昆山市城北中学2020-2021学年第一学期九年级上数学质量调研月考试卷
2020-2021学年第一学期期中教学质量检测九年级数学试题卷含答案

一、选择题:(每题3分,共30分)1.若反比例函数y x=-1的图象经过点A (2,m ),则m 的值是( ).A .-2B .2C .-12D .212.二次函数3)1(2+--=x y 图象的顶点坐标是( ) A .(-1,3) B .(1,3) C .(-1,-3)D .(1,-3)3.如图,正三角形ABC 内接于圆O ,动点P 在圆周的劣弧AB 上, 且不与A B ,重合,则BPC ∠等于( ) A .30°B .45°C.60°D .90°4.平面上有不在同一直线上的4个点,过其中3个点作圆,可以作出n 个圆,那么n 的值不可能为( ) A. 1 B. 2C. 3D. 45.⊙O 的弦AB 的长为8cm ,弦AB 的弦心距为3cm ,则⊙O 的半径为( )A .4cm B. 5cmC. 8cmD. 10cm6.已知),(),,(222111y x P y x P 是反比例函数2y x=的图象上的两点,且210x x <<,则21,y y 的大小关系是( )A.21y y φB.21y y πC.21y y =D.无法判断7.四条线段d c b a ,,,满足dcba =,则以下比例式不成立的是( ) A .db ca = B.cda b =C.ab a =+ D.dc dc b a b a -+=-+ 8.已知c bx ax y ++=2的图象如图,那么关于x 的方程2ax 况( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 以上答案均不对 9.下列说法:① 三角形的外心到三角形三边的距离相等。
② 在直径为20的圆中,长为10的弦所对圆心角是030 ③ 垂直平分弦的直线必经过圆心 ④ 平分弦的直径垂直于弦 ⑤ 等弧所对的圆周角相等其中正确的个数有 ( ) A .2个 B. 3个 C. 4个 10. 如图:等腰直角三角形ABC 位于第一象限AB=AC=2,直角顶点A 在直线y=x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线k y x=(k ≠0)与ABC ∆有交点,则k 的取值范围是( )A .12k <<B .13k ≤≤C .14k ≤≤D .14k <≤ 二、填空题:(每题4分,共24分)11.把二次函数x x y 422-=改写成k m x a y ++=2)(的形式是__________, 其顶点坐标是__________。
昆山市城北中学2020-2021学年第一学期九年级上数学质量调研月考试卷(1)

22.(6 分)已知 䁠 i 砀 砀l u砀 是二次函数
(1)若其图像开口向下,求 k 的值
(2)若当
时,y 随 x 的增大而减小,求函数关系式
23.(6 分)已知关于 x 的一元二次方程
l lul
根.
(1)求 m 的取值范围
(2)当 m 取满足条件的最大整数时,求方程的根
u m u i 有两个不相等的实数
每件降价 2 元,那么平均每天可以多出售 4 件,若想每天盈利 1000 元,设每件降价 x 元,
可列出方程为( )
A.
l u i
B.
l ul i
C.
l
i
D.
9. 用“描点法”画二次函数 䁠 i h l u t u t h
l u i 的图象时,列了如下表格:
x
…
0
1
2
3
4
…
y
…
-3
-4
-3
0
5
…
根据表格上的信息回答问题,一元二次方程 h l u t u t i 的解为( )
4
28.(12 分)抛物线 䁠 i h l u t u t 与 x 轴交于 A(-3,0),B(1,0)两点,与 y 轴交于 C (0,2) (1)分别求直线 AC 及抛物线的解析式; (2)P 是线段 AC 上的一个动点,过 P 点作 x 轴的垂线交抛物线于 E 点,求线段 PE 长度的 最大值; (3)若点 G 是抛物线上的动点,点 F 在 x 轴上,且以 A、C、F、G 四个点为顶点的四边形 是平行四边形,试直接写出所有满足条件的 F 点坐标.
l
m
m
3. 若关于 x 的一元二次方程 l l
A.砀 线 B.砀 C.砀
九年级数学上册2020-2021学年度第一学期期末调研试卷含答案

CBA2020—2021学年度第一学期期末调研试卷九年级数学一、选择题(本题共16分,每小题2分)第1- 8题均有四个选项,符合题意的选项只有..一个. 1. 点P (2,1)关于原点对称点的坐标是A .(2,1)B .(2,1)C .(1,2)D .(1,2)2.抛物线2yx 的对称轴是A .直线1xB .直线1xC .y 轴D .x 轴3.如果右图是某几何体的三视图,那么该几何体是A .球B .正方体C .圆锥D .圆柱4.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其它差别,从中随机摸出一个小球,恰好是黄球的概率为 A .16B .13C .12D .235.⊙O 的半径为5,点P 到圆心O 的距离为3,点P 与⊙O 的位置关系是A .无法确定B .点P 在⊙O 外C .点P 在⊙O 上D .点P 在⊙O 内6.如图,AB 是⊙O 的直径,C ,D 为⊙O 上的点,AD CD ,如果∠CAB =40°,那么∠CAD的度数为 A .25° B .50° C .40°D .80°7.如果左图是一个正方体的展开图,那么该正方体是A B C DxyOABxyOCA8.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a ,b ,c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为 A .4.25分钟 B .4.00分钟 C .3.75分钟D .3.50分钟二、填空题(本题共16分,每小题2分) 9.已知∠A 为锐角,1sin 2A =,那么∠A = °. 10.在Rt △ABC 中,∠C =90°,AB = 5,BC =4,那么cos B11.写出一个图象位于第一,三象限的反比例函数的表达式 . 12.如图,等边三角形ABC 的外接圆半径OA = 2,其内切圆的半径为 .13.函数2y ax bx c =++(a ≠0)的图象如图所示,那么ac 0.(填“>”,“=”,或“<”)14.将抛物线2y x =沿y 轴向上平移2个单位长度后的抛物线的表达式为 . 15.如图,在平面直角坐标系xOy 中,A (1,1),B (3,1),如果抛物线2y ax =(a >0)与线段AB 有公共点, 那么a 的取值范围是 .16.电影公司随机收集了2 000部电影的有关数据,经分类整理得到下表:注:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.(1)如果电影公司从收集的电影中随机选取1部,那么抽到的这部电影是获得好评的第四类电影的概率是 ;(2)电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大? 答: .xyO 三、解答题 (本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤. 17.计算:(1112cos 454-⎛⎫+-︒+ ⎪⎝⎭.18.已知二次函数243y x x =-+.(1)用配方法将其化为()2y a x h k =-+的形式; (2)在所给的平面直角坐标系xOy 中,画出它的图象.19.下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.已知:如图1,⊙O 和⊙O 外的一点P . 求作:过点P 作⊙O 的切线. 作法:如图2,① 连接OP ;② 作线段OP 的垂直平分线MN ,直线MN 交OP 于C ; ③ 以点C 为圆心,CO 为半径作圆,交⊙O 于点A 和B ; ④ 作直线P A 和PB .则P A ,PB 就是所求作的⊙O 的切线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形; (2)完成下面的证明: 证明:连接OA ,OB ,∵ 由作图可知OP 是⊙C 的直径, ∴ ∠OAP =∠OBP = 90°, ∴ OA ⊥P A ,OB ⊥PB , 又∵ OA 和OB 是⊙O 的半径,∴ P A ,PB 就是⊙O 的切线( )(填依据).OP图1图 2OPNMC20.如图,在平面直角坐标系xOy 中,点A (3,3),B (4,0),C (0,1-).xyO ABC(1)以点C 为旋转中心,把△ABC 逆时针旋转90°,画出旋转后的△''A B C ; (2)在(1)的条件下,① 点A 经过的路径'AA 的长度为 (结果保留π); ② 点'B 的坐标为 .21.如图,在四边形ABCD 中,AB = AD ,∠A = 90°,∠CBD = 30°,∠C = 45°,如果AB =求CD 的长.ABCD22.如果抛物线2224y x x k =++-与x 轴有两个不同的公共点.(1)求k 的取值范围;(2)如果k 为正整数,且该抛物线与x 轴的公共点的横坐标都是整数,求k 的值.23.如图,直线4y ax =-(0a ≠)与双曲线ky x=(0k ≠)只有一个公共点A (1,2-). (1)求k 与a 的值;(2)在(1)的条件下,如果直线y ax b =+(0a ≠)与双曲线ky x=(0k ≠)有两个 公共点,直接写出b 的取值范围.xyO A1-224.如图,AB 是⊙O 的直径,过点B 作⊙O 切线BM ,弦CD ∥BM ,交AB 于F ,AD DC =,连接AC 和AD ,延长AD 交BM 于点E . (1)求证:△ACD 是等边三角形; (2)连接OE ,如果DE = 2,求OE 的长.DBEM OFCA25.阅读材料:工厂加工某种新型材料,首先要将材料进行加温处理,使这种材料保持在一定的温度范围内方可进行继续加工.处理这种材料时,材料温度y(℃)是时间x(min)的函数.下面是小明同学研究该函数的过程,把它补充完整:(1)在这个函数关系中,自变量x的取值范围是.(2)下表记录了17min内10个时间点材料温度y随时间x变化的情况:上表中m的值为.(3)如下图,在平面直角坐标系xOy中,已经描出了上表中的部分点.根据描出的点,画出该函数的图象.yO x(4)根据列出的表格和所画的函数图象,可以得到,当0≤x≤5时,y与x之间的函数表达式为,当x>5时,y与x之间的函数表达式为.(5)根据工艺的要求,当材料的温度不低于30℃时,方可以进行产品加工,在图中所示的温度变化过程中,可以进行加工的时间长度为min.26.在平面直角坐标系xOy 中,抛物线22y x mx n 经过点A (0,2),B (3,4).(1)求该抛物线的函数表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),如果直线CD 与图象G 有两个公共点,结合函数的图象,直接写出点D 纵坐标t 的取值范围.xyO27.如图,在△ABC 中,AC = BC ,∠ACB = 90°,D 是线段AC 延长线上一点,连接BD ,过点A 作AE ⊥BD 于E .(1)求证:∠CAE =∠CBD .(2)将射线AE 绕点A 顺时针旋转45°后,所得的射线与线段BD 的延长线交于点F ,连接CE .① 依题意补全图形;② 用等式表示线段EF ,CE ,BE 之间的数量关系,并证明.ABCDE28.对于平面直角坐标系xOy 中的⊙C 和点P ,给出如下定义:如果在⊙C 上存在一个动点Q ,使得△PCQ 是以CQ 为底的等腰三角形,且满足底角∠PCQ ≤60°,那么就称点P 为⊙C 的“关联点”.(1)当⊙O 的半径为2时,① 在点P 1(2,0),P 2(1,1),P 3(0,3)中,⊙O 的“关联点”是 ; ② 如果点P 在射线3yx (x ≥0)上,且P 是⊙O 的“关联点”,求点P 的横坐标m 的取值范围.(2)⊙C 的圆心C 在x 轴上,半径为4,直线22yx与两坐标轴交于A 和B ,如果线段AB 上的点都是⊙C 的“关联点”,直接写出圆心C 的横坐标n 的取值范围.xyO第(1)问图xyO第(2)问图2020—2021学年度第一学期期末调研试卷九年级数学答案及评分参考三、解答题(本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)17.(本小题满分5分)解:(1 0112cos454-⎛⎫+-︒+ ⎪⎝⎭124=+…………………………………………………………………………………………4分5.=……………………………………………………………………………………………………………5分18.(本小题满分5分)解:(1)配方正确;……………………………………………………………………………………………3分(2)图象正确.……………………………………………………………………………………………5分19.(本小题满分5分)解:(1)补图正确;……………………………………………………………………………………………3分(2)依据正确.……………………………………………………………………………………………5分20.(本小题满分5分)解:(1)画图正确;…………………………………………………………………………………………3分(2)①52;……………………………………………………………………………………………4分②(-1,3). ………………………………………………………………………………………5分21.(本小题满分5分) 解:过点D 作DE ⊥BC 于E . ……………………………………………………………………………1分∵ 在Rt △ABD 中,∠BAD = 90°,2ABAD,∴ 由勾股定理得B D =2. ………………………………………………………………………………2分∵ DE ⊥BC ,∴ 在Rt △DBE 中,∠DEB = 90°,∠CBD = 30°,∴DE =1, (4)分又∵ 在Rt △DEC 中,∠DEC = 90°,∠C = 45°, ∴ 由勾股定理得2CD.…………………………………………………………………………5分22.(本小题满分5分)解:(1)由题意,得 △=()44240.k -->∴5.2k <……………………………………………………………………………………………2分(2)∵ k 为正整数,∴ k =1,2.………………………………………………………………………………………3分当k =1时,方程2220x x +-=的根1x =-±不是整数;………………………………4分当k =2时,方程220x x +=的根12x =-,20x =都是整数;综上所述,k =2.…………………………………………………………………………………5分23.(本小题满分6分)解:(1)∵ 直线4y ax =-(0a ≠)过点A (1,2-),∴24a -=-,……………………………………………………………………………………1分∴2.a =……………………………………………………………………………………………2分又∵ 双曲线ky x=(0k ≠)过点A (1,2-), ∴21k-=,…………………………………………………………………………………………3分 ∴2.k =-………………………………………………………………………………………4分(2)b <-4,b >4. ………………………………………………………………………………………6分24.(本小题满分6分)(1)证明:∵ AB 是⊙O 的直径,BM 是⊙O 的切线, ∴ AB ⊥BM .∵ CD ∥BM , ∴ AB ⊥CD .∴ AD AC .…………………………………………1分∵ AD DC .∴AD AC DC .………………………………………………………………………………2分∴ AD =AC =DC . ∴ △A C D 是等边三角形. …………………………………………………………3分(2)解:连接BD ,如图.∵ AB 是⊙O 的直径,∴ ∠ADB =90°. ∵ ∠ABD =∠C =60°, ∴ ∠DBE =30°. 在Rt △BDE 中,DE =2,可得BE =4,BD = ………………………………………………………………………………………………………4分在Rt △ADB 中,可得AB =∴OB = . ……………………………………………………………………………………5分在R t △O B E 中,由勾股定理得O E =. ……………………………………………………6分25.(本小题满分6分) 解:(1)x≥0;…………………………………………………………………………………………………1分 (2)20;……………………………………………………………………………………………………2分 (3)略;……………………………………………………………………………………………………3分(4)915y x ,300yx;……………………………………………………………………………5分 A E MA BE M(5)25.3……………………………………………………………………………………………………6分26.(本小题满分6分)解:(1)∵ 点A ,B 在抛物线y =2x 2+mx +n 上,∴22,4233.n m n =⎧⎨-=⨯++⎩……………………………………………………………………………1分 解得4,2.m n =⎧⎨=⎩...................................................................................................2分 ∴ 抛物线的表达式为y =-2x 2+4x +2. (3)分 ∴ 抛物线的对称轴为x =1. ………………………………………………………………………4分 (2)43≤t<4. ……………………………………………………………………………………………6分27.(本小题满分7分) (1)证明:如图1,∵ ∠ACB = 90°,AE ⊥BD , ∴ ∠ACB =∠AEB = 90°, 又∵ ∠1=∠2,∴ ∠CAE =∠CBD .………………………………3分(2)① 补全图形如图2. ………………………………………4分②2EFCEBE (5)分证明:在AE 上截取AM ,使AM =BE . 又∵ AC =CB ,∠CAE =∠CBD , ∴ △ACM ≌△BCE .∴ CM =CE ,∠ACM =∠BCE . 又∵ ∠ACB =∠ACM +∠MCB =90°, ∴ ∠MCE =∠BCE +∠MCB =90°. ∴ 2.MECE又∵ 射线AE 绕点A 顺时针旋转45°后得到AF ,且∠AEF =90°,图2图1∴EF=AE=AM+ME=BE.………………………………………………………………………7分28.(本小题满分7分)解:(1)①P1,P2;……………………………………………………………………………………………2分②由题意可知⊙O的“关联点”所围成的区域是以O为圆心,半径分别为1和2的圆环内部(包含2,不包含1). ……………………………………………………………………………3分设:射线3y x(x≥0)与该圆环交于点P1和点P2,由题意易得P1,0),P20).∴<m……………………………………………………………………………………5分(2)23≤n<3,1<n≤ 3.…………………………………………………………………7分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
2020-2021学年九年级(上)月考数学试卷(附详解)

2020-2021学年九年级(上)月考数学试卷一、选择题(本大题共12小题,共36.0分)1.下列方程一定是一元二次方程的是()A. 3x2+2x−1=0 B. 5x2−6y−3=0 C. ax2+bx+c=0 D. 3x2−2x−1=02.某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80,对这组数据表述错误的是()A. 众数是80B. 方差是25C. 平均数是80D. 中位数是753.菱形的两条对角线的分别为60cm和80cm,那么边长是()A. 60cmB. 50cmC. 40cmD. 80cm4.如图,在矩形ABCD中,点A的坐标是(−1,0),点C的坐标是(2,4),则BD的长是()A. 6B. 5C. 3√3D. 4√25.如图,在▱ABCD中,AD=12,AB=8,AE平分∠BAD,交BC边于点E,则CE的长为()A. 8B. 6C. 4D. 26.如图,在正方形ABCD中,点F是AB上一点,CF与BD交于点E.若∠BCF=25°,则∠AED的度数为()A. 60°B. 65°C. 70°D. 75°7.二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是()A. B.C. D.8.若顺次连接对角线互相垂直的四边形ABCD四边的中点,得到的图形一定是()A. 平行四边形B. 矩形C. 菱形D. 正方形9.若m是方程x2−2x−1=0的根,则1+m−12m2的值为()A. 12B. 1C. 32D. 210.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A. 255分B. 84分C. 84.5分D. 86分11.已知A(x1,y1),B(x2,y2)是二次函数图象上y=ax2−2ax+a−c(a≠0)的两点,若x1≠x2且y1=y2,则当自变量x的值取x1+x2时,函数值为()A. −cB. cC. −a+cD. a−c12.已知二次函数y=−x2+mx+m(m为常数),当−2≤x≤4时,y的最大值是15,则m的值是()A. −19或315B. 6或315或−10 C. −19或6 D. 6或315或−19二、填空题(本大题共6小题,共18.0分)13.已知函数关系式:y=√x−1,则自变量x的取值范围是______.14.已知x1,x2是方程x2+x−1=0的两根,则x2x1+x1x2=______.15.将直线y=2x+1平移后经过点(5,1),则平移后的直线解析式为______.16.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x名同学,根据题意,列出方程为______.17.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为______.18.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(−12,0),对称轴为直线x=1,下列5个结论:①abc<0;②a−2b+4c=0;③2a+b>0;④2c−3b<0;⑤a+b≤m(am+b).其中正确的结论为______.(注:只填写正确结论的序号)三、解答题(本大题共8小题,共66.0分)19.已知一个二次函数的图象经过点A(−1,0)、B(3,0)和C(0,−3)三点.(1)求此二次函数的解析式;(2)求此二次函数的图象的对称轴和顶点坐标.20.解一元二次方程:(1)x2+4x+1=0(配方法);(2)用公式法解方程:2x2+3x−1=0.21.某校八年级学生在一次射击训练中,随机抽取10名学生的成绩如下表,请回答问题:环数6789人数152(1)填空:10名学生的射击成绩的众数是______,中位数是______.(2)求这10名学生的平均成绩.(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有多少是优秀射手?22.如图,矩形ABCD,AB=6,BC=4,过对角线BD中点O的直线分别交AB、CD边于点E,F.(1)求证:四边形DEBF是平行四边形;(2)当四边形DEBF是菱形时,求菱形的边长.23.庆阳市是传统的中药材生产区,拥有丰富的中药材资源,素有“天然药库”“中药之乡”的美称.优越的地理气候条件形成了较独特的资源禀赋,孕育了丰富的中药植物资源和优良品种.某种植户2016年投资20万元种植中药材,到2018年三年共累计投资95万元,若在这两年内每年投资的增长率相同.(1)求该种植户每年投资的增长率;(2)按这样的投资增长率,请你预测2019年该种植户投资多少元种植中药材.24.如图,在平面直角坐标系xOy中,直线y=−43x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△PAB=12S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.25.某公司生产一种健身产品在市场上很受欢迎,该公司每年的年产量为6万件,每年可在国内和国外两个市场全部销售,若在国内销售,平均每件产品的利润y1(元)与国内销售量x(万件)的函数关系式为y1={80(0≤x≤1)−x+81(1<x≤6)若在国外销售,平均每件产品的利润为71元.(1)求该公司每年的国内和国外销售的总利润w(万元)与国内销售量x(万件)的函数关系式,并指出x的取值范围.(2)该公司每年的国内国外销售量各为多少时,可使公司每年的总利润最大?最大值是多少?(3)该公司计划在国外销售不低于5万件,并从国内销售的每件产品中捐出2m(5≤m≤10)元给希望工程,从国外销售的每件产品中捐出m元给希望工程,若这时国内国外销售的最大总利润为393万元,求m的值.26.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是______三角形;(2)若抛物线y=−x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=−x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.(4)若抛物线y=−x2+4mx−8m+4与直线y=3交点的横坐标均为整数,是否存在整数m的值使这条抛物线的“抛物线三角形”有一边上的中线长恰好等于这边的长?若存在,直接写出m的值;若不存在,说明理由.答案和解析1.【答案】D【解析】解:A、含有分式,3x2+2x−1=0不是一元二次方程,故此选项不合题意;B、含有2个未知数,5x2−6y−3=0不是一元二次方程,故此选项不合题意;C、当a=0时,ax2+bx+c=0不是一元二次方程,故此选项不合题意;D、3x2−2x−1=0是一元二次方程,故此选项符合题意;故选:D.利用与一元二次方程定义进行分析即可.此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.【答案】D【解析】解:A、80出现的次数最多,所以众数是80,正确,不符合题意;B、方差是:16×[3×(80−80)2+(90−80)2+2×(80−75)2]=25,正确,不符合题意;C、平均数是(80+90+75+75+80+80)÷6=80,正确,不符合题意;D、把数据按大小排列,中间两个数都为80,80,所以中位数是80,错误,符合题意.故选:D.根据众数,方差、平均数,中位数的概念逐项分析即可.本题为统计题,考查方差、众数、平均数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3.【答案】B【解析】解:∵菱形的两条对角线长分别为60cm和80cm,∴该菱形的边长为√302+402=50,故选:B.由菱形的性质以及两条对角线长可求出其边长.此题考查了菱形的性质与勾股定理.此题比较简单,注意掌握菱形的面积的求解方法是解此题的关键.4.【答案】B 【解析】解:∵点A的坐标是(−1,0),点C的坐标是(2,4),∴线段AC=√(4−0)2+(2+1)2=5,∵四边形ABCD是矩形,∴BD=AC=5,故选:B.利用矩形的性质求得线段AC的长即可求得BD的长.本题考查了矩形的性质,能够求得对角线AC的长是解答本题的关键,难度不大.5.【答案】C【解析】解:∵四边形ABCD是平行四边形,∴BC=AD=12,AD//BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8,∴CE=BC−BE=4.故选:C.由平行四边形的性质得出BC=AD=12,AD//BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出BE=AB是解决问题的关键.6.【答案】C【解析】解:∵四边形ABCD是正方形,∴∠ABC=90°,DC=DA,∠ADE=∠CDE=45°.又DE=DE,∴△ADE≌△CDE(SAS).∴∠DAE=∠DCE=90°−25°=65°.∴∠AED=180°−45°−65°=70°.故选:C.先证明△ABE≌△ADE,得到∠ADE=∠ABE=90°−25°=65°,在△ADE中利用三角形内角和180°可求∠AED度数.本题主要考查了正方形的性质,解决正方形中角的问题一般会涉及对角线平分对角成45°.7.【答案】D【解析】解:由二次函数图象,得出a<0,−b2a<0,b<0,A、一次函数图象,得a>0,b>0,故A错误;B、一次函数图象,得a<0,b>0,故B错误;C、一次函数图象,得a>0,b<0,故C错误;D、一次函数图象,得a<0,b<0,故D正确;故选:D.可先根据二次函数的图象判断a、b的符号,再判断一次函数图象与实际是否相符,判断正误.本题考查了二次函数图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.8.【答案】B【解析】解:如图,AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.∵E、F、G、H分别为各边的中点,∴EF//AC,GH//AC,EH//BD,FG//BD(三角形的中位线平行于第三边),∴四边形EFGH是平行四边形(两组对边分别平行的四边形是平行四边形),∵AC⊥BD,EF//AC,EH//BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).故选:B.根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形.本题考查了中点四边形.矩形的判定方法,常用的方法有三种:①一个角是直角的平行四边形是矩形.②三个角是直角的四边形是矩形.③对角线相等的平行四边形是矩形.9.【答案】A【解析】解:∵m是方程x2−2x−1=0的根,∴m2−2m−1=0,∴m2−2m=1,∴1+m−12m2=1−12(m2−2m)=1−12=12,故选:A.根据一元二次方程的解的定义,将x=m代入已知方程后即可求得所求代数式的值.本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.10.【答案】D【解析】【分析】根据题意列出算式,计算即可得到结果.此题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.【解答】解:根据题意得:85×22+3+5+80×32+3+5+90×52+3+5=17+24+45=86(分),故选:D.11.【答案】D【解析】【分析】本题考查了二次函数图象与系数的关系.先求出抛物线的对称轴为直线x=1,则可判断A(x1,y1)和B(x2,y2)关于直线x=1对称,所以x2−1=1−x1,即x1+x2=2,然后计算自变量为2对应的函数值即可.【解答】解:抛物线的对称轴为直线x=−−2a2a=1,∵x1≠x2且y1=y2,∴A(x1,y1)和B(x2,y2)关于直线x=1对称,∴x2−1=1−x1,∴x1+x2=2,当x=2时,y=ax2−2ax+a−c=4a−4a+a−c=a−c.故选:D.12.【答案】C【解析】解:∵二次函数y=−x2+mx+m=−(x−m2)2+m24+m,∴抛物线的对称轴为x=m2,∴当m2<−2时,即m<−4,∵当−2≤x≤4时,y的最大值是15,∴当x=−2时,−(−2)2−2m+m=15,得m=−19;当−2≤m2≤4时,即−4≤m≤8时,∵当−2≤x≤4时,y的最大值是15,∴当x=m2时,m24+m=15,得m1=−10(舍去),m2=6;当m2>4时,即m>8,∵当−2≤x≤4时,y的最大值是15,∴当x=4时,−42+4m+m=15,得m=315(舍去);由上可得,m的值是−19或6;故选:C.根据题意和二次函数的性质,利用分类讨论的方法可以求得m的值,从而可以解答本题.本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.13.【答案】x≥1【解析】解:根据题意得,x−1≥0,解得x≥1.故答案为:x≥1.根据被开方数大于等于0列式计算即可得解.本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.【答案】−3【解析】解:根据题意得x1+x2=−1,x1x2=−1,所以x2x1+x1x2=x22+x12x1x2=(x1+x2)2−2x2x1x1x2=1+2−1=−3.故答案为−3.根据根与系数的关系得到x1+x2=−1,x1x2=−1,然后利用整体代入的方法计算代数式的值.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1x2=ca.15.【答案】y=2x−9【解析】解:设平移后的解析式为:y=2x+b,∵将直线y=2x+1平移后经过点(5,1),∴1=10+b,解得:b=−9,故平移后的直线解析式为:y=2x−9.故答案为:y=2x−9.直接利用一次函数平移的性质假设出解析式进而得出答案.此题主要考查了一次函数图象与几何变换,正确假设出解析式是解题关键.16.【答案】x(x−1)=1056【解析】解:∵全班有x名同学,∴每名同学要送出(x−1)张;又∵是互送照片,∴总共送的张数应该是x(x−1)=1056.故答案为:x(x−1)=1056.如果全班有x名同学,那么每名同学要送出(x−1)张,共有x名学生,那么总共送的张数应该是x(x−1)张,即可列出方程.本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.17.【答案】√262【解析】解:根据勾股定理,AB=√12+52=√26,BC=√22+22=2√2,AC=√32+33=3√2,∵AC2+BC2=AB2=26,∴△ABC是直角三角形,∵点D为AB的中点,∴CD=12AB=12×√26=√262.故答案为:√262.根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.18.【答案】②⑤【解析】解:①函数的对称轴在y轴右侧,则ab<0,而c<0,故abc>0,故①错误,不符合题意;②将点(−12,0)代入函数表达式得:a−2b+4c=0,故②正确,符合题意;③函数的对称轴为直线x=−b2a=1,即b=−2a,故2a+b=0,故③错误,不符合题意;④由②③得:a−2b+4c=0,b=−2a,则c=−5a4,故2c−3b=7a2>0,故④错误,不符合题意;⑤当x=1时,函数取得最小值,即a+b+c≤m(am+b)+c,故⑤正确,符合题意;故答案为②⑤.根据二次函数的图象与系数的关系即可求出答案.本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.19.【答案】解:(1)设二次函数解析式为y=a(x+1)(x−3),∵抛物线过点C(0,−3),∴−3=a(0+1)(0−3),解得a=1,∴y=(x+1)(x−3),∴y二次函数的解析式=x2−2x−3.(2)由y=x2−2x−3=(x−1)2−4,∴对称轴是直线x=1,顶点坐标是(1,−4).【解析】(1)根据A与B的坐标设出抛物线的解析式,把C坐标代入确定出即可;(2)把解析式化成顶点式即可求得.此题考查了待定系数法求二次函数解析式,二次函数的图象与性质,熟练掌握待定系数法是解本题的关键.20.【答案】解:(1)∵x2+4x+1=0,∴x2+4x+4=3,∴(x+2)2=3,∴x+2=±√3,∴x1=−2+√3,x2=−2−√3;(2)∵a=2,b=3,c=−1,∴△=32−4×2×(−1)=17>0,则x=−3±√174.∴x1=−3+√174,x2=−3−√174.【解析】(1)利用配方法求解可得;(2)利用公式法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.【答案】7环7环【解析】解:(1)射击成绩出现次数最多的是7环,共出现5次,因此众数是7环,射击成绩从小到大排列后处在第5、6位的数都是7环,因此中位数是7环,故答案为:7环,7环.(2)6+7×5+8×2+9×210=7.5环,答:这10名学生的平均成绩为7.5环.(3)500×210=100人,答:全年级500名学生中有100名是优秀射手.(1)根据众数、中位数的意义将10名学生的射击成绩排序后找出第5、6位两个数的平均数即为中位数,出现次数最多的数是众数.(2)根据平均数的计算方法进行计算即可,(3)样本估计总体,用样本中优秀人数的所占的百分比估计总体中优秀的百分比,用总人数乘以这个百分比即可.考查平均数、众数、中位数的意义及求法,理解样本估计总体的统计方法.22.【答案】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB//DC,OB=OD,∴∠OBE=∠ODF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6−x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6−x)2,解得:x=133,∴菱形的边长为133.【解析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出DF的长即可求得菱形的边长.本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.23.【答案】解:(1)设这两年该该种植户每年投资的年平均增长率为x,则2017年种植投资为20(1+x)万元,2018年种植投资为20(1+x)2万元,根题意得:20+20(1+x)+20(1+x)2=95,解得:x=−3.5(舍去)或x=0.5=50%.∴该种植户每年投资的增长率为50%;(2)2019年该种植户投资额为:20(1+50%)3=67.5(万元).【解析】(1)设这两年该该种植户每年投资的年平均增长率为x.根据题意2017年种植投资为20(1+x)万元,2018年种植投资为20(1+x)2万元.根据题意得方程求解;(2)用种植户每年投资的增长率即可预测2019年该种植户投资额.主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n为共增长了几年,a为第一年的原始数据,x是增长率.24.【答案】解:(1)令x=0得:y=4,∴B(0,4).∴OB=4令y=0得:0=−43x+4,解得:x=3,∴A(3,0).∴OA=3.在Rt△OAB中,AB=√OA2+OB2=5.∴OC=OA+AC=3+5=8,∴C(8,0).设OD=x,则CD=DB=x+4.在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,∴D(0,−6).(3)∵S△PAB=12S△OCD,∴S△PAB=12×12×6×8=12.∵点Py轴上,S△PAB=12,∴12BP⋅OA=12,即12×3BP=12,解得:BP=8,∴P点的坐标为(0,12)或(0,−4).【解析】(1)先求得点A和点B的坐标,则可得到OA、OB的长,然后依据勾股定理可求得AB的长,(2)依据翻折的性质可得到AC的长,于是可求得OC的长,从而可得到点C的坐标;设OD=x,则CD=DB= x+4.,Rt△OCD中,依据勾股定理可求得x的值,从而可得到点D(0,−6).(3)先求得S△PAB的值,然后依据三角形的面积公式可求得BP的长,从而可得到点P的坐标.本题主要考查的是一次函数的综合应用,解答本题主要应用了翻折的性质、勾股定理、待定系数法求函数解析式、三角形的面积公式,依据勾股定理列出关于x的方程是解题的关键.25.【答案】解:(1)w=y1⋅x+71(6−x)={80x +426−71x(0≤x ≤1)−x 2+81x +426−71x(1<x ≤6) ={9x +426(0≤x ≤1)−x 2+10x +426(1<x ≤6) ∴w ={9x +426(0≤x ≤1)−x 2+10x +426(1<x ≤6)(2)由(1)知,当x =1时,9x +426的最大值为435;当1<x ≤6时,−x 2+10x +426的最大值为x =5时的值,即451,451>435∴当该公司每年的国内销售量为5万件国外销售量为1万件时,可使公司每年的总利润最大,最大值是451万元.(3)∵该公司计划在国外销售不低于5万件,而该公司每年的年产量为6万件 ∴该公司每年在国内销售的件数x 的范围为:0≤x ≤1则总利润w =(80−2m)x +(71−m)(6−x)=(9−m)x +426−6m 显然当10≥m ≥9时,w 的值小于393,当5≤m <9时,9−m >0,当x =1时,令w =(9−m)×1+426−6m =393 解得m =6,当x =0时,令w =426−6m =393,解得m =5.5 经验证,发现当5.5≤m ≤6时符合题意,其他值都不符合. ∴m 的值为5.5≤m ≤6.【解析】(1)由利润等于每件的利润乘以件数,代入分段函数解析式,化简可得解; (2)结合(1)分别计算分段利润函数的最大值,最后得出最大值即可; (3)该公司计划在国外销售不低于5万件,而该公司每年的年产量为6万件 则该公司每年在国内销售的件数x 的范围为:0≤x ≤1则总利润w =(80−2m)x +(71−m)(6−x)=(9−m)x +426−6m 按照x 值的范围代入,结合最大利润为393万元,可分析求得.本题考查了二次函数在成本利润问题中的应用,前两问相对比较简单,第三问由于含有两个变量,分析难度较大,总体来说,本题中等难度略大.26.【答案】等腰【解析】解:(1)如图;根据抛物线的对称性,抛物线的顶点A 必在O 、B 的垂直平分线上,所以OA =AB ,即:“抛物线三角形”必为等腰三角形. 故答案为:等腰.(2)当抛物线y =−x 2+bx(b >0)的“抛物线三角形”是等腰直角三角形, 该抛物线的顶点(b 2,b 24),满足b2=b 24(b >0).则b =2.(3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称,则四边形ABCD 为平行四边形.当OA =OB 时,平行四边形ABCD 是矩形, 又∵AO =AB , ∴△OAB 为等边三角形. ∴∠AOB =60°, 作AE ⊥OB ,垂足为E , ∴AE =OEtan∠AOB =√3OE . ∴b′24=√3×b′2(b >0).∴b′=2√3.∴A(√3,3),B(2√3,0). ∴C(−√3,−3),D(−2√3,0).设过点O 、C 、D 的抛物线为y =mx 2+nx ,则 {12m −2√3n =03m −√3n =0, 解得{m =1n =2√3,故所求抛物线的表达式为y =x 2+2√3x. (4)由−x 2+4mx −8m +4=3,x =4m±√16m2−4(8m−1)2=2m ±√4m 2−8m +1,当x 为整数时,须4m 2−8m +1为完全平方数,设4m 2−8m +1=n 2(n 是整数)整理得: (2m −2)2−n 2=3,即(2m −2+n)(2m −2−n)=3两个整数的积为3,∴{2n −2+n =12m −2−n =3或{2m −2+n =32m −2−n =1或{2m −2+n =−12m −2+n =−3或{2m −2+n =−32m −2+n =−1解得:{m =2n =−1或{m =2n =1或{m =0n =1或{m =0n =−1,综上,得:m =2或m =0;根据题意,抛物线的“抛物线三角形”有一边上的中线长恰好等于这边的长,当m =2时,抛物线方程为y =−x 2+8x −12=−(x −4)2+4,满足抛物线三角形的底边长等于这边的中线长;当m=0时,抛物线方程为y=−x2+4,满足抛物线三角形的底边长等于这边的中线长;∴抛物线与直线y=3交点的横坐标均为整数时m=2或m=0.(1)抛物线的顶点必在抛物线与x轴两交点连线的垂直平分线上,因此这个“抛物线三角形”一定是等腰三角形.(2)观察抛物线的解析式,它的开口向下且经过原点,由于b>0,那么其顶点在第一象限,而这个“抛物线三角形”是等腰直角三角形,必须满足顶点坐标的横、纵坐标相等,以此作为等量关系来列方程解出b 的值.(3)由于矩形的对角线相等且互相平分,所以若存在以原点O为对称中心的矩形ABCD,那么必须满足OA= OB,结合(1)的结论,这个“抛物线三角形”必须是等边三角形,首先用b′表示出AE、OE的长,通过△OAB 这个等边三角形来列等量关系求出b′的值,进而确定A、B的坐标,即可确定C、D的坐标,利用待定系数即可求出过O、C、D的抛物线的解析式.(4)联立两个函数的解析式,通过所得方程先求出这个方程的两个根,然后通过这两个根都是整数确定m的整数值.本二次函数综合题融入了新定义的形式,涉及到:二次函数的性质及解析式的确定、等腰三角形的判定和性质、矩形的判定和性质等知识,重在考查基础知识的掌握情况,解题的思路并不复杂,但计算过程较为复杂,间接增大了题目的难度.。
2020—2021学年度第一学期初三数学期末质量检测含答案

2020—2021学年度第一学期初三期末质量检测数 学 试 卷考生须知1. 本试卷共8页,三道大题,28道小题,满分100分。
考试时间120分钟。
2. 认真填写第1、5页密封线内的学校、姓名、考号。
3. 考生将选择题答案一律填在选择题答案表内。
4. 考生一律用蓝色或黑色钢笔、圆珠笔、碳素笔在试卷上按题意和要求作答。
5. 字迹要工整,卷面要整洁。
一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个 1.已知∠A 为锐角,且sin A =12,那么∠A 等于 A .15° B .30° C .45° D .60° 2.如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC 的大小为A .40°B .30°C .80°D .100°3.已知△ABC ∽△'''A B C ,如果它们的相似比为2∶3,那么它们的面积比是A .3:2B . 2:3C .4:9D .9:4 4.下面是一个反比例函数的图象,它的表达式可能是 A .2y x = B .4y x=C .3y x =-D . 12y x =5.正方形ABCD 内接于O ,若O 的半径是2,则正方形的边长是A .1B .2C .2D .226.如图,线段BD ,CE 相交于点A ,DE ∥BC .若BC =3,DE =1.5,AD =2,则AB 的长为 A .2 B .3 C .4 D .5第2题图yxO第4题图DCBAO第5题图7.若要得到函数()21+2y x =-的图象,只需将函数2y x =的图象 A .先向右平移1个单位长度,再向上平移2个单位长度 B .先向左平移1个单位长度,再向上平移2个单位长度 C .先向左平移1个单位长度,再向下平移2个单位长度 D .先向右平移1个单位长度,再向下平移2个单位长度8. 如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(-2,-3),(1,-3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为A.-1B.-3C.-5D.-7 二、填空题(本题共16分,每小题2分)9.二次函数241y x x =++-2图象的开口方向是__________. 10.Rt△ABC 中,∠C=90°,AC=4,BC=3,则tanA 的值为 .11. 如图,为了测量某棵树的高度,小颖用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点. 此时竹竿与这一点距离相距6m ,与树相距15m ,那么这棵树的高度为 .DECBA第6题图第8题图11题图13题图CBA12.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是 . 13.如图所示的网格是正方形网格,则sin ∠BAC 与sin ∠DAE 的大小关系是 . 14.写出抛物线y=2(x-1)2图象上一对对称点的坐标,这对对称点的坐标 可以是 和 .15.如图,为测量河内小岛B 到河边公路l 的距离,在l 上顺次取A ,C ,D 三点,在A 点测得∠BAD=30°,在C 点测得∠BCD=60°,又测得AC=50米,则小岛B 到公路l 的距离为 米.16.在平面直角坐标系xOy 内有三点:(0,-2),(1,-1),(2.17,0.37).则过这三个点 (填“能”或“不能”)画一个圆,理由是 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.已知:53a b =. 求:a b b+.18.计算:2cos30-4sin 45+8︒︒.19.已知二次函数 y = x 2-2x -3.(1)将y = x 2-2x -3化成y = a (x -h )2 + k 的形式; (2)求该二次函数图象的顶点坐标.20.如图,在△ABC 中,∠B 为锐角, AB =32,BC =7,sin 2B =,求AC 的长.21. 如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,点E 在AB 上,AD =1,AE =2,BC =3,BE =1.5.求证:∠DEC =90°.E DCBA22.下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程. 已知: △ABC .求作: 在BC 边上求作一点P, 使得△P AC ∽△ABC . 作法:如图,①作线段AC 的垂直平分线GH ;②作线段AB 的垂直平分线EF,交GH 于点O ; ③以点O 为圆心,以OA 为半径作圆;④以点C 为圆心,CA 为半径画弧,交⊙O 于点D(与点A 不重合); ⑤连接线段AD 交BC 于点P. 所以点P 就是所求作的点. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明: ∵CD=AC , ∴CD = . ∴∠ =∠ . 又∵∠ =∠ ,∴△P AC ∽△ABC ( )(填推理的依据).23.在平面直角坐标系xOy 中,直线y=x+2 与双曲线ky x相交于点A (m ,3). (1)求反比例函数的表达式; (2)画出直线和双曲线的示意图;(3)若P 是坐标轴上一点,当OA =P A 时.直接写出点P 的坐标.ABC24. 如图,AB 是O 的直径,过点B 作O 的切线BM ,点A ,C ,D 分别为O 的三等分点,连接AC ,AD ,DC ,延长AD 交BM 于点E , CD 交AB 于点F. (1)求证://CD BM ;(2) 连接OE ,若DE=m ,求△OBE 的周长.25. 在如图所示的半圆中, P 是直径AB 上一动点,过点P 作PC ⊥AB 于点P ,交半圆于点C ,连接AC .已知AB =6cm ,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为y 1cm ,A ,C 两点间的距离为y 2cm.小聪根据学习函数的经验,分别对函数y 1,y 2随自变量x 的变化而变化的规律进行了探究. 下面是小聪的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了y 1,y 2与x 的几组对应值; x /cm 0 1 2 3 4 56 y 1/cm 0 2.24 2.83 2.83 2.24 0 y 2/cm2.453.464.244.905.486(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1), (x ,y 2),并画出函数y 1,y 2的图象;O M F DCA(3)结合函数图象,解决问题:当△APC 有一个角是30°时,AP 的长度约为 cm. 26. 在平面直角坐标系xOy 中,抛物线22y ax ax c =++(其中a 、c 为常数,且a <0)与x 轴交于点A ()3,0-,与y 轴交于点B ,此抛物线顶点C 到x 轴的距离为4. (1)求抛物线的表达式; (2)求CAB ∠的正切值;(3)如果点P 是x 轴上的一点,且ABP CAO ∠=∠,直接写出点P 的坐标.27. 在菱形ABCD 中,∠ADC=60°,BD 是一条对角线,点P 在边CD 上(与点C ,D 不重合),连接AP ,平移ADP ∆,使点D 移动到点C ,得到BCQ ∆,在BD 上取一点H ,使HQ=HD ,连接HQ ,AH ,PH . (1) 依题意补全图1;(2)判断AH 与PH 的数量关系及∠AHP 的度数,并加以证明;(3)若141AHQ ∠=︒,菱形ABCD 的边长为1,请写出求DP 长的思路. (可以不写出计......算结果...)A BCDP图1A BCD备用图28.在平面直角坐标系xOy中,点A(x,0),B(x,y),若线段AB上存在一点Q满足12 QAQB=,则称点Q是线段AB的“倍分点”.(1)若点A(1,0),AB=3,点Q是线段AB的“倍分点”.①求点Q的坐标;②若点A关于直线y= x的对称点为A′,当点B在第一象限时,求' QA QB;(2)⊙T的圆心T(0,t),半径为2,点Q在直线3y x=上,⊙T上存在点B,使点Q是线段AB的“倍分点”,直接写出t的取值范围.2020-2021学年度第一学期期末初三质量检测数学试卷评分标准一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个二、填空题(本题共16分,每小题2分) 9.下10.3411. m 712.32π13.sin ∠BAC >sin ∠DAE 14.(2,2),(0,2)(答案不唯一)15.能,因为这三点不在一条直线上.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17.解:∵53a b =,∴1a b a b b +=+=53+1=83.………………………5分 =218.解:原式3分………………………4分 5分19.解:(1)y=x 2-2x-3=x 2-2x+1-1-3……………………………2分 =(x-1)2-4.……………………3分 (2)∵y=(x-1)2-4,∴该二次函数图象的顶点坐标是(1,-4).………………………5分20.解:作AD ⊥BC 于点D ,∴∠ADB =∠ADC =90°. ∵sin 2B =, ∴∠B=∠BAD=45°.………………2分 ∵AB =B∴AD=BD=3.…………………………3分 ∵BC =7,∴DC=4. ∴在Rt △ACD 中,225AC AD DC =+=.…………………………5分21.(1)证明:∵AB ⊥BC ,∴∠B =90°. ∵AD ∥BC ,∴∠A =90°.∴∠A =∠B .………………2分 ∵AD =1,AE =2,BC =3,BE =1.5, ∴121.53=.∴AD AEBE BC=∴△ADE ∽△BEC .∴∠3=∠2.………………3分 ∵∠1+∠3=90°,∴∠1+∠2=90°. ∴∠DEC =90°.………………5分22.(1)补全图形如图所示:………………2分 (2)AC ,∠CAP=∠B ,∠A CP=∠A CB ,有两组角对应相等的两个三角形相似.………………5分23.解:(1)∵直线y=x+2与双曲线ky x=相交于点A (m ,3).∴3=m+2,解得m=1.∴A (1,3)……………………………………1分 把A (1,3)代入ky x=解得k=3, 3y x=……………………………………2分(2)如图……………………………………4分(3)P (0,6)或P (2,0) ……………………………………6分 24.证明:(1)∵点A 、C 、D 为O 的三等分点,∴AD DC AC == , ∴AD=DC=AC. ∵AB 是O 的直径,∴AB ⊥CD.∵过点B 作O 的切线BM , ∴BE ⊥AB.∴//CD BM .…………………………3分(2) 连接DB.由双垂直图形容易得出∠DBE=30°,在Rt △DBE 中,由DE=m ,解得BE=2m ,3∴CB AEFGHOPD yx–1–2–3–4–5–6–71234567–1–2–3–4–51234AOACDFM Om.②在Rt △ADB 中利用30°角,解得AB=2m ,…………………4分③在Rt △OBE 中,由勾股定理得出………………………………5分④计算出△OB E 周长为2m.………………………………6分25.(1)3.00…………………………………1分(2)…………………………………………4分 (3)1.50或4.50……………………………2分26.解:(1)由题意得,抛物线22y ax ax c =++的对称轴是直线212ax a=-=-.………1分 ∵a <0,抛物线开口向下,又与x 轴有交点,∴抛物线的顶点C 在x 轴的上方. 由于抛物线顶点C 到x 轴的距离为4,因此顶点C 的坐标是()1,4-. 可设此抛物线的表达式是()214y a x =++,由于此抛物线与x 轴的交点A 的坐标是()3,0-,可得1a =-. 因此,抛物线的表达式是223y x x =--+.………………………2分 (2)点B 的坐标是()0,3.联结BC .∵218AB =,22BC =,220AC =,得222AB BC AC +=. ∴△ABC 为直角三角形,90ABC ∠=. 所以1tan 3BC CAB AB ∠==.即CAB ∠的正切值等于13.………………4分 (3)点p 的坐标是(1,0).………………6分27.(1)补全图形,如图所示.………………2分(2)AH 与PH 的数量关系:AH =PH ,∠AHP =120°.证明:如图,由平移可知,PQ=DC.∵四边形ABCD 是菱形,∠ADC=60°,∴AD=DC ,∠ADB =∠BDQ =30°.∴AD=PQ.∵HQ=HD ,∴∠HQD =∠HDQ =30°.∴∠ADB =∠DQH ,∠D HQ=120°.∴△ADH ≌△PQH.∴AH =PH ,∠A HD =∠P HQ .∴∠A HD+∠DHP =∠P HQ+∠DHP . ∴∠A HP=∠D HQ . ∵∠D HQ=120°,∴∠A HP=120°.………………5分(3)求解思路如下:由∠A HQ=141°,∠B HQ=60°解得∠A HB=81°.a.在△ABH 中,由∠A HB=81°,∠A BD=30°,解得∠BA H=69°.b.在△AHP 中,由∠A HP=120°,AH=PH ,解得∠PA H=30°.c.在△ADB 中,由∠A DB=∠A BD= 30°,解得∠BAD =120°.由a 、b 、c 可得∠DAP =21°.在△DAP 中,由∠A DP= 60°,∠DAP =21°,AD=1,可解△DAP ,从而求得DP 长.…………………………………7分28.解:(1)∵A (1,0),AB =3∴B (1,3)或B (1,-3) ∵12QA QB = ∴Q (1,1)或Q (1,-1)………………3分(2)点A (1,0)关于直线y = x 的对称点为A ′(0,1)∴Q A =Q A ′ ∴QB A Q '21=………………5分 (3)-4≤t ≤4………………7分AB C D P H Q x。
2020-2021学年苏科版九年级数学上册期中调研试题及答案

2020-2021学年第一学期期中调研测试九年级数学(满分:150分;考试时间:120分钟)友情提醒:所有试题的解答请在所提供的答题纸上作答,否则一律无效!一、选择题 (本大题共有8小题,每小题3分,共24分)1.一元二次方程(1)0x x-=的解是(▲)A.0 B.1 C.0和1 D.0和1-2.如图,⊙O是△ABC的外接圆,∠A=,则∠BOC的大小为(▲)A.40° B.30° C.80° D.100°3.一元二次方程x2+kx﹣3=0的一个根是x=1-,则k的值是(▲)A.0 B.1- C.3 D.2-4.已知⊙O的半径为5,点P在⊙O外,则OP的长可能是(▲)A.3 B.4 C.5 D.65.下列说法正确的是(▲)A.三点确定一个圆 B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线 D.三角形的内心到三角形三个顶点距离相等6.已知线段a=2cm,b=8cm,它们的比例中项c是(▲)A.16cm B.4cm C.±4cm D.±16cm7.若代数式2=21M x-,2(+1)+1N x=,则M与N的大小关系是(▲)A.M N> B.M N< C.M N= D.无法确定,与x的取值有关8.如图,两正方形彼此相邻内接于半圆,若半圆的半径为5cm,则小正方形的边长为(▲)A.2cm B.2.5cm C.5cm D.53cm(第2题图)(第8题图)二、填空题 (本大题共有10小题,每小题3分,共30分.)9.已知23xy=,则x yx y+-= ▲.10.若四边形ABCD是⊙O的内接四边形,∠A=120°,则∠C的度数是▲°.11.若方程2(3)2x a-=-有实数根,则a的取值范围是▲.12.如图,AB是⊙O的直径,弦CD AB⊥于点E,AB=10cm,CD=8cm,则BE=▲cm.13.如图,BD是⊙O的直径,点A、C在圆周上,∠CBD=20°,则∠A的度数为▲°.14.若实数a、b满足(44)(442)80a b a b++--=,则a+b=▲.15.如图,在矩形ABCD中,AB=16,AD>AB,以A为圆心裁出一扇形ABE(E在AD上),将扇形ABE围成一个圆锥(AB和AE重合),则此圆锥的底面圆半径是▲.16.如图,⊙O的两条弦AB和CD相交于点P,若弧AC、弧BD的度数分别为60°、40°,则∠BPC的度数为▲°.17.如图,在平面直角坐标系xoy中,点A 的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0).若在x轴的正半轴上有一点D,且∠ADB=∠ACB,则点D的坐标为▲.18.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为▲.(第12题图)(第15题图)(第16题图)(第17题图)(第18题图)(第13题图)三.解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、解题过程或演算步骤) 19.(本题满分8分)用适当的方法解方程:(1)2340x x +-=; (2)()()2232x x x -=-.20.(本题满分8分)如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D ,若CA CD =,试求A ∠的度数.21.(本题满分8分)某市为争创全国文明卫生城,2016年市政府对区绿化工程投入的资金是2000万元,2018年投的资金是2420万元,且2017年和2018年,每年投入资金的年平均增长率相同.求该市对区绿化工程投入资金的年平均增长率.22.(本题满分8分)(1)对于实数a 、b ,定义运算“⊕”如下:2a b a b ⊕=-.若(1)(2)8x x +⊕-=,求2(2)(23)x x x -⊕-的值;(2)已知点C 是线段AB 的黄金分割点(AC <BC ),若AB =4,求AC 的长.A A 1 CBOy x51 3 223.(本题满分10分)如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E .(1)若∠B =64°,求∠CAD 的度数; (2)若AB =10,DE =2,求AC 的长.24.(本题满分10分)已知关于x 的方程2(1)(22)0x m x m -++-=. (1)若该方程有两个相等的实数根,求m 的值;(2)求证:不论m 为何值,该方程一定有一个实数根是2;(3)若1x 、2x 是该方程的两个根,且[][]11223(1)3(1)25x m x x m x ++-++-=,求m 的值.25.(本题满分10分)如图,在平面直角坐标系中,以A (5,1)为圆心,2个单位长度为半径的⊙A 交x 轴于点B 、C .解答下列问题: (1)将⊙A 向下平移 ▲ 个单位长度与x 轴相切;(2) 将⊙A 向左平移得到⊙A 1,当⊙A 1与y 轴首次..相切,此时阴影部分的面积S = ▲ ; (3)将⊙A 向左平移 ▲ 个单位长度与坐标轴...有三个公共点.26.(本题满分10分)如图,AB是⊙O的直径,AC是弦,D是弧BC的中点,过点D作DE ⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)当AB=10,AC=53时,求弧BC的长;(3)当AB=20时,直接写出△ABC面积最大时,点D到直径AB的距离.27.(本题满分12分)某汽车租赁公司共有汽车50辆,市场调查表明,当租金为每辆每日200元时可全部租出,当租金每提高10元,租出去的车就减少2辆.(1)当租金提高多少元时,公司的每日收益可达到10120元?(2)公司领导希望日收益达到10200元,你认为能否实现?若能,求出此时的租金,若不能,请说明理由.(3)汽车日常维护要一定费用,已知外租车辆每日维护费为100元,未租出的车辆维护费为50元,当租金为多少元时,公司的利润恰好为5500元?(利润=收益一维护费).(备用图)(备用图)28.(本题满分12分)如图1,矩形ABCD,AB=6cm,AD=8cm,点O从点B出发,以1cm/s 的速度向点C运动,设O点运动时间为t(单位:s)(0<t<4),以点O为圆心,OB为半径作半圆⊙O交BC于点M,过点A作⊙O的切线交BC于点N,切点为P.(1)如图2,当点N与点C重合时,求t;(2)如图3,连接AO,作OQ⊥AO交AN于点Q,连接QM,求证:QM是⊙O的切线;(3)如图4,连接CP,在点O整个运动过程中,求CP的最小值.九年级数学参考答案一、选择题 (本大题共有8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案 C D D D B B D C二、填空题 (本大题共有10小题,每小题3分,共30分.)9.-5 10.60 11.0a≤ 12.2 13.7014.11,2- 15.4 16.130 17.(7,0) 18.3或3(图2)(图3)(图4)(图1)三.解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、解题过程或演算步骤)19.(1)121,4x x ==- …………………………………4分(2)1222,3x x ==- …………………………………4分 20.解:连结OC , ∵CD 为⊙O 的切线 ∴OC ⊥CD∴∠OCD =90° …………………………………2分 又∵OA =OC ∴∠A =∠ACO 又∵AC =CD , ∴∠A =∠D∴∠A =∠ACO =∠D , …………………………………6分 而∠A +∠ACD +∠D =180°﹣90°=90°,∴∠A =30°. …………………………………8分 21.解:设该区对区绿化工程投入资金的年平均增长率为x ,根据题意得:2000(1+x )2=2420, …………………………………5分 解得:x 1=0.1=10%,x 2=﹣2.1(不合题意,舍去). ………………………………7分 答:该区对区绿化工程投入资金的年平均增长率为10%.……………………………8分 22.(1)1- ……………………………4分 (2) 625- ……………………………8分23.(1)32°; ……………………………5分(2)8. ……………………………10分 24.(1)3m = ……………………………3分 (2)∵121,2x m x =-=,∴不论m 为何值,该方程一定有一个实数根是2 ………6分 (3)3,2m m ==- ……………………………10分 25.(1)3 ……………………………3分(2)6 ……………………………6分(3)3,53,53,7-+……………………………10分26.解:(1)连接OD.∵D是BC的中点,∴=,∴∠1=∠2.∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线.……………………………4分(2)53π……………………………7分(3)52……………………………10分27.解:(1)设租金提高x元,则每日可租出(50﹣)辆,依据题意,得:(200+x)(50﹣)=10120,整理,得:x2﹣50x+600=0,解得:x1=20,x2=30.答:当租金提高20元或30元时,公司的每日收益可达到10120元.………………4分(2)假设能实现,依题意,得:(200+x)(50﹣)=10200,整理,得:x2﹣50x+1000=0,∵24b ac =(﹣50)2﹣4×1×1000=﹣1500<0, ∴该一元二次方程无解,∴日收益不能达到10200元. …………………8分(3)依题意,得:(200+x )(50﹣)﹣100(50﹣)﹣50×=5500,整理,得:x 2﹣100x +2500=0, 解得:x 1=x 2=50, ∴200+x =250.答:当租金为250元时,公司的利润恰好为5500元. …………………12分28.(1)3 ………………………4分(2)连接O P . 证明△OPQ ≌△OMQ , ∴∠OMQ =∠OPQ =90°,∴EC 是⊙P 的切线. ………………………8分 (3)4 ………………………12分。
2020-2021学年九年级(上)月考数学试卷 (含答案) (3)

2020-2021学年九年级(上)月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°5.(3分)某市“菜篮子工程”蔬菜基地2018年产量为100吨,预计到2020年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA 是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程x2﹣3x+x=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(x﹣1)x2+x+x﹣3=0与方程x2﹣3x+x=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2018年产量为100吨,预计到2020年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2018年产量为100吨,则2019年蔬菜产量为100(1+x)吨,2020年蔬菜产量为100(1+x)(1+x)吨,预计2020年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD=S△AOE+S△DOE,即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA 是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠F AH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,∴S菱形ABCD=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程x2﹣3x+x=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(x﹣1)x2+x+x﹣3=0与方程x2﹣3x+x=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程x2﹣3x+2=0,解得x1=1,x2=2,然后分别把x=1和x =2代入元二次方程(x﹣1)x2+x+x﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程x2﹣3x+x=0变形为方程x2﹣3x+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(x﹣1)x2+x+x﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(x﹣1)x2+x+x﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。
2020-2021年秋季九年级(上)月考数学试卷 (含答案) (8)

2020-2021年秋季九年级(上)月考数学试卷一、选择题(共10题;共30分)1.对于函数 y =(x −2)2+5 ,下列结论错误的是( )A. 图象顶点是(2,5)B. 图象开口向上C. 图象关于直线 x=2 对称D. 函数最大值为52.已知关于x 的一元二次方程 x 2+bx −1=0 ,则下列关于该方程根的判断,正确的是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 实数根的个数与实数b 的取值有关3.用配方法解方程 x 2−4x +1=0 ,配方后的方程是 ( )A. (x +2)2=3B. (x −2)2=3C. (x −2)2=5D. (x +2)2=54.在平面直角坐标系中,将抛物线y=x 2﹣2x ﹣1先向上平移3个单位长度,再向左平移2个单位长度,所得的抛物线的解析式是( )A. y=(x+1)2+1B. y=(x ﹣3)2+1C. y=(x ﹣3)2﹣5D. y=(x+1)2+25.已知关于 x 的一元二次方程 x 2−2x +k =0 有两个不相等的实数根,则k 的值可以是( )A. -2B. 1C. 2D. 36.点P(m ,n)在以y 轴为对称轴的二次函数y =x 2+ax+4的图象上.则m ﹣n 的最大值等于( )A. 154B. 4C. ﹣ 154D. ﹣ 174 7.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是 43 ,则这种植物每个支干长出的小分支个数是( )A. 4B. 5C. 6D. 78.我县某贫围户2016年的家庭年收入为4000元,由于党的扶贫政策的落实,2017、2018年家庭年收入增加到共15000元,设平均每年的增长率为x ,可得方程( )A. 4000(1+x )2=15000B. 4000+4000(1+x )+4000(1+x )2=15000C. 4000(1+x )+4000(1+x )2=15000D. 4000+4000(1+x )2=150009.如图,在四边形 ABCD 中, AD//BC , ∠A =45° , ∠C =90° , AD =4cm , CD =3cm .动点M ,N 同时从点A 出发,点M 以 √2cm/s 的速度沿 AB 向终点B 运动,点N 以 2cm s ⁄ 的速度沿折线 AD −DC 向终点C 运动.设点N 的运动时间为 ts , △AMN 的面积为 S cm 2 ,则下列图象能大致反映S 与t 之间函数关系的是( )A. B. C. D.10.如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B(4,0),则下列结论中:①abc>0;②4a+b>0;③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;④若抛物线的对称轴是直线x=3,m为任意实数,则a(m−3)(m+3)⩽b(3−m);⑤若AB≥3,则4b+3c>0,正确的个数是()A. 5B. 4C. 3D. 2二、填空题(共6题;共24分)11.方程x2+2x−3=0的两根为x1、x2则x1⋅x2的值为________.12.方程(x+1)2=9的解是________.13.下表中y与x的数据满足我们初中学过的某种函数关系,其函数表达式为________.14.汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=15t﹣6t2,汽车从刹车到停下来所用时间是________秒.15.一个三角形的两边长分别为2和5,第三边长是方程x2−8x+12=0的根,则该三角形的周长为________.16.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣1.其中正确结论的序号是________.a三、解答题(共8题;共66分)17.解答下列各题:(1)用配方法解方程:x²-8x-4=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年第一学期初三数学质量调研
一.选择题(30分)
1.下列方程中,关于x的一元二次方程是()
A.x+2=3
B.x2−2x−3=0
C.x+y=1
D.x2+1
x
=1
2. 在RtΔABC中,∠C=
90,AC=12,BC=5,则sin A为()
A.5
12B.12
5
C.5
13
D.12
13
3. 若关于x的一元二次方程x2−2x−k=0没有实数根,则k的取值范围是()
A.k>−1
B.k≥−1
C.k≤−1
D.k<−1
4. 顶点为(-5,0),且开口方向、形状与函数y=−1
3
x2的图象相同的抛物线是()
A.y=−1
3(x−5)2B.y=−1
3
x2−5C.y=−1
3
(x+5)2D.y=1
3
(x+5)2
5. 若一个三角形两边的长分别是3和7,且第三边的长是方程x2−8x+12=0的一个实数根,则这个三角形的周长为()
A. 12
B. 15
C. 16
D. 17
6. 若代数式x2+5x+6与−x+1的值相等,则x的值为()
A. x1=−1,x2=−5
B. x1=−6,x2=1
C. x1=−2,x2=−3
D. x1=5,x2=−1
7. 抛物线y=6(x+2)2−3可以由抛物线y=6x2平移得到,则下列平移过程正确的是()
A. 先向左平移2个单位,再向上平移3个单位
B. 先向左平移2个单位,再向下平移3个单位
C. 先向右平移2个单位,再向下平移3个单位
D. 先向右平移2个单位,再向上平移3个单位
8.某商品进货价为每件10元,售价每件90元时平均每天可售出20件,经调查发现,如果每件降价2元,那么平均每天可以多出售4件,若想每天盈利1000元,设每件降价x元,可列出方程为()
A.(40−x)⋅(20+x)=1000
B. (40−x)⋅(20+2x)=1000
C. (40−x)⋅(20−x)=1000
D. (40−x)⋅(20+4x)=1000
9. 用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象时,列了如下表格:
A x1=−4,x2=4B.x1=−1,x2=3C..x1=3,x2=4D.x1=−2,x2=4
10. 如图,正方形的四个顶点坐标依次为(1,1),(3,1)(3,3),(1,3),若抛物线y=ax2的图象与正方形有公共点,则实数a的取值范围是()
A.1
9≤a≤3 B.1
9
≤a≤1 C.1
3
≤a≤3 D.1
3
≤a≤1
二.填空题(24分)
, 那么锐角A=__________.
11.如果sin A=1
2
12.一元二次方程x(x−2)=x的根是__________.
13.抛物线y=x2−4x−3的顶点坐标是__________.
14.二次函数y=(m+2)x2+2x+(m2−4)的图象经过原点,则m=__________.
15.二次函数y=ax2+bx+c的图象如图所示,当函数值y<0时,对应x的取值范围是__________.
16.关于x的一元二次方程mx2−2x−1=0有两个不相等的实数根,则m的取值范围是__________.
17.设a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为__________.
18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;
②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b),(m≠1的实数)其中正确的结论__________.
三.解答题(共76分)
19.计算(每题4分,共8分)
(1)cos2450-4sin300tan450(2)|√2−1|+sin450-√tan2600
20. 解方程(每题4分,共8分)
(1)x2−10x−24=0(2)(2x−1)2−16=0
21.(6分)已知关于x的方程2x2+kx+1−k=0,若方程的一个根是-1,求另一个根及k 的值.
22.(6分)已知y=(k−1)x k2+k−4是二次函数
(1)若其图像开口向下,求k的值
(2)若当x<0时,y随x的增大而减小,求函数关系式
23.(6分)已知关于x的一元二次方程(m−2)x2+2mx+3+m=0有两个不相等的实数根.
(1)求m的取值范围
(2)当m取满足条件的最大整数时,求方程的根
24.(6分)已知二次函数y=x2−kx+k−5
(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点
(2)若此二次函数图象的对称轴为x=1,求它的解析式
25.(8分)如图二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(-1,0),点C(0,5),点D(1,8)都在抛物线上,M为抛物线的顶点
(1)求抛物线的函数解析式
(2)求ΔMCB的面积
(3)根据图形,直接写出直线CM在抛物线上方时x的取值范围
26.(8分)某经销商销售一种成本为10元/kg的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg.在销售过程中发现销量y(kg)与售价x(元
(2)设销售这种商品每天所获得的利润为W元,求W与x之间的函数关系式;并求出该商品销售单价定为多少元时,才能使经销商所获利润最大?最大利润时多少?
27.(8分)如图,已知二次函数y=−3
4x2+9
4
x+3的图象与x轴交于A,B两点(点A在
点B左侧),与y轴交于点C
(1)求线段BC的长;
(2)当0≤y≤3时,请直接写出x的范围;
(3)点P时抛物线上位于第一象限的一个动点,连接CP,当∠BCP=900时,求点P的坐标
28.(12分)抛物线y=ax2+bx+c与x轴交于A(-3,0),B(1,0)两点,与y轴交于C (0,2)
(1)分别求直线AC及抛物线的解析式;
(2)P是线段AC上的一个动点,过P点作x轴的垂线交抛物线于E点,求线段PE长度的最大值;
(3)若点G是抛物线上的动点,点F在x轴上,且以A、C、F、G四个点为顶点的四边形是平行四边形,试直接写出所有满足条件的F点坐标.
参考答案
1.B
2.C
3.D
4.C
5.C
6.A
7.B
8.B
9.D10.A
11.30012.x1=0,x2=313.(2,-7)14.215.−3<x<1 16.m>−1且m≠017.√318.③④⑤
19.(1)−3
2
(2)2
20.(1)x1=12,x2=−2(2)x1=5
2,x2=−3
2
21.x2=1
4,k=3
2
22.(1)k=-3(2)y=x2
23.(1)m<6且m≠2(2)x1=−4
3
,x2=−2
24.(1)Δ=(k−2)2+16>0(2)y=x2−2x−3
25.(1)y=−x2+4x+5(2)15(3)x<0或x>2
26.(1)y=−2x+60(10≤x≤18)
(2)w=−2x2+80x−600=−2(x−20)2+200
X=18时,w max=192
27.(1)BC=3 (2)−1≤x≤0或3≤x≤4(3)P(11
9,125 27
)
28. (1) AC: y=2
3x+2y=−2
3
x2−4
3
x+2
(2)PE m
ax =3
2
(3)F: (-1,0)或(2+√7,0)或2−√7,0)或(-5,0)。