期货最优套期保值比率地估计

合集下载

期货最优套期保值比率估计模型探究

期货最优套期保值比率估计模型探究

期货最优套期保值比率估计模型探究作者:付莎谢媛来源:《现代经济信息》2016年第27期摘要:期货一般指由期货交易所统一制定、规定在未来某一特定的时间和地点交割一定数量标的物的标准化合约。

运用期货的空头和多头两种套保方式。

交易者可以通过套期保值达到锁定资产出售价格的目的。

本文从理论角度出发,对于常见的套期保值比率模型进行了探究。

关键词:期货;套期保值模型;比率模型中图分类号:F83 文献识别码:A 文章编号:1001-828X(2016)027-000-01一、引言期货,一般指期货合约,由期货交易所统一制定、规定在未来某一特定的时间和地点交割一定数量标的物的标准化合约。

它被作为一种套期保值工具广泛使用,企业使用套期保值交易锁定生产成本或销售收入以获得稳定的利润,证券投资者利用股指期货对自己的股票进行套期保值。

本文从理论角度对于可能的可用模型进行探究。

二、套期保值比率估计模型1.最小方差法确定套期保值比率套期保值比率,定义为期货头寸和现货头寸的商,表示为了进行套期保值,单位现货需要的期货合约数量,用h表示。

以下给出套期保值比率的推导过程。

首先,以多头现货和空头期货为例组成期货—现货套期保值组合。

每个时期套期保值组合的价值变化为:其中△Vt表示t时期现货和期货组成的套期保值投资组合价值的变化,△St表示t期现货价格的变化,△Ft表示t时期期货价格的变化,ht表示t期套保比率。

对h求一阶导并令其为0,得到最小方差套保比率为:2.静态套保比率认为套保比率在投资期保持不变,得到常数的套保比率,即不考虑ht小标t。

该比率称为静态套保比率。

(1)简单回归模型(OLS)运用OLS技术对期货价格的变化量和现货价格的变化量之间进行线性拟合,可以得到静态套保比率。

△St=c+h*△Ft+εt其中,△St是现货价格变化,△Ft是期货价格变化,c为常数项,εt为回归方程的残差。

在残差序列满足经典线性回归模型(CLAM)的基本假设下,方程回归结果h就是最优套保比率。

期货最优套期保值比率地估计

期货最优套期保值比率地估计

一、实验名称:期货最优套期保值比率的估计二、理论基础1. 期货套期保值比率概述期货,一般指期货合约,作为一种套期保值工具被广泛使用。

进行期货套期保值交易过程中面临许多选择,如合约的选取,合约数量的确定。

如果定义套期保值比h 为期货头寸与现货头寸之商的话,在上面的讨论中一直假设期货头寸和现货头寸相同,即套期保值比h 为1,但这不一定是最优的套期保值策略。

如果保值者的目的是最大限度的降低风险,那么最优套期保值策略就应该是让套保者在套保期间内的头寸价值变化最小,也就是利用我们如下所说的头寸组合最小方差策略。

考虑一包含s C 单位的现货多头头寸和f C 单位的期货空头头寸的组合,记t S 和t F 分别为t 时刻现货和期货的价格,该套期保值组合的收益率h R 为:f s t s t f t s h hR R S C F C S C R -=∆-∆=(2-1) 式中: s f C C h =为套期保值比率,t ts S S R ∆=,t t f F F R ∆=,1--=∆t t t S S S ,1--=∆t t t F F F 。

收益率的方差为:),(2)()()(2f s f s h R R hCov R Var h R Var R Var -+= (2-2)(2)式对h 求一阶导数并令其等于零,可得最小方差套期保值比率为:fs f f s R Var R R Cov h σσρ==)(),(* (2-3) 其中:ρ为s R 与f R 的相关系数,s σ和f σ分别为s R 与f R 的标准差。

2. 计算期货套期保值比率的相关模型 虽然上述的介绍中的*s f h σρσ=可以求解最优套期保值比,但其操作性不强,其先要分别求三个量然后再计算*h ,显然误差较大 ,下面为几种常见的关于求解最优套期保值比率的时间序列模型。

1) 简单回归模型(OLS )考虑现货价格的变动(△S )和期货价格变动(△F )的线性回归关系,即建立:t t t F h c S ε+∆+=∆* (2-4)其中C 为常数项,t ε为回归方程的残差。

期货从业《期货基础知识》知识点:最佳套期保值比率

期货从业《期货基础知识》知识点:最佳套期保值比率

期货从业《期货基础知识》知识点:最
佳套期保值比率
1.套期保值的实现程度
交叉套期保值以及套期保值数量或期限的不匹配都会影响套期保值的实现程度。

2.套期保值比率:用于套期保值的期货合约头寸与被套期保值的资产头寸的比例。

3.最优套期保值比率:能够最有效、最大程度地消除被保值对象价格变动风险的套期保值比率称为最优套期保值比率。

在股指期货中,只有买卖指数基金或严格按照指数的构成买卖一揽子股票,才能做到完全对应。

事实上,对绝大多数股市投资者而言,并不总是按照指数成分股来构建股票组合。

(一)单个股票的β系数
1.系数的定义是股票的收益率与整个市场组合的收益率的协方差和市场组合收益率的方差的比值。

2.β系数显示股票的价值相对于市场价值变化的相对大小。

也称为股票的相对波动率。

3.该系数大于1,说明股票的波动或风险程度高于以指数衡量的整个市场;
该系数小于1,说明股票的波动或风险程度低于以指数衡量的整个市场。

(二)股票组合的β系数
是以资金比例为权重的各股票β系数的加权平均值,比单一股票的β系数可靠性高。

(三)最优套期保值比率的确定
1.基本的最优套期保值比率是最小方差套期保值比率,即使得整个套期保值组合(包括用于套期保值的资产部分)收益的波动最小化的套期保值比率,具体体现为整个资产组合收益的方差最小化。

2.买卖期货合约数量=β系数×现货总价值/(期货指数点×每点乘数)
当现货总价值和期货合约的价值定下来后,所需买卖的期货合约数就与β系数的大小有关,β系数越大,所需的期货合约数就越多;反之则越少。

实验五 期货最优套期保值率估计

实验五 期货最优套期保值率估计

实验五 期货套期保值模型一、实验项目:期货套期保值模型 二、实验目的1、掌握运用时间序列模型估计中国期货交易的最优套期保值比率的方法;2、掌握评估期货套期比效果的方法;3、找到最佳的套期保值比模型。

三、预备知识:(一)、关于最优套期比确定方法 以空头期货保值为例1.由套期保值收益方差风险达最小得到 (1)用价格标准差表示风险最小套期比 单位现货相应的空头保值收益:Δb (k )=b(k)-b0(k)(两边求方差解出k )fs sfk σσρ=*1(2)用改变量标准差表示风险最小套期比 单位现货相应的空头保值收益:Δb (k )=Δs-k Δf (两边求方差解出k )fs fs k ∆∆∆∆=σσρ*2注意到(1)与(2)两种最优化方式得到有套期比k 是不同的。

2.用收益率表示套期保值比率。

空头保值收益率(V 为现货市值) RH=[(V-V0+D)-NF(F-F0)]/V0 = (V-V0+D)/V0-(NFF0/V0)[(F-F0)/F0] =RS-h*RF由收益率风险达最小求出套期比 3 .由对冲原理得到要实现期货与现货完全对冲,必须满足以下风险中性原理(现货与期货组合风险为0)Q*Δf +Q0*Δs=0 k Δf +Δs=0k=Q/Q0=-ΔS/ΔF ≈-ds/df<0(因同方向变化) 上式表明,每单位现货需要k 单位期货对冲其风险,负号表示交易方向要相反。

ΔS/ΔF 或ds/df 可通过久期求出。

(二)计算期货套期保值比率的相关模型虽然上述介绍的h=ρσs/σf 可以求最优套期比,但是其操作性不强。

首先要求出三个量,然后再计算h ,显然误差很大。

为了减小误差,使用时间序列模型。

1、简单回归模型(OLS )上述使方差风险最小求套期比的三种方法对应的三个OLS 模型tftst t t t tt t hRc R f h c s hf c s εεε++=+∆+=∆++= OLS 不足:上述三个模型假设条件是残差“独立同方差”,即在残差项具有同方差性的假设下,其回归系数即是要求的最优套期比,但是这一条件太强,在金融市场上难以满足。

期货最优套期保值比率估计

期货最优套期保值比率估计

期货最优套期保值比率的估计一、理论基础(一)简单回归模型(OLS):考虑现货价格的变动(△S )和期货价格变动(△F )的线性回归关系,即建立:t t t F h c S ε+∆+=∆*其中C 为常数项,t ε为回归方程的残差。

上述线性回归模型常常会遇到残差项序列相关和异方差性的问题,从而降低参数估计的有效性。

(二)误差修正模型(ECM):Lien & Luo (1993)认为,若现货和期货价格序列之间存在协整关系,那么,最优套期保值比率可以根据以下两步来估计。

第一步,对下式进行协整回归:t t t bF a S ε++=第二步,估计以下误差修正模型:∑∑=--=--+∆+∆+∆+-=∆nj t j t j i t m i i t t t t e S F F F S S 1111)(θδβα式中β的OLS 估计量βˆ即为最优套期保值比率*h 。

(三)ECM-BGARCH 模型:分为常数二元GARCH 模型和D-BEKKGARCH 模型。

其均值方程相同,为,111,1111ˆˆ()s t s S t t f f t f t t t t t C z S C z F z S F εδδεαβ-------⎡⎤∆⎡⎤⎡⎤⎡⎤=++⎢⎥⎢⎥⎢⎥⎢⎥∆⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦=-+(2-8)(其中即上文提到的误差修正项)1~(0,)t t t N H ε-Ω(四)期货套期保值比率绩效的估计我们考虑一包含1 单位的现货多头头寸和h 单位的期货空头头寸的组合。

组合的利润H V ∆为:t f t s H F C S C V ∆-∆=∆ (2-10)套期保值组合的风险为:),(2)()()(22F S Cov C C F Var C S Var C V Var f s f s H ∆∆-∆+∆=∆ (2-11)由于现货的持有头寸在期初即为已知,因此,可以视之为常数,等式两边同除2s C ,得:),(2)()()()(*2*2F S Cov h F Var h S Var C V Var sH ∆∆-∆+∆=∆ (2-12) 对于不同方法计算出的最优套期保值比率*h ,我们可以通过比较(2-12)来对它们各自套期保值的保值效果进行分析。

期货最优套期保值比率地估计

期货最优套期保值比率地估计

期货最优套期保值比率地估计Modified by JACK on the afternoon of December 26, 2020一、实验名称:期货最优套期保值比率的估计二、理论基础1. 期货套期保值比率概述期货,一般指期货合约,作为一种套期保值工具被广泛使用。

进行期货套期保值交易过程中面临许多选择,如合约的选取,合约数量的确定。

如果定义套期保值比h 为期货头寸与现货头寸之商的话,在上面的讨论中一直假设期货头寸和现货头寸相同,即套期保值比h 为1,但这不一定是最优的套期保值策略。

如果保值者的目的是最大限度的降低风险,那么最优套期保值策略就应该是让套保者在套保期间内的头寸价值变化最小,也就是利用我们如下所说的头寸组合最小方差策略。

考虑一包含s C 单位的现货多头头寸和f C 单位的期货空头头寸的组合,记t S 和t F 分别为t 时刻现货和期货的价格,该套期保值组合的收益率h R 为:f s t s tf t s h hR R S C F C S C R -=∆-∆= (2-1)式中: s f C C h =为套期保值比率,tt s S S R ∆=,t t f F F R ∆=,1--=∆t t t S S S ,1--=∆t t t F F F 。

收益率的方差为:),(2)()()(2f s f s h R R hCov R Var h R Var R Var -+= (2-2)(2)式对h 求一阶导数并令其等于零,可得最小方差套期保值比率为:fs f f s R Var R R Cov h σσρ==)(),(* (2-3) 其中:ρ为s R 与f R 的相关系数,s σ和f σ分别为s R 与f R 的标准差。

2. 计算期货套期保值比率的相关模型 虽然上述的介绍中的*s fh σρσ=可以求解最优套期保值比,但其操作性不强,其先要分别求三个量然后再计算*h ,显然误差较大 ,下面为几种常见的关于求解最优套期保值比率的时间序列模型。

期货最优套期保值比率估计演示教学

期货最优套期保值比率估计演示教学

期货最优套期保值比率估计期货最优套期保值比率的估计一、理论基础(一)简单回归模型(OLS):考虑现货价格的变动(△S )和期货价格变动(△F )的线性回归关系,即建立:t t t F h c S ε+∆+=∆*其中C 为常数项,t ε为回归方程的残差。

上述线性回归模型常常会遇到残差项序列相关和异方差性的问题,从而降低参数估计的有效性。

(二)误差修正模型(ECM):Lien & Luo (1993)认为,若现货和期货价格序列之间存在协整关系,那么,最优套期保值比率可以根据以下两步来估计。

第一步,对下式进行协整回归:t t t bF a S ε++=第二步,估计以下误差修正模型:∑∑=--=--+∆+∆+∆+-=∆nj t j t j i t mi i t t t t e S F F F S S 1111)(θδβα式中β的OLS 估计量βˆ即为最优套期保值比率*h 。

(三)ECM-BGARCH 模型:分为常数二元GARCH 模型和D-BEKKGARCH 模型。

其均值方程相同,为,111,1111ˆˆ()s t s S t t f f t f t t t t t C z S C z F z S F εδδεαβ-------⎡⎤∆⎡⎤⎡⎤⎡⎤=++⎢⎥⎢⎥⎢⎥⎢⎥∆⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦=-+(2-8)(其中即上文提到的误差修正项)1~(0,)t t t N H ε-Ω(四)期货套期保值比率绩效的估计我们考虑一包含1 单位的现货多头头寸和h 单位的期货空头头寸的组合。

组合的利润H V ∆为:t f t s H F C S C V ∆-∆=∆ (2-10)套期保值组合的风险为:),(2)()()(22F S Cov C C F Var C S Var C V Var f s f s H ∆∆-∆+∆=∆ (2-11)由于现货的持有头寸在期初即为已知,因此,可以视之为常数,等式两边同除2s C ,得:),(2)()()()(*2*2F S Cov h F Var h S Var C V Var sH ∆∆-∆+∆=∆ (2-12) 对于不同方法计算出的最优套期保值比率*h ,我们可以通过比较(2-12)来对它们各自套期保值的保值效果进行分析。

期货最优套期保值比率估计与二叉树期权定价之原理与实证

期货最优套期保值比率估计与二叉树期权定价之原理与实证

作者: 许祐玮[1];张心怡[2]
作者机构: [1]武汉大学经济与管理学院;[2]上海外国语大学国际金融贸易学院
出版物刊名: 中国集体经济
页码: 99-100页
年卷期: 2014年 第31期
主题词: 期货;最优套期保值;二叉树;期权;定价
摘要:自2010年4月中国金融期货交易所推出沪深300股指期货以来,套期保值者无疑为期指市场上重要参与者,文章在对普通最小二乘法、误差修正法、BGARCH法等进行简要介绍的基础上,试图探寻实证中之最优套期保值比率:在2014年券商创新大会上,以中信证券等为首的个股期权业务已提上日程,文章试图通过实例对二叉树期权定价原理进行简要介绍.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验名称:期货最优套期保值比率的估计二、理论基础1. 期货套期保值比率概述期货,一般指期货合约,作为一种套期保值工具被广泛使用。

进行期货套期保值交易过程中面临许多选择,如合约的选取,合约数量的确定。

如果定义套期保值比h 为期货头寸与现货头寸之商的话,在上面的讨论中一直假设期货头寸和现货头寸相同,即套期保值比h 为1,但这不一定是最优的套期保值策略。

如果保值者的目的是最大限度的降低风险,那么最优套期保值策略就应该是让套保者在套保期间内的头寸价值变化最小,也就是利用我们如下所说的头寸组合最小方差策略。

考虑一包含s C 单位的现货多头头寸和f C 单位的期货空头头寸的组合,记t S 和t F 分别为t 时刻现货和期货的价格,该套期保值组合的收益率h R 为:f s t s t f t s h hR R S C F C S C R -=∆-∆=(2-1) 式中: s f C C h =为套期保值比率,t t s S S R ∆=,t t f F F R ∆=,1--=∆t t t S S S ,1--=∆t t t F F F 。

收益率的方差为:),(2)()()(2f s f s h R R hCov R Var h R Var R Var -+= (2-2)(2)式对h 求一阶导数并令其等于零,可得最小方差套期保值比率为: fs f f s R Var R R Cov h σσρ==)(),(* (2-3) 其中:ρ为s R 与f R 的相关系数,s σ和f σ分别为s R 与f R 的标准差。

2. 计算期货套期保值比率的相关模型 虽然上述的介绍中的*s f h σρσ=可以求解最优套期保值比,但其操作性不强,其先要分别求三个量然后再计算*h ,显然误差较大 ,下面为几种常见的关于求解最优套期保值比率的时间序列模型。

1) 简单回归模型(OLS )考虑现货价格的变动(△S )和期货价格变动(△F )的线性回归关系,即建立: t t t F h c S ε+∆+=∆* (2-4)其中C 为常数项,t ε为回归方程的残差。

但是上述线性回归模型常常会遇到残差项序列相关和异方差性的问题,从而降低参数估计的有效性。

2) 误差修正模型(ECM )现实中的期货价格和现货价格序列往往是非平稳的,期货合约定价理论决定了期货价格与现货价格序列的走势之间存在着某种共同的趋势,即期货价格和现货价格序列之间可能存在协整关系。

在计量分析中,若两个时间序列之间存在协整关系,那么传统的OLS 的估计量将是有偏的,换句话说,得到的“最优”套期保值比率将不是最优的,存在一定的偏误。

Ghosh (1993)通过实证发现:当不恰当地忽略协整关系时,计算出的套期保值比率将小于最优值。

Lien & Luo (1993)、Ghosh (1993)与Chou 、 Fan& Lee (1996)分别提出了估计最优套期保值比率的误差修正模型,并使用两步法进行估计。

ECM 模型将从期货价格和现货价格序列开始分析起,得出能同时反应短期关系和长期关系相结合的模型使得估算出更精确的最优套期保值比率。

考虑现货价格和期货价格的水平序列,一般情况下,通过自相关图和单位根检验现货价格和期货价格序列都不平稳,都存在一个单位根,但对两者进行回归,发现回归方程比较显著,对残差序列进行单位根检验,通常会得出拒绝其为非平稳序列的结论。

说明现货价格和期货价格间可能存在协整关系,即现货价格与期货价格间可能存在长期均衡关系。

Lien & Luo (1993)认为,若现货和期货价格序列之间存在协整关系,那么,最优套期保值比率可以根据以下两步来估计。

第一步,对下式进行协整回归:t t t bF a S ε++= (2-5)第二步,估计以下误差修正模型:∑∑=--=--+∆+∆+∆+-=∆nj t j t j i t m i i t t t t e S F F F S S 1111)(θδβα (2-6)(2-6)式中β的OLS 估计量βˆ即为最优套期保值比率*h 。

Chou 、 Fan& Lee (1996)将第二步的误差修正模型改为:∑∑=--=-+∆+∆+∆+=∆nj t j t j i t m i i t t t e S F F S 111ˆθδβεα (2-7) 其中:)ˆˆ(ˆ111---+-=t t t F b a S ε为(2-5)式中估计的残差项,也称为误差修正项(ECM ), 运用误差修正模型对参数进行估计时,先估计方程(2-5),保留其残差项,然后利用方程(2-7)估计参数得到最优套期保值比率*h 。

模型建立和估计的过程将在实验过程中给出。

3) ECM-BGARCH 模型方程(5)中还存在一个问题:残差序列μ是否是同方差,就金融时间序列来讲,误差的方差不随时间而发生变化是不太可能的,因此,假定模型残差的方差不是常数是一种合理的考虑,它还描述残差是如何变化的。

观察金融资产的收益序列往往发现其表现出“波动聚集”的特征,即波动的当期水平往往与它最近的前些时期的水平正相关关系。

这将导致用资产价格收益的序列进行回归时,其残差项往往不具备同方差性,残差项方差和其前期方差存在一定的关系,常常用ARCH 过程或广义ARCH 过程(GARCH )来描述这种关系。

需要注意的是一元GARCH 模型仅能估计单一变量的条件方差,无法估计序列之间的协方差。

为此我们要估计最优套期保值比率h=COV(△S,△F)/VAR(△F),需要建立二元GARCH(B-GARCH)模型。

在这里我们采用。

下面我们分别采用常数二元GARCH 模型和D —BEKK 二元GARCH 模型给出ECM-B-GARCH 方法下估计最优套期保值比率的模型。

两种GARCH 模型运用均值方程相同都为 ,111,1111ˆˆ()s t s S t t f f t f t t t t t C z S C z F z S F εδδεαβ-------⎡⎤∆⎡⎤⎡⎤⎡⎤=++⎢⎥⎢⎥⎢⎥⎢⎥∆⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦=-+ (2-8)(其中即上文提到的误差修正项) 1~(0,)t t t N H ε-Ω 注意此处的均值方程中包含了误差修正项,即考虑了现货价格和期货价格的长期协整关系。

a) 常数相关系数的二元GARCH 模型常数相关系数的二元GARCH 模型的条件方差方程:11()()t t t tvec H C A vec B H εε--'=+⋅+⋅⨯⨯其中:C 为31的参数向量;A 和B 均为33的系数矩阵)同时为了简化参数估计,假定残差项,s t ε 和,f t ε之间的相关系数为常数sf ρ(注意没有时间下标t )。

此时,,,,001100ss t sf t sf sf t ff t sf h h h h ρρ⎤⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎢⎣⎦⎣⎦⎣⎣t H Vec 算子取矩阵的“上三角形”部分,把每一元素排成一个单列的向量。

例如:,,,ss t t ff t sf t h vec H h h ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦()=。

这样我们把上述矩阵形式表示的条件方差方程可展开得到:2,,1,12,,1,1,ss t SS SS s t ss ss t ff t ff ff f t ff ff t sf t sf h C h h C h h αεβαεβρ----=++=++=b) D —BEKK 模型D —BEKK 模型的条件方差方程为:'111,,11121111,,222222()()()(29)00()000t t t t ss t sf t t sf t ff t vec H vec C C vec A A vec B H B h h C C H C A h h C εεαβαβ---'''=++-⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦()、、B= Vec 算子取矩阵的“上三角形”部分,把每一元素排成一个单列的向量。

例如:,,,ss t t ff t sf t h vec H h h ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦()=。

这样我们把上述矩阵形式表示的条件方差方程可展开得到:2222,1111,111,122222,221222,122,1,11222211,1122,1,1= + + + + + + ss t ss t s t ff t ff t f t sf t sf t s t f t h C h h C C h h C C h βαεβαεββααεε------⨯⨯=+⨯=⨯⨯⨯ 得到最优套期保值比率,*,(,)()st ft sf t t ft ff t Cov h B Var h εεε==。

为了不与条件方差项混淆,此处最优套期保值比率用*t B 表示,表明运用ECM-B-GARCH 法得到的最优套期保值比率是随时间变化的一个序列,表明我们要随着时间的变化不断调整套期保值的头寸。

3. 期货套期保值比率绩效的评估为了对利用最小方差套期比的绩效进行评估,我们考虑一包含1 单位的现货多头头寸和h 单位的期货空头头寸的组合。

组合的利润H V ∆为:t f t s H F C S C V ∆-∆=∆ (2-10) 套期保值组合的风险为:),(2)()()(22F S Cov C C F Var C S Var C V Var f s f s H ∆∆-∆+∆=∆ (2-11)由于现货的持有头寸在期初即为已知,因此,可以视之为常数,等式两边同除2s C ,得: ),(2)()()()(*2*2F S Cov h F Var h S Var C V Var sH ∆∆-∆+∆=∆ (2-12) 对于不同方法计算出的最优套期保值比率*h ,我们可以通过比较(2-12)来对它们各自套期保值的保值效果进行分析。

三、实验目的利用上述理论模型估计中国期货交易所交易的期货合约的最优套期保值比率并对保值效果进行绩效评估,说明期货套期保值在经济生活中的重要作用,并找出绩效评估最佳的套期保值比率模型。

同时帮助读者熟悉EVIEWS软件的操作,使读者能用互联网上的数据分析解决实际的金融问题。

四、实验方法在实验过程中使用时间序列分析的方法对整理后的价格时间序列按照上面的理论基础模型进行建立模型以得到最优套期保值比率系数,其中涉及时间序列分析中的方法有:模型参数估计,参数的显著性检验,变量平稳性检验(含单位根检验),回归残差项的ARCH效应检验等。

这些过程都将在EVIEWS软件中进行,因此EVIEWS软件的使用方法也是我们重要的实验方法。

五、实验过程(一)数据的搜集和整理1、数据的搜集本报告以上海期货交易所中铝的期货合约为例,利用上面介绍的方法通过EVIEWS的操作估计中国期货交易所交易的期货合约的最优套期保值比率并对其绩效进行简单评估。

相关文档
最新文档