M为.三.解答题(共8小题,满分78分)19.(8分)计算:(1)﹣b(2a﹣b)+(a+b)2;(2).20.(10分)学习了菱形后,小莉进行了拓展性研究:过菱形的一个顶点分别向两条对边作垂线,则这两条垂线与对角线产生两个交点,那么这两交点到此顶点的距离关系如何?她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,过点A作CD的垂线,垂足为点M,交BD于点N.(只保留作图痕迹)已知:如图,四边形ABCD是菱形,过A作AE⊥BC于点E,并交对角线BD于点F,作AM⊥CD于点M,交对角线BD于点N.求证:AF=AN.证明:∵四边形ABCD是菱形∴AB=∠ABC=∠ADC∵AE⊥BC,AM⊥CD∴∠AEB=∠AMD=90°∵∠AEB+∠ABC+∠BAE=180°∠AMD+∠ADC+∠DAM=180°∴∴△ABF≌∴AF=AN请你依照题意完成下面命题:过菱形的一个顶点向两条对边作垂线,与对角线产生两个交点,则.21.(10分)近年来,诈骗分子较为猖狂,诈骗手段不断更新,据有关部门统计,2022年全年全国电信诈骗共计达到2万亿元.为有效提高学生防诈反诈能力,学校开展了“防诈反诈”讲座后进行了“防诈反诈”知识竞赛,并从七、八年级各随机选取了20名同学的竞赛成绩进行了整理、描述和分析(成绩得分用x表示,其中A:0≤x <85,B:85≤x<90,C:90≤x<95,D:95≤x≤100,得分在90分及以上为优秀).下面给出了部分信息:七年级C组同学的分数分别为:94,92,93,91;八年级C组同学的分数分别为:91,92,93,93,94,94,94,94,94.七、八年级选取的学生竞赛成绩统计表:(1)填空:a=,b=,m=;(2)根据以上数据,你认为该校七、八年级学生在“防诈反诈”知识竞赛中,哪个年级学生对“防诈反诈”的了解情况更好?请说明理由;(写出一条理由即可)(3)该校现有学生七年级780名,八年级800名,请估计这两个年级竞赛成绩为优秀的学生总人数.22.(10分)如图,平行四边形ABCD中,AD=6,CD=4,∠ADC=30°,动点P从点A出发沿折线A→B→C运动,到达点C停止运动.在运动过程中,过点P作PH⊥CD于点H,设点P的运动路程为x,BP+PH记为y1.(1)请直接写出y1关于x的函数表达式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出y1的图象与的图象有1个公共点时m的取值范围.23.(10分)4月,正是春暖花开,踏青徒步的好时节,某校初三年级开展了“踏青觅春,走进自然”的春游活动.甲、乙两班都从学校出发沿相同路线去距学校7.5千米的徒步终点,已知甲班的步行速度是乙班的1.5倍.(步行过程为匀速运动)(1)若乙班比甲班先走750米,甲班才开始从学校出发,半小时后两班相遇,则两班的速度分别为多少千米/小时?(2)若乙班在出发后第一小时内按原计划的速度匀速前进,一小时后将速度提高到与甲班一致,并比原计划提前10分钟到达徒步终点,求乙班到达终点用了多少小时?24.(10分)如图,车站A在车站B的正西方向,它们之间的距离为100千米,修理厂C在车站B的正东方向.现有一辆客车从车站B出发,沿北偏东45°方向行驶到达D处,已知D在A的北偏东60°方向,D在C的北偏西30°方向.(1)求车站B到目的地D的距离(结果保留根号);(2)客车在D处准备返回时发生了故障,司机在D处拨打了救援电话并在原地等待,一辆救援车从修理厂C 出发以35千米每小时的速度沿CD方向前往救援,同时一辆应急车从车站A以60千米每小时的速度沿AD方向前往接送滞留乘客,请通过计算说明救援车能否在应急车到达之前赶到D处.(参考数据:≈1.41,≈1.73,≈2.45)25.(10分)如图,在平面直角坐标系中,直线y=kx+2与y轴交于点A,与x轴负半轴交于点B,OB=2,直线y =2x与直线AB交于点C.(1)求直线AB的表达式;(2)如图1,点P为直线OC上一动点,连接P A,PB,求P A+PB的最小值及此时点P的坐标;(3)将直线OC沿射线BA方向平移个单位长度得到新直线y',在新直线y'上是否存在点M,使得AM与新直线y的夹角为45°,若存在,请写出点M的横坐标,选一种情况写出求解过程,若不存在,说明理由.26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.重庆市第一中学2024-2025学年九年级上学期数学开学自测模拟试卷(答案)参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)在四个实数,0,﹣1,中,最小的数是()A.B.0C.﹣1D.【答案】C2.(4分)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成,这四个图案中是中心对称图形的是()A.B.C.D.【答案】B3.(4分)为了解江北区2024年初中毕业年级体育考试成绩情况,从全区20000名初三参考学生中随机抽取1500名学生的体育考试成绩进行分析,下列说法正确的是()A.该调查方式是普查B.该调查中的总体是全区初三学生C.该调查中个体是江北区每位初三学生的体考成绩D.该调查中的样本是抽取的1500名学生【答案】C4.(4分)估计的值应在()A.2和3之间B.3和4之间C.﹣3和﹣4之间D.﹣3和﹣2之间【答案】D5.(4分)如图,△ABC与△DEF是位似图形,点O为位似中心,已知BO:OE=2:1,则△ABC与△DEF的面积比是()A.2:1B.3:1C.4:1D.5:16.(4分)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A7.(4分)已知如图,在▱ABCD中,点E为AD上一点,DE:AE=1:2,CE交对角线BD于点F,若△CDF的面积为3,则△BCF的面积为()A.18B.12C.9D.6【答案】C8.(4分)用字母“C“,“H”按如图所示的规律拼图案,则第⑧个图案中字母“H”的个数为()A.16B.17C.18D.19【答案】C9.(4分)如图,正方形ABCD中,E为BC边上一点,连接DE,将DE绕点E逆时针旋转90°得到EF,连接DF、BF,若∠ADF=α,则∠EFB一定等于()A.αB.45°﹣αC.90°﹣3αD.10.(4分)将x﹣y÷z×m+n(所有字母均不为0)中的任意两个字母对调位置,称为“对调操作”.例如:“x、y 对调操作”的结果为y﹣x÷z×m+n,且“x、y对调操作”和“y、x对调操作”是同一种“对调操作”.下列说法:①只有“x、n对调操作”的结果与原式相等;②若“x、y对调操作”与“n、y对调操作”的结果相等,则x=n或m+z=0;③若y=m=z,则所有的“对调操作”共有5种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【答案】C二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:||+30=.【答案】.12.(4分)在同一平面内,等边△ABC和正五边形BCDEF如图所示,则∠ABF的度数为48° .【答案】48°.13.(4分)已知三角形的两边长为3和5,第三边的长为方程x2﹣5x+4=0的根,则该三角形的周长为12.【答案】12.14.(4分)有四张背面完全相同,正面分别是“诚”、“勤”、“立”、“达”的卡牌,洗匀后背面朝上,小明随机抽取一张卡牌后记录卡牌上的汉字并放回,洗匀后再随机抽取一张卡牌,小明第二次抽取的卡牌上的汉字和第一次相同的概率是.【答案】.15.(4分)如图,△ABC中,AD是∠BAC的角平分线,BD⊥AD,垂足为D,过D作DE∥AC交AB于点E,过D作DF⊥DE交AC于点F,连接EF,已知AB=4,BD=3,则EF=.【答案】.16.(4分)如图,在正方形ABCD中,AE平分∠BAC,F为CD上一点,连接BF,交AC于点G,连接DG,若DF=CE,则∠DGF=45° .【答案】45°.17.(4分)若关于x的不等式组有解且至多有2个偶数解且关于y的分式方程=3 的解为非负整数,则所有满足条件的整数a的值之和为7.【答案】7.18.(4分)一个四位自然数N,各个数位上的数字均不等于0且互不相等,当N的十位数字减去个位数字的差等于N的千位数字减去百位数字的差的2倍时,我们称自然数N为“倍差数”;当N的十位数字与个位数字的和等于N的千位数字与百位数字的和的2倍时,我们称自然数N为“倍和数”;则最小的“倍差数”与最大的“倍和数”的和是7532;将“倍差数”N的千位数字与百位数字交换位置,十位数字与个位数字交换位置后得到的新“倍差数”为N′,且规定F(N)=,G(N)=,自然数M既是“倍差数”又是“倍和数”,且F(M)和G(M)均为正整数,则满足条件的数M为3162.【答案】7532;3162.三.解答题(共8小题,满分78分)19.(8分)计算:(1)﹣b(2a﹣b)+(a+b)2;(2).【答案】(1)a2+2b2;(2).20.(10分)学习了菱形后,小莉进行了拓展性研究:过菱形的一个顶点分别向两条对边作垂线,则这两条垂线与对角线产生两个交点,那么这两交点到此顶点的距离关系如何?她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,过点A作CD的垂线,垂足为点M,交BD于点N.(只保留作图痕迹)已知:如图,四边形ABCD是菱形,过A作AE⊥BC于点E,并交对角线BD于点F,作AM⊥CD于点M,交对角线BD于点N.求证:AF=AN.证明:∵四边形ABCD是菱形∴AB=AD∠ABC=∠ADC∵AE⊥BC,AM⊥CD∴∠AEB=∠AMD=90°∵∠AEB+∠ABC+∠BAE=180°∠AMD+∠ADC+∠DAM=180°∴∠BAE=∠DAN∴△ABF≌△ADN∴AF=AN请你依照题意完成下面命题:过菱形的一个顶点向两条对边作垂线,与对角线产生两个交点,则两交点到顶点的距离相等.【答案】作图见解析,①AD;②∠BAE=∠DAN;③△ADN;④两交点到顶点的距离相等.21.(10分)近年来,诈骗分子较为猖狂,诈骗手段不断更新,据有关部门统计,2022年全年全国电信诈骗共计达到2万亿元.为有效提高学生防诈反诈能力,学校开展了“防诈反诈”讲座后进行了“防诈反诈”知识竞赛,并从七、八年级各随机选取了20名同学的竞赛成绩进行了整理、描述和分析(成绩得分用x表示,其中A:0≤x<85,B:85≤x<90,C:90≤x<95,D:95≤x≤100,得分在90分及以上为优秀).下面给出了部分信息:七年级C组同学的分数分别为:94,92,93,91;八年级C组同学的分数分别为:91,92,93,93,94,94,94,94,94.七、八年级选取的学生竞赛成绩统计表:年级平均数中位数众数优秀率七91a95m八9193b65%(1)填空:a=92.5,b=94,m=60%;(2)根据以上数据,你认为该校七、八年级学生在“防诈反诈”知识竞赛中,哪个年级学生对“防诈反诈”的了解情况更好?请说明理由;(3)该校现有学生七年级780名,八年级800名,请估计这两个年级竞赛成绩为优秀的学生总人数.【答案】(1)92.5,94,60%;(2)八年级学生对“防诈反诈”的了解情况更好;(3)这两个年级竞赛成绩为优秀的学生总人数为988人.22.(10分)如图,平行四边形ABCD中,AD=6,CD=4,∠ADC=30°,动点P从点A出发沿折线A→B→C运动,到达点C停止运动.在运动过程中,过点P作PH⊥CD于点H,设点P的运动路程为x,BP+PH记为y1.(1)请直接写出y1关于x的函数表达式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出y1的图象与的图象有1个公共点时m的取值范围.【答案】(1)y1=;(2)函数图象见解答,函数的最小值为3(答案不唯一);(3)7≤m≤11.23.(10分)4月,正是春暖花开,踏青徒步的好时节,某校初三年级开展了“踏青觅春,走进自然”的春游活动.甲、乙两班都从学校出发沿相同路线去距学校7.5千米的徒步终点,已知甲班的步行速度是乙班的1.5倍.(步行过程为匀速运动)(1)若乙班比甲班先走750米,甲班才开始从学校出发,半小时后两班相遇,则两班的速度分别为多少千米/小时?(2)若乙班在出发后第一小时内按原计划的速度匀速前进,一小时后将速度提高到与甲班一致,并比原计划提前10分钟到达徒步终点,求乙班到达终点用了多少小时?【答案】(1)甲班的步行速度为4.5km/h,乙班的步行速度为3km/h;(2)乙班到达终点用了小时.24.(10分)如图,车站A在车站B的正西方向,它们之间的距离为100千米,修理厂C在车站B的正东方向.现有一辆客车从车站B出发,沿北偏东45°方向行驶到达D处,已知D在A的北偏东60°方向,D在C的北偏西30°方向.(1)求车站B到目的地D的距离(结果保留根号);(2)客车在D处准备返回时发生了故障,司机在D处拨打了救援电话并在原地等待,一辆救援车从修理厂C 出发以35千米每小时的速度沿CD方向前往救援,同时一辆应急车从车站A以60千米每小时的速度沿AD方向前往接送滞留乘客,请通过计算说明救援车能否在应急车到达之前赶到D处.(参考数据:≈1.41,≈1.73,≈2.45)【答案】(1)车站B到目的地D的距离为(50+50)千米;(2)救援车能在应急车到达之前赶到D处.25.(10分)如图,在平面直角坐标系中,直线y=kx+2与y轴交于点A,与x轴负半轴交于点B,OB=2,直线y =2x与直线AB交于点C.(1)求直线AB的表达式;(2)如图1,点P为直线OC上一动点,连接P A,PB,求P A+PB的最小值及此时点P的坐标;(3)将直线OC沿射线BA方向平移个单位长度得到新直线y',在新直线y'上是否存在点M,使得AM与新直线y的夹角为45°,若存在,请写出点M的横坐标,选一种情况写出求解过程,若不存在,说明理由.【答案】(1)y=x+2;(2)P(,)、P A+PB的最小值为:;(3)存在,点M的坐标为:(,)或(,﹣).26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.【答案】。

2024年江苏省苏州市、常熟市九年级数学第一学期开学考试试题【含答案】

2024年江苏省苏州市、常熟市九年级数学第一学期开学考试试题【含答案】

2024年江苏省苏州市、常熟市九年级数学第一学期开学考试试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)以下列长度的线段为边,能构成直角三角形的是()A .2,3,4B .4,5,6C .8,13,5D .1,12、(4分)矩形是轴对称图形,对称轴可以是()A .1l B .2l C .3l D .4l 3、(4分)以下列各组数为三角形的边长,能构成直角三角形的是()A .1,2,3B .1,1,C .2,4,5D .6,7,84、(4分)在平面直角坐标系中,反比例函数k y x =的图象上有三点()()()2, 2, 4,, , P Q m M a b -,若0a <且PM PQ >,则b 的取值范围为()A .4b <-B .140b b <--<<或C .10.b -<<D .410b b <--<<或5、(4分)如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B .已知小颖的眼睛D 离地面的高度CD =1.5m ,她离镜子的水平距离CE =0.5m ,镜子E 离旗杆的底部A 处的距离AE =2m ,且A 、C 、E 三点在同一水平直线上,则旗杆AB 的高度为()A .4.5mB .4.8mC .5.5mD .6m 6、(4分)等腰三角形的一个内角为80︒,则该三角形其余两个内角的度数分别为()A .50︒,50︒B .80︒,20︒C .80︒,50︒D .50︒,50︒或80︒,20︒7、(4分)如图,过点A 0(1,0)作x 轴的垂线,交直线l :y =2x 于B 1,在x 轴上取点A 1,使OA 1=OB 1,过点A 1作x 轴的垂线,交直线l 于B 2,在x 轴上取点A 2,使OA 2=OB 2,过点A 2作x 轴的垂线,交直线l 于B 3,…,这样依次作图,则点B 8的纵坐标为()A .)7B .27C .2(8D .()98、(4分)如图,已知点A 在反比例函数6y x =(0x >)的图象上,作Rt ABC ∆,边BC 在x 轴上,点D 为斜边AC 的中点,连结DB 并延长交y 轴于点E ,则BCE ∆的面积为()A .3B .C .D .6二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)Rt △ABC 与直线l :y =﹣x ﹣3同在如图所示的直角坐标系中,∠ABC =90°,AC =A (1,0),B (3,0),将△ABC 沿x 轴向左平移,当点C 落在直线l 上时,线段AC 扫过的面积等于_____.10、(4分)如图已知四边形ABCD 中,AB=CD,AB//CD 要使四边形ABCD 是菱形,应添加的条件是_____________________________(只填写一个条件,不使用图形以外的字母).11、(4分)计算:111m m m -=--.12、(4分)反比例函数y=4a x +的图象如图所示,A,P 为该图象上的点,且关于原点成中心对称.在△PAB 中,PB∥y 轴,AB∥x 轴,PB 与AB 相交于点B.若△PAB 的面积大于12,则关于x 的方程(a-1)x 2-x+14=0的根的情况是________________.13、(4分)若函数y=(m+1)x+(m 2-1)(m 为常数)是正比例函数,则m 的值是____________。

初三上学期入学数学试卷word空白卷附详细答案

初三上学期入学数学试卷word空白卷附详细答案

初三(上)入学数学试卷一、选择题(共10小题)1.下列图形中,既是轴对称图形,又是中心对称图形的是( ).2.下列分式是最简分式的是( ).A.2a3a2bB.2a4bC.a+ba2+b2D.a2−aba2−b23.下列分解因式正确的是( ).A.x2+y2=(x+y)2B.2x y+4x=2(x y+2x)C.x2−2x−1=(x−1)2D.x2−1=(x+1)(x−1)4.下列变形中,正确的是( ).A.ba=bcacB.1a−1b=1a−bC.bm2am2=baD.a+abb+ab=ab5.若不等式组的解集为3x−1<−7,则以下数轴表示中正确的是( ).6.若关于x的一元二次方程为a x2+b x+5=0(a≠0)的解是x=1,则2021−a−b的值是( ).A.2016B.2020C.2025D.20267.如图,要测定被池塘隔开的A、B两点的距离,可以在AB外选一点C,连接AC、BC,并分别找出它们的中点D、E,连接DE.现测得AC=30m,BC=40m,DE=24m,则A、B两点间的距离为( ).A.50mB.48mC.45mD.35mA. B.D.A. B. D.8.如图,Rt △ABC 的两直角边AB 、BC 的长分别是9、12.其三条角平分线交于点O ,将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( ).A.1︰1︰1B.1︰2︰3C.3︰4︰5D.2︰3︰4 9.如图,将两张长为9,宽为3的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的面积有最小值9,那么菱形面积的最大值是( ). A.27 B.13.5 C.20 D.151O.已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE.过点A 作AE 的垂线交DE 于点P.若AE=AP=1,PB=√6,下列结论中正确结论的个数是( ). ①△APD ≌△AEB ;②点B 到直线AE 的距离为√3;③EB ⊥ED ;④S △APD +S △APB =12+√2.A.1个B.2个C.3个D.4个 二、填空题(共5小题)11.因式分解:a x 2−4ay 2=________.12.把方程x 2+2x −3=0化成(x +m)2=n 的形式,则m+n 的值是________.l3.直线l 1:y=a x −b 与直线l 2:y=−k x在同一平面直角坐标系中的图象如图所示,则第9题图第10题图A DCBEP第8题图BCAO第7题图DACEB关于x 的不等式−a x +b >k x 的解集为________.14.若关于x 的分式方程x+m x−3+2m 3−x=4的解为非负数,则实数m 的取值范围是________.15.如图,线段AB 的长为10,点D 在AB 上,△ACD 是边长为3的等边三角形,过点D 作与CD 垂直的射线DP ,过DP 上一动点G(不与D 重合)作矩形CDGH ,记矩形CDGH 的对角线交点为O ,连接OB ,则线段BO 的最小值为________. 三、解答题(共6小题)16.(5分)解一元二次方程:2x 2+6x −2=0. 17.(6分)先化简(x 2x+1−x +1)÷x 2−1x 2+2x+1,再从−1,0,1中选择合适的x 值代入求值.18.(8分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC 的三个顶点分别是A(5,2),B(5,5),C(1,1).(1)画出△ABC 向左平移5个单位得到的△A 1B 1C 1,点A ,B ,C 的对应点分别为点A 1,B 1,C 1.(2)画出△A 1B 1C 1绕点C 1顺时针旋转90°后得到的△A 2B 2C 1,点A 1,B 1的对应点分别为点A 2,B 2.(3)请直接写出四边形A 2B 2B 1C 1的面积.第15题图ADBHPCOG第13题图19.(8分)如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线交于点F.(1)求证:四边形BDFC是平行四边形.(2)若BC=BD,求四边形BDFC的面积.D20.(8分)科学研究表明接种疫苗是战胜新冠病毒的最有效途径.当前居民接种疫苗迎来高峰期,导致相应医疗物资匮乏,某工厂及时引进了一条一次性注射器生产线生产一次性注射器.开工第一天生产200万个,第三天生产288万个.试回答下列问题.(1)求前三天生产量的日平均增长率.(2)经调查发现,1条生产线最大产能是600万个/天,若每增加1条生产线,每条生产线的最大产能将减少20万个/天.①现该厂要保证每天生产一次性注射2600万个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?②是否能增加生产线,使得每天生产一次性注射器5000万个,若能,应该增加几条生产线?若不能,请说明理由.21.(10分)如图1,正方形ABCD 的对角线AC ,BD 相交于点O ,E 是AC 上一点,连接EB ,过点A 作AM ⊥BE ,垂足为M ,AM 与BD 相交于F. (1)直接写出线段OE 与OF 的数量关系:______________.(2)如图2,若点E 在AC 的延长线上,过点A 作AM ⊥BE ,AM 交DB 的延长线于点F ,其他条件不变.问(1)中的结论还成立吗?如果成立,请给出证明;如果不成立,说明理由.(3)如图3,当BC=CE 时,求∠EAF 的度数.22.(10分)在平面直角坐标系中,点A 坐标为(0,4),点B 坐标为(−3,0),连接AB ,过点A 作AC ⊥AB 交x 轴于点C ,点E 是线段AO 上的一动点. (1)如图1,当AE=3OE 时. ①求直线BE 的函数表达式.②设直线BE 与直线AC 交于点D ,连接OD ,点P 是直线AC 上的一动点(不与A ,C ,D 重合),当S △BOD =S △PDB 时,求点P 的坐标.图1 D CB EO FAM图3D CFBE OMA图2DCFB E O MA(2)如图2,点M 在y 轴上,在平面直角坐标系上是否存在点N ,使得以点A ,B ,M ,N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.初三入学数学试卷一、选择题(共10小题)1.下列图形中,既是轴对称图形,又是中心对称图形的是( ).1.解:【轴对称图形与中心对称图形】A 与D 是轴对称图形,B 既是轴对称也是中心对称图形,C 既不是轴对称也不是中心对称图形,故选B 。

2023-2024 学年第一学期九年级开学考试数学试卷

2023-2024 学年第一学期九年级开学考试数学试卷

2023-2024学年第一学期九年级开学考试数学试卷一.选择题(每题3分,共30分)1.“二十四节气”是中华上古农耕文明的智慧结晶.下列四幅标识图,其中文字上面图案是中心对称图形的是()A.B.C.D.2.若分式的值为0,则x=()A.-1 B.1 C.±1 D.03.下列四个命题中,假命题是()A.顺次连接四边形各边中点所得四边形是平行四边形B.斜边和一条直角边分别相等的两个直角三角形全等C.等腰三角形的高、中线、角平分线互相重合D.一组对边平行,一组对角相等的四边形是平行四边形4.若函数y=ax和函数y=bx+c的图象如图所示,则关于x的不等式ax-bx>c的解集是()A.x<2 B.x<1 C.x>2 D.x>15.已知多项式x2-x+m因式分解后得到一个因式为x+2,则m的值为()A.-5 B.5 C.-6 D.66.某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到81万只,设该厂七八月份的口罩产量的月平均减少率为x,可列方程为()A.100(1+x)2=81B.100(1-x)2=81C.81(1-x)2=100D.100+100(1-x)+100(1-x)2=817.关于x的一元二次方程kx2-4x+1=0有两个实数根,则k的取值范围是()A.k>4 B.k≤4 C.k<4且k≠0 D.k≤4且k≠0 8.如图,长方形花圃ABCD面积为4m2,它的一边AD利用已有的围墙(围墙足够长),另外三边所围的栅栏的总长度是5m.EF处开一门,宽度为1m.设AB的长度是xm,根据题意,下面所列方程正确的是()A.x(5-2x)=4 B.x(5+1-2x)=4C.x(5-2x-1)=4 D.x(2.5-x)=49.如图,在四边形纸片ABCD中,AB∥DC,AB=DC=4,AD=9,∠BCD=30°,点E是线段DC的中点,点F在线段BC上,将△CEF沿EF所在的直线翻折得到△C'EF,连接AC',则AC'长度的最小值是()A.B.C.D.10.如图,在正方形ABCD中,AB=4,E,F分别为边AB,BC的中点,连接AF,DE,点G,H分别为DE,AF的中点,连接GH,则GH的长为()A.B.1 C.D.2二.填空题(每题3分,共18分)11.分解因式:xy2-4x=.12.关于x的不等式组恰有3个整数解,那么a的取值范围为.13.若关于x的方程有增根,则m的值是.14.若m,n是一元二次方程x2+2022x-2023=0的两个实数根,则+=.15.如图,在平行四边形ABCD中,∠BAD=60°,AB=4,对角线AC、BD交于点O,经过点O的直线交AD于点E,且平分△ABD的周长,则OE=.16.如图,在Rt△ABC中,∠ABC=90°,过点B作BE⊥AC,延长BE到点D,使得BD=AC,连接AD,CD,若AB=4,AD=5,则CD的长为.三.解答题(共52分)17.(5分)先化简,再求值:,其中x=2.18.(4分)解方程:.19.(8分)(1)用配方法解方程:2x2-x-1=0.(2)公式法解方程:2x2-7x+3=0.20.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=8,BC=16,求菱形AECF的周长.21.(8分)某超市用1200元购进一批甲玩具,用500元购进一批乙玩具,所购甲玩具件数是乙玩具件数的2倍,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多40件,求该超市用不超过1400元最多可以采购甲玩具多少件?22.(9分)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图1,在平面内是否存在一点H,使得以A、C、B、H为顶点的四边形为平行四边形?若存在,请直接写出H点坐标;若不存在,请说明理由;(3)如图1点M(1,-1)是第四象限内的一点,在y轴上是否存在一点F,使得|FM-FC|的值最大?若存在,请求出F点坐标;若不存在,请说明理由23.(10分)【课本重现】已知:如图1,D,E分别是等边△ABC的两边AB,AC上的点,且AD=CE.若BE,CD交于点F,则∠EFD=°;【迁移拓展】如图2,已知点D是等边△ABC的AB边上一点,点E是AC延长线上一点,若AD=CE,连接ED,EB.求证:ED=EB;【拓展延伸】如图3,若点D,E分别是BA,AC延长线上一点,且连接DE,以DE 为边向右侧作等边△DEF,连接AF,求△ADF的面积.深圳高级中学九年级开学考参考答案与试题解析一.选择题(共10小题)1.“二十四节气”是中华上古农耕文明的智慧结晶.下列四幅标识图,其中文字上面图案是中心对称图形的是()A.B.C.D.【解答】解:选项A、B、C的图形均不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;选项D的图形能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:D.2.若分式的值为0,则x=()A.-1 B.1 C.±1 D.0【解答】解:由分式的值为零的条件得x-1=0,x+1≠0,解得,x=1.故选:B.3.下列四个命题中,假命题是()A.顺次连接四边形各边中点所得四边形是平行四边形B.斜边和一条直角边分别相等的两个直角三角形全等C.等腰三角形的高、中线、角平分线互相重合D.一组对边平行,一组对角相等的四边形是平行四边形【解答】解:A、顺次连接四边形各边中点所得四边形是平行四边形,是真命题,不符合题意;B、斜边和一条直角边分别相等的两个直角三角形全等,是真命题,不符合题意;C、等腰三角形的底边上的高、底边上的中线、顶角平分线互相重合,故本选项说法是假命题,符合题意;D、一组对边平行,一组对角相等的四边形是平行四边形,是真命题,不符合题意;故选:C.4.若函数y=ax和函数y=bx+c的图象如图所示,则关于x的不等式ax-bx>c的解集是()A.x<2 B.x<1 C.x>2 D.x>1【解答】解:观察函数图象得x>1时,ax>bx+c,所以关于x的不等式ax-bx>c的解集为x>1.故选:D.5.已知多项式x2-x+m因式分解后得到一个因式为x+2,则m的值为()A.-5 B.5 C.-6 D.6【解答】解:令x+2=0,即x=-2,把x=-2代入多项式得:4-(-2)+m=0,解得:m=-6.故选:C.6.某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到81万只,设该厂七八月份的口罩产量的月平均减少率为x,可列方程为()A.100(1+x)2=81B.100(1-x)2=81C.81(1-x)2=100D.100+100(1-x)+100(1-x)2=81【解答】解:依题意得:100(1-x)2=81.故选:B.7.关于x的一元二次方程kx2-4x+1=0有两个实数根,则k的取值范围是()A.k>4 B.k≤4 C.k<4且k≠0 D.k≤4且k≠0 【解答】解:∵方程有两个实数根,∴根的判别式Δ=b2-4ac=16-4k≥0,即k≤4,且k≠0.故选:D.8.如图,长方形花圃ABCD面积为4m2,它的一边AD利用已有的围墙(围墙足够长),另外三边所围的栅栏的总长度是5m.EF处开一门,宽度为1m.设AB的长度是xm,根据题意,下面所列方程正确的是()A.x(5-2x)=4 B.x(5+1-2x)=4C.x(5-2x-1)=4 D.x(2.5-x)=4【解答】解:设AB=xm,则BC=(5+1-2x)m,根据题意可得,x(5+1-2x)=4,故选:B.9.如图,在四边形纸片ABCD中,AB∥DC,AB=DC=4,AD=9,∠BCD=30°,点E是线段DC的中点,点F在线段BC上,将△CEF沿EF所在的直线翻折得到△C'EF,连接AC',则AC'长度的最小值是()A.B.C.D.【解答】解:连接AE,过点E作EM⊥AD的延长线于点M,∵AE≥AC'-EC',当点A、C'、E在一条直线上时,AC'的值最小,由翻折可知EC=EC',∵,点E是线段DC的中点,∴,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠MDE=∠BCD=30°,在Rt△MDE中,∠MDE=30°,,∴,由勾股定理得,∵AD=9,∴AM=AD+MD=12,在Rt△AME中,由勾股定理得,∴,即AC'长度的最小值是,故选:C.10.如图,在正方形ABCD中,AB=4,E,F分别为边AB,BC的中点,连接AF,DE,点G,H分别为DE,AF的中点,连接GH,则GH的长为()A.B.1 C.D.2【解答】解:连接AG并延长交CD于M,连接FM,∵四边形ABCD是正方形,∴AB=CD=BC=4,AB∥CD,∠C=90°,∴∠AEG=∠GDM,∠EAG=∠DMG,∵G为DE的中点,∴GE=GD,在△AEG和MDG中,,∴△AEM≌△GDM(AAS),∴AG=MG,AE=DM=AB=CD,∴CM=CD=2,∵点H为AF的中点,∴GH=FM,∵F为BC的中点,∴CF=BC=2,∴FM==2,∴GH=,故选:C.二.填空题(共6小题)11.分解因式:xy2-4x=x(y+2)(y-2).【解答】解:xy2-4x=x(y2-4)=x(y+2)(y-2).故答案为:x(y+2)(y-2).12.关于x的不等式组恰有3个整数解,那么a的取值范围为-4≤a<-3.【解答】解:,解不等式①,得:x>a,解不等式②,得:x≤-1,∵不等式组恰有3个整数解,∴这三个整数解为-1,-2,-3,∴-4≤a<-3,故答案为:-4≤a<-3.13.若关于x的方程有增根,则m的值是2.【解答】解:方程两边都乘(x-1),得m-1-x=0,∵方程有增根,∴最简公分母x-1=0,即增根是x=1,把x=1代入整式方程,得m=2.故答案为:2.14.若m,n是一元二次方程x2+2022x-2023=0的两个实数根,则+=.【解答】解:∵m,n是一元二次方程x2+2022x-2023=0的两个实数根,∴m+n=-2022,mn=-2023,∴+===.故答案为:.15.如图,在平行四边形ABCD中,∠BAD=60°,AB=4,对角线AC、BD交于点O,经过点O的直线交AD于点E,且平分△ABD的周长,则OE=2.【解答】解:如图,延长DA至H,使AH=AB,连接BH,过点A作AN⊥BH于N,∵四边形ABCD是平行四边形,∴OD=OB,∵OE平分△ABD的周长,∴AE+AB+OB=OD+DE,∴AH+AE=DE,即HE=DE,又∵BO=DO,∴BH=2OE,∵AH=AB,∠BAD=60°,∴∠H=∠ABH=30°,∵AH⊥BH,∴AN=AB=2,HN=BN=AN=2,∴BH=4,∴OE=2,故答案为:2.16.如图,在Rt△ABC中,∠ABC=90°,过点B作BE⊥AC,延长BE到点D,使得BD=AC,连接AD,CD,若AB=4,AD=5,则CD的长为.【解答】解:过D点分别作DG⊥BC于点G,DF⊥AB交BA的延长线于点F,∴∠DGC=90°,∵∠ABC=90°,∴四边形BGDF为矩形,∠BAC+∠ACB=90°,∴BG=DF,DG=FB,∵BE⊥AC,∴∠BAC+∠ABE=90°,∴∠ABE=∠ACB,在△ABC和△DFB中,,∴△ABC≌△DFB(AAS),∴FD=AB=4,BC=FB,∴BG=4,在Rt△F AD中,AD=5,∴AF=,∴BF=AB+AF=4+3=7,∴DG=BF=BC=7,∴CG=BC-BG=7-4=3,在Rt△DCG中,CD=.故答案为:.三.解答题(共7小题)17.先化简,再求值:,其中x=2.【解答】解:÷(+1)=÷=÷=•=,当x=2时,原式==.18.解方程:.【解答】解:去分母得:3-x-1=x-2,移项合并得:2x=4,解得:x=2,经检验x=2是分式方程的增根.∴原分式方程无解.19.(1)用配方法解方程:2x2-x-1=0.(2)公式法解方程:2x2-7x+3=0.【解答】解:(1)两边都除以2,得.移项,得.配方,得,,∴或,∴x1=1,;(2)∵2x2-7x+3=0,∴b2-4ac=(-7)2-4×2×3=25>0,则x==,∴x1=,x2=3.20.如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=8,BC=16,求菱形AECF的周长.【解答】(1)证明:∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°,∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA);∴OE=OF,又∵OA=OC,∴四边形AECF是平行四边形,又∵EF⊥AC,∴平行四边形AECF是菱形;(2)解:设AF=x,∵EF是AC的垂直平分线,AB=8,BC=16,∴AF=CF=x,BF=16-x,在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,82+(16-x)2=x2,解得x=10.∴AF=10,∴菱形AECF的周长为40.21.某超市用1200元购进一批甲玩具,用500元购进一批乙玩具,所购甲玩具件数是乙玩具件数的2倍,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多40件,求该超市用不超过1400元最多可以采购甲玩具多少件?【解答】解:(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x-1)元,根据题意得:=×2,解得:x=6,经检验,x=6是原方程的解,∴x-1=5.答:甲种玩具的进货单价6元,则乙种玩具的进价为5元.(2)设购进甲种玩具y件,则购进乙种玩具(2y+40)件,根据题意得:6y+5(2y+40)≤1400,解得:y≤75,∵y为整数,∴y最大值=75,答:该超市用不超过1400元最多可以采购甲玩具75件.22.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图1,在平面内是否存在一点H,使得以A、C、B、H为顶点的四边形为平行四边形?若存在,请直接写出H点坐标;若不存在,请说明理由;(3)如图1点M(1,-1)是第四象限内的一点,在y轴上是否存在一点F,使得|FM-FC|的值最大?若存在,请求出F点坐标;若不存在,请说明理由【解答】解:(1)如图1,过C作CM⊥x轴于M点,…1分∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,则∠MAC=∠OBA,…2分在△MAC和△OBA中,,∴△MAC≌△OBA(AAS),…3分∴CM=OA=2,MA=OB=4,∴OM=OA+AM=2+4=6,∴点C的坐标为(-6,-2)…4分(2)答:如图2,存在三个H点,∵A(-2,0),B(0,-4),C(-6,-2),∴根据B到A的平移规律可得C到H1的平移规律,则H1(-8,2),同理得H2(-4,-6)、H3(4,-2)…7分(3)答:存在,F(0,-),如图3,作点M(1,-1)关于y轴的对点M'(-1,-1),设y轴上存在一点F1,连接CF1、M'F1,由于|FM-FC|≤CM',当C、M'、F三点共线时取等号,…8分连接CM',与y轴交于点F即为所求,设CM'的解析式为:y=kx+b,把C(-6,-2)、M'(-1,-1)代入得,,解得:,∴y=,(9分)当x=0时,y=-,∴F(0,-).(10分)23.【课本重现】已知:如图1,D,E分别是等边△ABC的两边AB,AC上的点,且AD=CE.若BE,CD交于点F,则∠EFD=120°;【迁移拓展】如图2,已知点D是等边△ABC的AB边上一点,点E是AC延长线上一点,若AD=CE,连接ED,EB.求证:ED=EB;【拓展延伸】如图3,若点D,E分别是BA,AC延长线上一点,且连接DE,以DE 为边向右侧作等边△DEF,连接AF,求△ADF的面积.【解答】【课本重现】解:∵△ABC是等边三角形,∴AC=CB,∠A=∠BCE=60°,在△ACD和△CBE中,,∴△ACD≌△CBE(SAS),∴∠ACD=∠CBE,∴∠DFB=∠CBE+∠BCF=∠ACD+∠BCF=∠ACB=60°,∴∠DFE=180°-∠DFB=120°.故答案为:120;【迁移拓展】证明:如图2中,过点E作EJ∥BC交AB的延长线于点J.∵BC∥EJ,∴∠ABC=∠AJE=60°,∠ACB=∠AEJ=60°,∴△AEJ是等边三角形,∴AJ=AE,∵AB=AC,∴BJ=EC,∴四边形BCEJ是等腰梯形,∴BE=CJ,由(1)可知由AD=CE,可得CJ=DE,∴DE=BE.【拓展延伸】解:过点F作FM⊥AC于点M,FN⊥AD交AD的延长线于点N,过点D作DH⊥AF于点H.∵△DEF是等边三角形,∴FD=FE,∠DFE=60°,∵∠BAC=60°,∴∠MAN=120°,∵∠N=∠FMA=90°,∴∠MFN=∠DFE=60°,∴∠DFN=∠MFC,∵∠N=∠FME=90°,∴△FND≌△FME(AAS),∴FM=FN,DN=EM,∵FN⊥AN.FM⊥AM,∴∠NAF=∠MAF=60°,∵AD=CE=2,AB=AC=6,∴AE=8,∵AD+AE=AN-DN+AM+ME=2AM=10,∴AM=5,∵∠AFM=30°,∴AF=2AM=10,∵DH⊥AF,∴DH=AD•sin60°=,∴△ADF的面积=•AF•DH=×10×=5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学第一学期开学测验试卷及答案(考试时间为90分钟,试卷满分为120分)开学测验A卷(满分100分)一、选择题(共8个小题,每小题3分,共24分,各题均为四个选项,其中只有一个是符合题意的。

)1.下列运算中,正确的是()A.B.C.D.2.经过点P(-1,2)的双曲线的解析式为()A.B.C.D.3.⊙O的半径为4,圆心O到直线的距离为3,则直线与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定4.已知反比例函数的图象上有两点A(,)、B(,),且,则的值是()A.正数 B.负数 C.非正数D.不能确定5最高气温(℃) 23 24 25 26天数 3 2 1 4则这组数据的中位数和平均数分别为()A.24.5,24.6 B.25,26 C.26,25 D.24,266.把代数式分解因式,下列结果中正确的是()A.B.C.D.7.小明用作函数图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数图象、如图所示,他解的这个方程组是()8.已知:M(2,1),N(2,6)两点,反比例函数与线段MN相交,过反比例函数上任意一点P作轴的垂线PG,G为垂足,O为坐标原点,则△OGP面积S的取值范围是()A. B.C.D.二、填空题(共4个小题,每小题4分,共16分)9.若分式的值为0,则的值为__________。

10.若关于的一元二次方程没有实数根,则k的取值范围是__________。

11.设等边△ABC的边长为a,将△ABC绕它的外心旋转60°,得到对应的,则A、两点间距离等于__________。

12.已知抛物线与轴有且只有一个交点,则p=_______________,该抛物线的对称轴方程是__________,顶点的坐标是__________。

三、解答题(菜6个小题,共30分)13.计算:。

14.(1)解方程:,并计算两根之和。

(2)求证:无论为任何实数,关于的方程总有实数根。

15.(1)已知,求代数式的值。

(2)解不等式组,并把解集在数轴上表示出来:。

16.如图,在正方形ABCD中,点E、F分别在BC、CD上,BE=CF,连结AE、BF相交于点G。

现给出了四个结论:①AE=BF;②∠BAE=∠CBF;③BF⊥AE;④AG=FG。

请在这些结论中,选择一个你认为正确的结论,并加以证明。

结论:_______________。

17.玩具厂生产一种玩具狗,每天最高产量为40只,每天生产的产品全部卖出。

已知生产x只玩具狗的成本为R(元),售价每只P(元),且R、P与x的关系式分别为R=600+30x,P=170-2x。

当日产量为多少时,每日获得的利润为1650元?18.如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,AE=1,求梯形ABCD的高。

四、解答题(6分)19.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”)。

某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:处理方式直接丢弃直接做垃圾袋再次购物使用其它选该项的人数占总人数的百分比5% 35% 49% 11%请你根据以上信息解答下列问题:(1)补全图1,“限塑令”实施前,如果每天约有2000人次到该超市购物。

根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的的影响。

五、解答题(共2个小题,共12分)20.设E、F分别在正方形ABCD的边BC,CD上滑动保持且∠EAF=45°,AP⊥EF于点P。

(1)求证:AP=AB;(2)若AB=5,求△ECF的周长。

21.在平面直角坐标系中,反比例函数的图象与的图象关于x 轴对称,又与直线交于点A(m,3),试确定的值。

六、解答题(2个小题,共12分)22.如图1,点P是线段MN的中点,请你利用该图形画一对以点P为对称中心的全等三角形。

请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在Rt△ABC中,∠BAC=90°,AB>AC,点D是BC边中点,过D作射线交AB 于E,交CA延长线于F,请猜想∠F等于多少度时,BE=CF(直接写出结果,不必证明)。

(2)如图3,在△ABC中,如果∠BAC不是直角,而(1)中的其他条件不变,若BE=CF 的结论仍然成立,请写出△AEF必须满足的条件,并加以证明。

23.如图,直角梯形ABCD中,AD∥BC,∠B=90°,AB=12cm,BC=9cm,DC=13cm,点P 是线段AB上一个动点,设BP为,△PCD的面积为。

(1)求AD的长;(2)求与之间的函数关系式,并求出当为何值时,有最大值?最大值是多少?(3)在线段AB上是否存在点P,使得△PCD是直角三角形?若存在,求出的值;若不存在,请说明理由。

B卷(共20分)1.在△ABC中,∠C=90°,AB=,BC=,以点A为圆心,以长为半径画圆,则下列说法中正确的是( )A、点C在⊙A外B、点C在⊙A上C、点C在⊙A内D、无法确定2.一个叫巴尔末的中学教师成功地从光谱数据,,,,…中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规律,写出第n(n≥1)个数据是_______________。

3.在数学活动中,小明做了一个梯形纸板测得一底为10cm,高为12cm,两腰分别为15cm和20cm,求梯形纸板的另一底长为_______________。

4.如图,小明将一块边长为的正方形纸片折叠成领带形状,其中,B点落在CF边上的处,则的长为_______________。

5.用四块如图①所示的正方形瓷砖拼成一个新的正方形,使拼成的图案是一个轴对称图形。

请你在图②、图③、图④中各画一种拼法(要求三种接法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形。

6.已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图放置,使点F在BC上,取DF的中点G,连结EG,CG。

试探究EG,CG的位置关系与数量关系并证明.参考答案A卷一、选择题1.D 2.D 3.A 4.D 5.A 6.A 7.D 8.B二、填空题9.0 10.11.或提示:两种情况,如图,分别求12.,,三、解答题13.14.(1)解:,,△∴,(2)证明:(1)当,即时,原方程化为,方程有实根(2)当,即时,△=∴方程必有两个实根。

综上所述,无论为何实数,方程总有实数根。

15.(1)解:∵∴∴(2)解:由得∴由,得,,∴解集表示在数轴上为16.结论:①②③证明:在正方形ABCD中,AB=BC,∠ABE=∠C=90°又∵ BE=CF∴△ABE≌△BCF(SAS)∴ AE=BF ∠BAE=∠CBF∴∠FBC+∠BEG=∠BAE+∠BEG=90°∴∠BGE=90°∴ BF⊥AE17.解:依题意:∴∵不合题意,∴舍去∴答:当日产量为25只时,每日获得的利润为1650。

18.解:作DF⊥BC于F,在梯形ABCD中,∵ AD∥BC AB=DC∴∠ABC=∠C=60°∠1=∠3∵ AB=AD∴∠2=∠1=∠3==30°又∵ AE⊥BD∴ AB=2AE=2∴ DC=AB=2在Rt△DCF中,∠FDC=90°-∠C=30°∴∴即梯形ABCD的高为。

四、解答题19.(1),3×2000=6000(个)∴估计这个超市每天需提供6000个塑料袋(2)由图表可知,购物时选用自备袋,使用后留着塑料袋再次购物时使用,能对环保带来积极的影响。

五、解答题20.(1)证明:延长CB到,使在正方形ABCD中,AB=AD,∠ABC=∠D=90°∴∴∴,∴又∵∴∴而∴ AB=AP(2)解:21.解:∵双曲线与关于轴对称∴又∵点A(m,3)在双曲线上∴∴∴ A(-1,3)在直线上∴∴六、解答题22.(1)猜想∠F=45°时,BE=CF(2)当△AEF为等腰三角形(AE=AF)时,结论BE=CF仍成立证明:延长FD至,使,连接又∵∠3=∠4∴∴,∵ AE=AF∴∠F=∠1=∠2∴∴23.(1)作DE⊥BC于E,则四边形ABED为矩形∴ DE=AB=12AD=BE在Rt△DEC中,∴ AD=BC-EC=4(2)∴∵随的增大而减小∴当时,(3)分两种情况①若∠DPC=90°,为直角三角形,只需∠1+∠2=90°即∠1=∠3只需△ADP∽△BPC只需即解得,此时AP=BP∴存在AB中点P,使△PCD为直角三角形。

②∠PDC=90°,则有解得综上,当或时,△PDC为直角三角形.B卷1.C、2.3.或或4.5.6.EG⊥CG且EG=CG证明:连接BD,则∠DBC=45°又∵ BE=EF ∠BEF=90°∴∠EBF=45°=∠DBC∴ D、E、B共线∴∠DEF=90°∵ DG=FG∴同理∴ EG=CG∵ EG=GD∴∠3=∠5∴∠1=2∠3同理∠2=2∠4∴∠EGC=2(∠3+∠4)=90°∴ EG⊥CG。

相关文档
最新文档