2011四川成都中考数学

合集下载

2011年成都市中考数学试题及答案

2011年成都市中考数学试题及答案

---------------------------------------------------------------------------------------------------------------成都市二O 一一年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1. 4的平方根是(A)±16 (B)16 (C )±2 (D)2 2.如图所示的几何体的俯视图是(A )(B )(C )(D )3. 在函数y =x 的取值范围是 (A)12x ≤(B)12x <(C)12x ≥(D)12x >4. 近年来,随着交通网络的不断完善,我市近郊游持续升温。

据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为 (A)420.310⨯人 (B) 52.0310⨯人 (C) 42.0310⨯人 (D) 32.0310⨯人 5.下列计算正确的是---------------------------------------------------------------------------------------------------------------B时间人数(A )2x x x += (B) 2x x x ⋅=(C)235()x x =(D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根,则下列关于判别式24n mk -的判断正确的是(A) 240n mk -< (B)240n mk -= (C)240n mk -> (D)240n mk -≥7.如图,若AB 是⊙0的直径,CD 是⊙O 的弦,∠ABD=58°, 则∠BCD=(A)116° (B)32° (C)58° (D)64°8.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 (A)0m > (B)0n < (C)0mn < (D)0m n ->9. 为了解某小区“全民健身”活动的开展情况,50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.根据图中提供的信周的体育锻炼时间的众数和中位数分别是 (A)6小时、6小时 (B) 6小时、4小时 (C) 4小时、4小时 (D)4小时、6小时10.已知⊙O 的面积为9π2cm ,若点0到直线l 的距离为πcm ,则直线l 与⊙O 的位置关系是 (A)相交 (B)相切 (C)相离 (D)无法确定二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)---------------------------------------------------------------------------------------------------------------B11. 分解因式:.221x x ++=________________。

2011年中考数学试题及答案

2011年中考数学试题及答案

2011年九年级教学质量检测数 学 试 题注意事项:本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.第Ⅰ卷 选择题 (共36分)一、选择题 (本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填入题后的括号内,每小题选对得3分.) 1.下列根式中与18是同类二次根式的是( ). A .321 B .27 C .6 D .32.抛物线y =2x 2+4x -3的顶点坐标是( ).A .(1,-5)B .(-1,-5)C .(-1,-4)D .(-2,-7) 3.国家游泳中心——“水立方”是2008年北京奥运会标志性建筑之一,其工程占地面积为62828平方米,将62828用科学记数法表示是(保留三个有效数字)( ). A .62.8×103 B .6.28×104 C .6.2828×104 D .0.62828×105 4.数据0,-1,6,1,x 的众数为-1,则这组数据的方差是( ). A .2B .534C .2D .5265.如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段OM 的长的取值范围是( ). A .3≤OM ≤5 B .4≤OM ≤5 C .3<OM <5 D .4<OM <56.小明随机地在如图所示的正三角形及其内部区域投针,则针扎 到其内切圆(阴影)区域的概率为( ). A .21 B .π63C .π93 D .π33第6题图第11题图7.如图,□ABCD 中,对角线AC 和BD 相交于点O , 如果AC =12,BD =10,AB =m ,那么m 的取值范围是( ).A .1<m <11B .2<m <22C .10<m <12D .5<m <68.如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别 作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O , 设它们的面积分别是S 1、S 2、S 3,则( ). A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 1<S 3<S 2 D .S 1=S 2=S 39.直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( ).A .1x >-B .1x <-C .2x <-D .无法确定10.如图,将A B C △沿D E 折叠,使点A 与B C边的中点F 重合,下列结论中①EF AB ∥且12E F A B =;②BAF C AF ∠=∠;③DE AF 21S ADFE∙=四边形;④2B D F F E C B A C ∠+∠=∠, 一定正确的个数是( ). A .1B .2C .3D .411.若关于x 的一元二次方程ax 2+2x -5=0的两根中有且仅有一根在0和1 之间(不含0和1),则a 的取值范围是( ). A .a <3 B .a >3 C .a <-3 D .a >-312.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是 ( ).A .55°B .60°C .65°D .70°DABCO第7题图xb +x第9题图第8题图第12题图第16题图第Ⅱ卷 非选择题(共84分)二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.当m = 时,关于x 的分式方程213x m x +=--无解.14.已知关于x 的不等式组⎩⎨⎧--≥-0125a >x x 无解,则a 的取值范围是 .15.已知关于的一元二次方程012)1(2=-++x x k 有两个不相同的实数根,则k 的取值范围是 .16.如图,梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PD PC +的最小值是 .17.在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a ≥b 时,a ⊕b =b 2;当a <b 时,a ⊕b =a .则当x =2时,(1⊕x )-(3⊕x )的值为 . 三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.)18.(本题满分8分)据《生活报》报道,有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题: (1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?图2图1最喜欢的体育活 动项目的人数/人育活动项目19.(本题满分9分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题: (1)求y 与x 的关系式; (2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?20.(本题满分9分)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得∠ACB=68°.(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ ); (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.21.(本题满分10分)如图,B D 为圆O 的直径,A B A C =,A D 交B C 于E ,2A E =,4E D =.(1)求证:A B E A D B △∽△,并求A B 的长;(2)延长D B 到F ,使B F B O =,连接F A ,那么直线F A 与⊙O 相切吗?为什么?22.(本题满分10分)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.C23.(本题满分11分)如图,等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD,过D点作DE∥AC 交BC的延长线于E点.(1)求证:四边形ACED是平行四边形;(2)若AD=3,BC=7,求梯形ABCD的面积.24.(本题满分12分)如图所示,在平面直角坐标系中,⊙M 经过原点O ,且与x 轴、y轴分别相交于A (-6,0),B (0,-8)两点.(1)请求出直线AB 的函数表达式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数表达式;(3)设(2)中的抛物线交x 轴于D ,E 两点,在抛物线上是否存在点P ,使得115PDE ABCS S =△△?若存在,请求出点P 的坐标;若不存在,请说明理由.数学参考答案一、选择题1.A2.B3.B4.B5.B6.C7.A8.D9.B10.B11.B12.C 二、填空题13.-6 14.a ≥3 15.k >-2,且k ≠-1 16.3 17.-318.解:(1)由图1知:4810181050++++=(名)………2分 答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人.………………3分x181003650⨯=%%………………………………………….4分∴最喜欢篮球活动的人数占被调查人数的36%. (3)1(302624)20-++=%%%% 20020100÷=% (人)…6分8100100016050⨯⨯=% (人)答:估计全校学生中最喜欢跳绳活动的人数约为160人.………8分 19.解:⑴ y =(x -50)∙ w =(x -50) ∙ (-2x +240)=-2x 2+340x -12000,∴y 与x 的关系式为:y =-2x 2+340x -12000........3分 ⑵ y =-2x 2+340x -12000=-2 (x -85) 2+2450,∴当x =85时,y 的值最大. ……………………………6分 ⑶ 当y =2250时,可得方程 -2 (x -85 )2+2450=2250. 解这个方程,得 x 1=75,x 2=95. 根据题意,x 2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.…………9分20.解:(1)在BAC Rt ∆中, 68=∠ACB ,∴24848.210068tan =⨯≈⋅= AC AB (米)答:所测之处江的宽度约为248米…………………………………3分 (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分……………9分21.(1)证明:A B A C = ,ABC C ∴=∠∠,C D = ∠∠,ABC D ∴=∠∠.又BAE D AB = ∠∠,ABE AD B ∴△∽△.A B A E A D A B∴=. AB 2=AD ·AE=(AE+ED )·AE=(2+4)×2=12.AB ∴=. ……………………………………………………5分(2)直线F A 与⊙O 相切.理由如下: 连接O A .BD 为⊙O 的直径,∴∠.BD ∴====1122B F B O B D ∴===⨯=AB = ,BF BO AB ∴==.90OAF ∴= ∠.∴直线F A 与⊙O 相切. ……………………………………10分22.解:(1)设租用一辆甲型汽车的费用是元,租用一辆乙型汽车的费用是元.由题意得解得答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.……………………………………………………………3分 (2)设租用甲型汽车辆,则租用乙型汽车辆.由题意得解得……………………………………………………6分由题意知,为整数,或或共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆. 方案一的费用是(元); 方案二的费用是(元);方案三的费用是(元),所以最低运费是4900元.……………9分答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.……………………………………………10分 23.证: ⑴∵AD ∥BC ∴AD ∥CE 又∵DE ∥AC∴四边形ACED 是平行四边形……………… 3分 ⑵过D 点作DF ⊥BE 于F 点 ……………………4分∵DE ∥AC ,AC ⊥BD ∴DE ⊥BD ,即∠BDE=90° 由⑴知DE=AC ,CE=AD=3∵四边形ABCD 是等腰梯形∴AC=DB ………………………………………7分 ∴DE=DB ……………………………………8分∴△DBE 是等腰直角三角形,∴△DFB 也是等腰直角三角形 ∴DF=BF=21(7-3)+3=5……………………9分(也可运用:直角三角形斜边上的中线等于斜边的一半)()2553721DF BC)(AD 21S ABCD=⨯+=∙+=梯形……11分注:⑴过对角线交点O 作OF ⊥BC 于F ,延长FO 交AD 于H ,于是OH ⊥AD由△ABC ≌△DCB ,得到△OBC 是等腰直角三角形,OF=21BC=27同理OH=21AD=23,高HF=52327=+⑵过A 作AF ⊥BC 于F ,过D 作DH ⊥BC 于H ,由△AFC ≌△DHB得高AF=FC=21(AD+BC)=5⑶DOA COD BOC AOB ABCD S S S S S ∆∆∆∆+++=梯形(进行计算)24. 解:(1)设直线AB 的函数表达式为(y kx b k =+∵直线AB经过(60)(08)A B --,,,,∴由此可得60,8.k b b -+=⎧⎨=-⎩解得4,38.k b ⎧=-⎪⎨⎪=-⎩∴直线AB的函数表达式为483y x =--. (4)分(2)在R t AO B △中,由勾股定理,得10AB ===,x∵圆M 经过O A B ,,三点,且90AO B ∠=°,AB∴为圆M 的直径,∴半径5M A =,设抛物线的对称轴交x 轴于点N ,M N x ⊥∵,∴由垂径定理,得132A N O N O A ===.在R t A M N △中,4M N ===,541C N M C M N ∴=-=-=,∴顶点C 的坐标为(31)-,, 设抛物线的表达式为2(3)1y a x =++, 它经过(08)B -,,∴把0x =,8y =-代入上式,得28(03)1a -=++,解得1a =-,∴抛物线的表达式为22(3)168y x x x =-++=---.…………8分(3)如图,连结A C ,B C ,35213521ON MC 21AN MC 21S S S BMC AMC ABC ⨯⨯+⨯⨯=∙+∙=+=∆∆∆ =15在抛物线268y x x =---中,设0y =, 则2680x x ---=, 解得12x =-,24x =-.D E ∴,的坐标分别是(40)-,,(20)-,, 2D E ∴=;设在抛物线上存在点()P x y ,,使得111511515P D E A B C S S =⨯=△△=,则1y 221y DE 21S PDE =⨯⨯=∙=∆,1y ∴=±,当1y =时,2681x x ---=,解得123x x ==-,1(31)P ∴-,;当1y =-时,2681x x ---=-,解得13x =-+,23x =--2(3)P ∴-+-1,3(3)P ---1.综上所述,这样的P 点存在,且有三个,1(31)P -,,2(3)P -+-1,3(31)P ---.…………………….12分。

(最新8年)2004-2011年四川省成都市中考数学试题及答案(权威,全面,实用)

(最新8年)2004-2011年四川省成都市中考数学试题及答案(权威,全面,实用)

2004年成都市中考数学试卷. (含成都市初三毕业会考)A 卷(共100分)一、 选择题:(每小题4分,共60分) 1、下列算式结果是-3的是( ) A 、(-3)-1B 、(-3)C 、-(-3)D 、-∣-3∣2、下列各式正确的是( )A 、()a b c a b c -+=-+B 、221(1)x x -=-C 、2()()a ab ac bc a b a c -+-=-+D 、23()(0)x x x x -÷=≠3、不等式组231x x >-⎧⎨-⎩≤8-2x的最小整数解是( )A 、-1B 、0C 、2D 、34、如图,如果A B C D 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )A 、1对B 、2对C 、3对D 、4对 5、函数11y x =-+中,自变量x 的取值范围是( )A 、1x ≠-B 、0x ≥C 、1x -≤D 、x ≥-16、为了充分利用我国丰富的水力资源,国家计划在四川省境内长江上游修建一系列大型水力发电站,预计这些水力发电站的总发电量相当于10个三峡电站的发电量。

已知三峡电站的年发电量将达到84700000000千瓦时,那么四川省境内的这些大型水力发电站的年发电总量用科学计数法表示为( )千瓦时 A 、8.47⨯109 B 、8.47⨯1011 C 、8.47⨯1010 D 、8.47⨯10127、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan B A D ∠′等于( ) A 、1 B2D、8、下列说法中,错误的是( )A 、 一组对边平行且相等的四边形是平行四边形B 、 两条对角线互相垂直且平分的四边形是菱形C 、 四个角都相等的四边形是矩形D 、邻边相等四边形是正方形 9、如果用换元法解分式方程2214301x x xx +-+=+,并设y =21x x +,那么原方程可化为( )A 、y 2+3y-4=0B 、y 2-3y+4=0C 、y 2+4y-3=0D 、y 2-4y+3=0 10、已知相交两圆的半径分别是5和8,那么这两圆的圆心距d 的取值范围是( ) A 、d >3 B 、13d < C 、13d 3<< D 、d =3或d =1311、如图,已知AB 是半圆O 的直径,∠BAC=32º,D 是 AC 的中点, 那么∠DAC 的度数是( )BDCm ∠CAB = 32.0︒B 、C 、30ºD 、32º汽车由重庆驶往相距400千米的成都。

2011年四川省成都市中考数学试卷及解析

2011年四川省成都市中考数学试卷及解析

2011年四川省成都市中考数学试卷一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求.2.(3分)如图所示的几何体的主视图是().B C D3.(3分)(2011•成都)在函数自变量x的取值范围是().B C D4.(3分)(2011•成都)近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“五一”期间,≠0)有两个实数根,则下列关于判别式n2﹣4mk6.(3分)(2011•成都)已知关于x的一元二次方程mx2+nx+k=0(mAB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()7.(3分)(2011•成都)如图,若8.(3分)(2011•成都)已知实数m、n在数轴上的对应点的位置如图所示,则下列判断正确的是()9.(3分)(2011•成都)为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.根据图中提供的信息,这50人一周的体育锻炼时间的众数和中位数分别是()10.(3分)(2011•成都)已知⊙O的面积为9πcm2,若点0到直线l的距离为πcm,则直线l与⊙O的位置关系是二、填空题:(每小题4分,共16分)11.(4分)(2011•成都)分解因式:x2+2x+1=_________.12.(4分)(2011•成都)如图,在△ABC中,D,E分别是边AC、BC的中点,若DE=4,则AB=_________.13.(4分)(2011•成都)已知x=1是分式方程的根,则实数k=_________.14.(4分)(2011•成都)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是_________.三、解答题:(本大题共6个小题,共54分)15.(12分)(2011•成都)(1)计算:.(2)解不等式组:,并写出该不等式组的最小整数解.16.(6分)(2011•成都)如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B处时,发现灯塔A在我军舰的正北方向500米处;当该军舰从B处向正西方向行驶至达C处时,发现灯塔A在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)17.(8分)(2011•成都)先化简,再求值:,其中.18.(8分)(2011•成都)某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下表为“1”)均为奇数的概率.19.(10分)(2011•成都)如图,已知反比例函数的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ 的面积.20.(10分)(2011•成都)如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.(1)若BK=KC,求的值;(2)连接BE,若BE平分∠ABC,则当AE=AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=AD(n>2),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.一、填空题:(每小题4分,共20分)21.(4分)(2011•成都)在平面直角坐标系xOy中,点P(2,a)在正比例函数的图象上,则点Q(a,3a ﹣5)位于第_________象限.22.(4分)(2011•成都)某校在“爱护地球,绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学名同学平均每人植树_________棵;若该校共有1000名学生,请根据以上调查结果估计该校学生的植树总数是_________棵.23.(4分)(2011•成都)设,,,…,.设,则S=_________(用含n的代数式表示,其中n为正整数).24.(4分)(2011•成都)在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8.过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的T处,折痕为MN.当点T在直线l上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为_________(计算结果不取近似值).25.(4分)(2011•成都)在平面直角坐标系xOy中,已知反比例函数满足:当x<0时,y随x的增大而减小.若该反比例函数的图象与直线y=﹣x+k,都经过点P,且|OP|=,则符合要求的实数k有_________个.二、解答题:(本大题共3个小题,共30分)26.(8分)(2011•成都)某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.27.(10分)(2011•成都)已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,⊙O 经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=(a为大于零的常数),求BK的长:(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长.28.(12分)(2011•成都)如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C 三点.(1)求此抛物线的函数表达式;(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG 垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH 为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.2011年四川省成都市中考数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求..得,=k=.,再根据扇形的面积公式计算出,=..故答案为:.×+3﹣×m500××=2x时,原式×=所以所求的概率为)把点(,)代入反比例函数y=)把点(,)代入反比例函数•y=;)联立或×××.=,由,利用=求值;EG=BG=BC GF=EF= AD BC CD ABKC=,==;ADBC ABAB=BC+CDAD==nAD一、填空题:(每小题4分,共20分))在正比例函数+===,得出一般规律.+=== ==1+﹣,﹣+1+﹣+﹣=故答案为:.=82 2当y+x=y=当y+x=km+2k=0或,而≥,=30=1800ACAD====,,aEF=EF=,==,AC,,的半径是AB,将直线解析式与抛物线解析式联立,求=,得±±或n=3+﹣2,,或。

2011年四川省成都市中考数学试卷

2011年四川省成都市中考数学试卷

年四川省成都市中考数学试卷一、选择题:(每小题 分,共 分)每小题均有四个选项,其中只有一项符合题目要求. .( 分)( 成都) 的平方根是().....( 分)如图所示的几何体的主视图是().....( 分)( 成都)在函数自变量 的取值范围是().....( 分)( 成都)近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年 五一 期间,某风景区接待游览的人数约为 万人,这一数据用科学记数法表示为().人.人.人.人 .( 分)( 成都)下列计算正确的是()...( )..( 分)( 成都)已知关于 的一元二次方程 ( )有两个实数根,则下列关于判别式 ﹣ 的判断正确的是().﹣ <.﹣.﹣ >.﹣.( 分)( 成都)如图,若 是 的直径, 是 的弦, ,则 ().....( 分)( 成都)已知实数 、 在数轴上的对应点的位置如图所示,则下列判断正确的是().>.<.<.﹣ > .( 分)( 成都)为了解某小区 全民健身 活动的开展情况,某志愿者对居住在该小区的 名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.根据图中提供的信息,这 人一周的体育锻炼时间的众数和中位数分别是().小时、 小时.小时、 小时.小时、 小时.小时、 小时.( 分)( 成都)已知 的面积为 ,若点 到直线 的距离为 ,则直线 与 的位置关系是().相交.相切.相离.无法确定二、填空题:(每小题 分,共 分).( 分)( 成都)分解因式: ..( 分)( 成都)如图,在 中, , 分别是边 、 的中点,若 ,则 ..( 分)( 成都)已知 是分式方程的根,则实数..( 分)( 成都)如图,在 中, , ,将 绕 点逆时针旋转 后得到 ,点 经过的路径为,则图中阴影部分的面积是.三、解答题:(本大题共 个小题,共 分).( 分)( 成都)( )计算:.( )解不等式组:,并写出该不等式组的最小整数解..( 分)( 成都)如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到 处时,发现灯塔 在我军舰的正北方向 米处;当该军舰从 处向正西方向行驶至达 处时,发现灯塔 在我军舰的北偏东 的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值).( 分)( 成都)先化简,再求值:,其中..( 分)( 成都)某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码 、 、 表示)中抽取一个,再在三个上机题(题签分别用代码 、 、 表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签.( )用树状图或列表法表示出所有可能的结果;( )求小亮抽到的笔试题和上机题的题签代码的下标(例如 的下表为 )均为奇数的概率..( 分)( 成都)如图,已知反比例函数的图象经过点(, ),直线 ﹣ 经过该反比例函数图象上的点 ( , ).( )求上述反比例函数和直线的函数表达式;( )设该直线与 轴、 轴分别相交于 、 两点,与反比例函数图象的另一个交点为 ,连接 、 ,求 的面积..( 分)( 成都)如图,已知线段 , 与 相交于点 , 是线段 上一动点.( )若 ,求的值;( )连接 ,若 平分 ,则当 时,猜想线段 、 、 三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当 ( > ),而其余条件不变时,线段 、 、 三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.一、填空题:(每小题 分,共 分).( 分)( 成都)在平面直角坐标系 中,点 ( , )在正比例函数的图象上,则点 ( , ﹣ )位于第 象限..( 分)( 成都)某校在 爱护地球,绿化祖国 的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了 名学生的植树情况,将调查数据整理如下表:植树数量(单位:棵)人数则这 名同学平均每人植树 棵;若该校共有 名学生,请根据以上调查结果估计该校学生的植树总数是 棵..( 分)( 成都)设,,, ,.设,则 (用含 的代数式表示,其中 为正整数)..( 分)( 成都)在三角形纸片 中,已知 , , .过点 作直线 平行于 ,折叠三角形纸片 ,使直角顶点 落在直线 上的 处,折痕为 .当点在直线 上移动时,折痕的端点 、 也随之移动.若限定端点 、 分别在 、 边上移动,则线段 长度的最大值与最小值之和为 (计算结果不取近似值)..( 分)( 成都)在平面直角坐标系 中,已知反比例函数满足:当 < 时, 随 的增大而减小.若该反比例函数的图象与直线﹣ ,都经过点 ,且,则符合要求的实数 有 个.二、解答题:(本大题共 个小题,共 分).( 分)( 成都)某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形 .已知木栏总长为 米,设 边的长为 米,长方形 的面积为 平方米.( )求 与 之间的函数关系式(不要求写出自变量 的取值范围).当 为何值时, 取得最值(请指出是最大值还是最小值)?并求出这个最值;( )学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为 和 ,且 到 、 、 的距离与 到 、 、 的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够 米宽的平直路面,以方便同学们参观学习.当( )中 取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由..( 分)( 成都)已知:如图,以矩形 的对角线 的中点 为圆心, 长为半径作 , 经过 、 两点,过点 作 ,垂足为 .过 作 , 分别与 、 、 及 的延长线相交于点 、 、 、 .( )求证: ; ( )如果 ,( 为大于零的常数),求 的长:( )若 是 的中点,且 ,求 的半径和 的长..( 分)( 成都)如图,在平面直角坐标系 中, 的 、 两个顶点在 轴上,顶点 在 轴的负半轴上.已知 : : , , 的面积 ,抛物线 ( )经过 、 、 三点.( )求此抛物线的函数表达式;( )设 是 轴右侧抛物线上异于点 的一个动点,过点 作 轴的平行线交抛物线于另一点 ,过点 作 垂直于 轴于点 ,再过点 作 垂直于 轴于点 ,得到矩形 .则在点 的运动过程中,当矩形 为正方形时,求出该正方形的边长;( )在抛物线上是否存在异于 、 的点 ,使 中 边上的高为?若存在,求出点的坐标;若不存在,请说明理由.年四川省成都市中考数学试卷参考答案与试题解析一、选择题:(每小题 分,共 分)每小题均有四个选项,其中只有一项符合题目要求. .( 分)( 成都) 的平方根是()....考点:平方根。

2011年中考数学试题及解析171套试题试卷_22

2011年中考数学试题及解析171套试题试卷_22

四川省成都市2011年中考数学试卷—解析版一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求.1、(2011•成都)4的平方根是()A、±16B、16C、±2D、2考点:平方根。

专题:计算题。

分析:由于某数的两个平方根应该互为相反数,所以可用直接开平方法进行解答.解答:解:∵4=(±2)2,∴4的平方根是±2.故选C.点评:本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2、(2011•成都)如图所示的几何体的俯视图是()A、B、C、D、考点:简单几何体的三视图。

专题:应用题。

分析:题干图片为圆柱,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:圆柱的主视图为长方形,左视图为长方形,俯视图为圆形.故选D.点评:本题考查了圆柱体的三视图,考查了学生的空间想象能了及解决问题的能力.3、(2011•成都)在函数自变量x的取值范围是()A、B、C、D、考点:函数自变量的取值范围。

专题:计算题。

分析:让被开方数为非负数列式求值即可.解答:解:由题意得:1﹣2x≥0,解得x≤.故选A.点评:考查求函数自变量的取值范围;用到的知识点为:函数有意义,二次根式的被开方数为非负数.4、(2011•成都)近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为()A、20.3×104人B、2.03×105人C、2.03×104人D、2.03×103人考点:科学记数法—表示较大的数。

专题:计算题。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解答:解:∵20.3万=203000,∴203000=2.03×105;故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、(2011•成都)下列计算正确的是()A、x+x=x2B、x•x=2xC、(x2)3=x5D、x3÷x=x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

四川省成都市2011年中考数学真题试卷(解析版)

四川省成都市2011年中考数学真题试卷(解析版)

2011年四川省成都市中考数学试卷—解析版一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求.1、(2011•成都)4的平方根是()A、±16B、16C、±2D、2考点:平方根。

专题:计算题。

分析:由于某数的两个平方根应该互为相反数,所以可用直接开平方法进行解答.解答:解:∵4=(±2)2,∴4的平方根是±2.故选C.点评:本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2、(2011•成都)如图所示的几何体的俯视图是()A、B、C、D、考点:简单几何体的三视图。

专题:应用题。

分析:题干图片为圆柱,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:圆柱的主视图为长方形,左视图为长方形,俯视图为圆形.故选D.点评:本题考查了圆柱体的三视图,考查了学生的空间想象能了及解决问题的能力.3、(2011•成都)在函数自变量x的取值范围是()A、B、C、D、考点:函数自变量的取值范围。

专题:计算题。

分析:让被开方数为非负数列式求值即可.解答:解:由题意得:1﹣2x≥0,解得x≤.故选A.点评:考查求函数自变量的取值范围;用到的知识点为:函数有意义,二次根式的被开方数为非负数.4、(2011•成都)近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为()A、20.3×104人B、2.03×105人C、2.03×104人D、2.03×103人考点:科学记数法—表示较大的数。

专题:计算题。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解答:解:∵20.3万=203000,∴203000=2.03×105;故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、(2011•成都)下列计算正确的是()A、x+x=x2B、x•x=2xC、(x2)3=x5D、x3÷x=x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

2011年中考数学试题精选汇编《探索、规律性问题》

2011年中考数学试题精选汇编《探索、规律性问题》

2011年中考数学试题精选汇编《规律、探索、与规律性问题》一 选择题1. (2011浙江省,10,3分)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,……,照此规律,图A 6比图A 2多出“树枝”( )[来源:学,科,网Z,X,X,K]A.28B.56C.60D. 124【答案】C3. (2011广东肇庆,15,3分)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是 ▲ .【答案】)2(+n n4. (2011内蒙古乌兰察布,18,4分)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示)【答案】(1)4n n ++或24n n ++5. (2011湖南益阳,16,8分)观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1② 2 × 4 - 32= 8 - 9 = -1③ 3 × 5 - 42 = 15 - 16 = -1 ④ ……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;第1个图形第 2 个图形 第3个图形第 4 个图形第 18题图(3)你认为(2)中所写出的式子一定成立吗?并说明理由. 【答案】解:⑴246524251⨯-=-=-;⑵答案不唯一.如()()2211n n n +-+=-;⑶()()221n n n +-+ ()22221n n n n =+-++22221n n n n =+---1=-.6.(2011广东汕头,20,9分)如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数; (2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数;(3)求第n 行各数之和. 【解】(1)64,8,15;(2)2(1)1n -+,2n ,21n -;(3)第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×7-13;类似的,第n 行各数之和等于2(21)(1)n n n --+=322331n n n -+-.二 填空题1. (2011四川绵阳18,4)观察上面的图形,它们是按一定规律排列的,依照此规律,第_____个图形共有120 个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都市二○一一年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2. 五城区及高新区的考生使用答题卡作答,郊区(市)县的考生使用机读卡加答题卷作答.3. 在作答前,考生务必将自己的姓名、准考证号涂写在答题卡(机读卡加答题卷)上。

考试结束,监考人员将试卷和答题卡(机读卡加答题卷) 一并收回.4.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚.5.请按照题号在答题卡(机读卡加答题卷)上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.6.保持答题卡面(机读卡加答题卷)清洁,不得折叠、污染、破损等.A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题:(每小题3分,共3 0分)每小题均有四个选项,其中只有一项符合题目要求。

1. 4的平方根是 C(A)±16 (B)16 (C )±2 (D)2【答案】C2.如图所示的几何体的俯视图是 D【答案】D3. 在函数x y 21-=自变量x 的取值范围是 A (A)21≤x (B)21<x (C)21≥x (D)21>x 【答案】A4. 近年来,随着交通网络的不断完善,我市近郊游持续升温。

据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为 B(A)4103.20⨯人 (B)51003.2⨯人 (C) 41003.2⨯人 (D)31003.2⨯人 【答案】B5.下列计算正确的是 D(A )2x x x =+ (B)x x x 2=⋅ (C)532)(x x =(D)23x x x =÷【答案】D6.已知关于x 的一元二次方程)0(02≠=++m k nx mx 有两个实数根,则下列关于判别式mk x 42-的判断正确的是 C(A) 042<-mk n (B) 042=-mk n(C) 042>-mk n (D) 042≥-mk n 【答案】C7.如图,若AB 是⊙0的直径,CD 是⊙O 的弦,∠ABD =58°, 则∠BCD =( B )(A)116° (B)32° (C)58° (D)64°【答案】B8.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 C (A)0>m (B)0<n (C)0<mn (D)0>-n m【答案】C9. 为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.根据图中提供的信息,这50人一周的体育锻炼时间的众数和中位数分别是 A (A)6小时、6小时 (B) 6小时、4小时 (C) 4小时、4小时 (D)4小时、6小时510152025346810时间【答案】A10. 已知⊙O 的面积为29cm π,若点0到直线l 的距离为cm π,则直线l 与⊙O 的位置关系是C (A)相交 (B)相切 (C)相离 (D)无法确定 【答案】C第Ⅱ卷《非选择题,共7()分)二、填空题:(每小题4分,共l 6分) 11. 分解因式:122++x x = . 【答案】2)1(+x .12. 如图,在△ABC 中,D 、E 分别是边AC 、BC 的中点,若DE =4, 则AB = .【答案】8.13. 已知1=x 是分式方程xkx 311=+的根,则实数k =___________. 【答案】61. 14. 如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ,则图中阴影部分的面积是___________.【答案】π61.三、解答题:(本大题共6个小题,共54分) 1 5. (本小题满分12分,每题6分)(1)计算:30cos 2°20110)1()2010(33-+---+π.【答案】原式=1133232-⨯-+⨯ =2.(2)解不等式组:⎪⎩⎪⎨⎧+<-≥+31221302x x x ,并写出该不等式组的最小整数解.【答案】解:设02≥+x 为①,312213+<-x x 为②, 解不等式①得:2-≥x ,解不等式②得:1<x , ∴不等式组的解集为12<≤-x ,∴该不等式组的最小整数解是-2.16.(本小题满分6分)如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B 处时,发现灯塔A 在我军舰的正北方向500米处;当该军舰从B 处向正西方向行驶至达C 处时,发现灯塔A 在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)北东【答案】解:由题意可知,在Rt △ABC 中,AB=500m ,∠ACB=90°-60°=30°,∵tan ∠ACB =BCAB, ∴BC=350030tan 500tan 0==∠ACB AB (m ), ∴该军舰行驶的路程为3500米.17.(本小题满分8分) 先化简,再求值:12)113(2--÷--+x x x x x x ,其中23=x . 【答案】解:原式=211)1()1(322--⋅-+--x x x x x x x =2422--x x x =2)2(2--x x x =x 2.当23=x 时,x 2=232⨯=3.18.(本小题满分8分)某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容。

规定:每位考生先在三个笔试题(题签分别用代码123B B B 、、表示)中抽取一个,再在三个上机题(题签分别用代码123J J J 、、表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签.(1)用树状图或列表法表示出所有可能的结构;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“1B ”的下表为“1”)均为奇数的概率.【答案】解:(1)方法一:画树状图方法二:列表如下(B 1 ,J 1 ),(B 3,J 1 ),(B 1 ,J 3 ),(B 3,J 3 ),共4种,所以求小亮抽到的笔试题和上机题的题签代码的下标均为奇数的概率为94.19.(本小题满分10分) 如图,已知反比例函数)0(≠=k x k y 的图象经过点(21,8),直线b x y +-=经过该反比例函数图象上的点Q(4,m ).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x 轴、y 轴分别相交于A 、B 两点,与反比例函数图象的另一个交点为P ,连结0P 、OQ ,求△OPQ 的面积.【答案】解:(1)由反比例函数的图象经过点(21,8),可知4821=⨯=⋅=y x k ,所以反比例函数解析式为xy 4=,∵点Q 是反比例函数和直线b x y +-=的交点,∴144==m ,∴点Q 的坐标是(4,1),∴514=+=+=y x b ,∴直线的解析式为5+-=x y .(2)如图所示:由直线的解析式5+-=x y 可知与x 轴和y 轴交点坐标点A 与点B 的坐标分别为(5,0)、(0,5),由反比例函数与直线的解析式可知两图像的交点坐标分别点P (1,4)和点Q(4,1),过点P 作PC ⊥y 轴,垂足为C ,过点Q 作QD ⊥x 轴,垂足为D ,∴S △OPQ =S △AOB -S △OAQ -S △OBP =21×OA ×OB -21×OA ×QD -21×OB ×PC =21×25-21×5×1-21×5×1=215.20.(本小题满分10分)如图,已知线段AB ∥CD ,AD 与BC 相交于点K ,E 是线段AD 上一动点. (1)若BK =52KC ,求ABCD 的值; (2)连接BE ,若BE 平分∠ABC ,则当AE =12AD 时,猜想线段AB 、BC 、CD 三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE =1nAD (2 n ),而其余条件不变时,线段AB 、BC 、CD 三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.【答案】解:(1)∵AB ∥CD ,BK =52KC ,∴AB CD =BK CK =52. (2)如图所示,分别过C 、D 作BE ∥CF ∥DG 分别交于AB 的延长线于F 、G 三点,∵BE ∥DG ,点E 是AD 的点,∴AB=BG ;∵CD ∥FG ,CD ∥AG ,∴四边形CDGF 是平行四边形,∴CD=FG ;∵∠ABE =∠EBC ,BE ∥CF ,∴∠EBC =∠BCF ,∠ABE =∠BFC ,∴BC =BF , ∴AB-CD=BG-FG=BF=BC ,∴AB=BC+CD .G当AE =1nAD (2>n )时,(1-n )AB=BC+CD .B 卷(共50分)一、填空题:(每小题4分,共20分)21.在平面直角坐标系xOy 中,点P(2,a )在正比例函数12y x =的图象上,则点Q( 35a a -,)位于第______象限. 【答案】四.22.某校在“爱护地球 绿化祖图”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:则这100估计该校学生的植树总数是__________棵. 【答案】5.8,5800.23.设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++ 设...S =,则S=_________ (用含n 的代数式表示,其中n 为正整数).【答案】122++n nn .22111(1)n S n n =+++=21111[]2(1)(1)n n n n +-+⨯++=2111[]2(1)(1)n n n n ++⨯++=21[1](1)n n ++∴S=1(1)12+⨯+1(1)23+⨯+1(1)34+⨯+…+1(1)(1)n n ++122++=n n n . 接下去利用拆项法111(1)1n n n n =-++即可求和.24.在三角形纸片ABC 中,已知∠ABC =90°,AB =6,BC =8.过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的T 处,折痕为MN .当点T 在直线l 上移动时,折痕的端点M 、N 也随之移动.若限定端点M 、N 分别在AB 、BC 边上移动,则线段AT 长度的最大值与最小值之和为_________ (计算结果不取近似值).【答案】7214-.25.在平面直角坐标系xOy 中,已知反比例函数2(0)ky k x=≠满足:当0x <时,y 随x 的增大而减小.若该反比例函数的图象与直线y x =-都经过点P ,且OP =则实数k=_________. 【答案】37. 二、解答题:(本大题共3个小题,共30分) 26.(本小题满分8分)某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD .已知木栏总长为120米,设A B 边的长为x 米,长方形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).当x 为何值时,S 取得最值(请指出是最大值还是最小值)?并求出这个最值;(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为1O 和2O ,且1O 到AB 、BC 、AD 的距离与2O 到CD 、BC 、AD 的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S 取得最大值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.【答案】(1)1800)30(2)2120(2+--=-=x x x S ,当30=x 时,S 取最大值为1800.(2)如图所示,过1O 、2O 分别作到AB 、BC 、AD 和CD 、BC 、AD 的垂直,垂足如图,根据题意可知,I O H O G O J O F O E O 222111=====;当S 取最大值时,AB =CD =30,BC =60, 所以1521O O O O 2211=====AB I G J F , ∴15O O 21==H E ,∴301515602121=--=--=H O E O EH O O ,∴两个等圆的半径为15,左右能够留0.5米的平直路面,而AD 和BC 与两圆相切,不能留0.5米的平直路面.27.(本小题满分10分)已知:如图,以矩形ABCD 的对角线AC 的中点O 为圆心,OA 长为半径作⊙0,⊙O 经过B 、D 两点,过点B 作BK ⊥AC ,垂足为K .过D 作DH ∥KB ,DH 分别与AC 、AB 、⊙O 及CB 的延长线相交于点E 、F 、G 、H .(1)求证:AE =CK ;(2)如果AB =a ,AD =13a (a 为大于零的常数),求BK 的长;(3)若F 是EG 的中点,且DE =6,求⊙O 的半径和GH 的长. 【答案】解:(1)∵DH ∥KB ,BK ⊥AC ,∴DE ⊥AC ,∵四边形ABCD 是矩形,∴AD ∥BC ,AD =BC ,∴∠EAD =∠KCB , ∴Rt △ADE ≌Rt △CBK ,∴AE =CK . (2)在Rt △ABC 中,AB =a ,AD =BC =13a ,∴22BC AB AC +==22)31(a a +=310a, ∵S △ABC =21AB ×BC =21AC ×BK ,∴BK =AC BC AB ⨯=31031a aa ⨯=a 1010. (3)连线OG ,∵AC ⊥DG ,AC 是⊙O 的直接,DE =6,∴DE =EG =6,又∵EF =FG ,∴EF =3;∵Rt △ADE ≌Rt △CBK ,∴DE =BK =6,AE =CK , 在△ABK 中,EF =3,BK =6,EF ∥BK ,∴EF 是△ABK 的中位线,∴AF =BF ,AE =EK =KC ;在Rt △OEG 中,设OG =r ,则OE =r r AC 3126161=⨯=,EG =6,222OG EG OE =+,∴2226)31(r r =+,∴229=r . 在Rt △ADF ≌Rt △BHF 中,AF =BF , ∵AD =BC ,BF ∥CD ,∴HF =DF ,∵FG =EF ,∴HF -FG =DF -EF ,∴HG =DE =6.28.(本小题满分12分)如图,在平面直角坐标系xOy 中,△ABC 的A 、B 两个顶点在x 轴上,顶点C 在y 轴的负半轴上.已知:1:5OA OB =,OB OC =,△ABC 的面积15ABC S ∆=,抛物线2(0)y ax bx c a =++≠ 经过A 、B 、C 三点.(1)求此抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上异于点B 的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点F 作FG 垂直于x 轴于点G ,再过点E 作EH 垂直于x 轴于点H ,得到矩形EFGH .则在点E 的运动过程中,当矩形EFGH 为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B 、C 的点M ,使△MBC 中BC边上的高为点M 的坐标;若不存在,请说明理由.【答案】解:(1)设x OA =,则x OC OB 5==,S △ABC =21(OB OA +)×OC =x x 5621⨯⨯=215x =15, ∴1=x (负值不合题意,已经舍去),根据抛物线与坐标轴交点的位置,可知A 、B 、C 三点的坐标分别是(-1,0)、(5,0)、(0,-5),代入抛物线c bx ax y ++=2,列方程组为:⎪⎩⎪⎨⎧-==++=+-505250c c b a c b a ,解得:1=a ,4-=b ,5-=c ,∴抛物线的解析式为:542--=x x y .(2)如图所示:E 是y 轴右侧抛物线上异于点B 的一个动点,设该点的横坐标是m ,抛物线的对称轴为2=x ,根据轴对称图形的性质可知,对应点F 的横坐标是m -4,EF =42)4(-=--m m m ,若E 在x 轴上面,则对应的函数值是正数,若E 在x 轴下面,则对应的函数值是负数,若矩形EFGH 为正方形时,则EF =GH =FG =EH ,∴54422--=-m m m ,当 54422--=-m m m 时,解得:103+=m (其中103-不合题意,已经舍去),则EF =4)103(2-+=102+,正方形的边长为102+;当)54(422---=-m m m ,解得:101+=m (其中101-不合题意,已经舍去),则EF=4)101(2-+=2102-,正方形的边长为2102-.(3)如图所示,根据已经容易求出BC =25,若要使△MBC 中BC 边上的高为S △MBC =272521⨯⨯=35. 设点M 的横坐标为n ,那么根据抛物线的解析式542--=x x y ,可知M 的坐标为)54,(2--n n n ,若点M 在x 轴的上面,则0542>--n n ,过M 作MN ⊥y 轴,垂足为N ,那么S △MBC =S梯形MNOB+S △OBC -S △MNC ,∴35)554(21225)54)(5(2122=+---+--+n n n n n n , 化简得:01452=--n n ,解得2-=n 或7=n ,所以若M 在x 轴上面,满足题意的有两点,分别为(-2,7)、(7,16);若M 在x 轴下面,则0542<--n n ,过M 作MN ⊥y 轴,那么垂足为N ,那么S △MBC =S梯形MNOB-S △OBC -S △MNC ,∴35)554(21225)54)(5(2122=-++---++-+n n n n n n , 化简得:01442=+-n n ,△=040<-,∴所以方程在实数范围无根,所以在x 轴下面没有满足题意的M 点.。

相关文档
最新文档