02第2章药物代谢动力学
合集下载
第2章 药物代谢动力学

药量---时间关系
血药浓度 A(给药量)可代替C
时
n=1:一级动力学
间
n=0:零级动力学
正值:表示吸收动力学 负值:表示消除动力学
一级消除动力学(first-order elimination kinetics
----体内药量以恒定的百分率进行消除(恒比消除() 掌握)
一级消除动力学特点
----线性动力学(掌握)
pH=7
pH=4
总量 A + H+HA
100001 105
1
HAH+ + A 总量
1
102 101
10pH-pKa =
[ A ] [HA]
= 107-2 = 105
10pH-pKa =
[ A ] [HA]
= 104-2 = 102
问题
某人过量服用苯巴比妥(酸 性药)中毒,有何办法加速 脑内药物排至外周,并从尿 内排出?
F、Vd、 T1/2、 CL
(掌握) 简单扩散
(掌握)
首关消除 药酶诱导/抑制 尿液PH对药物排泄影响
(掌握)
一级消除动力学 零级消除动力学
Css 、F、Vd、 T1/2、 CL
被动转运 药物跨膜转运方式
滤过 水溶性扩散
简单扩散 脂溶性扩散
载
易化扩散
体 扩
主动转运
膜
散
动
转
运
1.滤过(Filtration) --水溶性扩散(了解)
3.易化扩散 (Facilitated diffusion; Carrier-mediated diffusion) (了解
)
▲有载体协助的顺差转运,有饱和、竟争现象。
第二章 药物代谢动力学

4)D类(危险):临床有资料表明对胎儿有危害 ,但治疗孕妇疾病的疗效肯定,又无代替药物 ,权衡利弊后再应用。如抗惊厥药苯妥英钠,链 霉素等。 5)X类(高度危险):证实对胎儿有危害,禁用
第二章
选药原则: 有A不选B类,X绝对禁选;选AB不选CD, 无药替代才选CD.
三、代谢(生物转化)
定义: 药物 代谢产物
1.4-3.4
=
[ A- ]
[HA]
= 10 -2 =1/100
血浆中:10 7.4-3.4 =
[ A- ]
[HA]
= 10 4 = 10000/1
酸酸少易;酸碱多难
第二章
• 某弱酸性药物的pKa是3.4,该药物在血浆( 血浆pH=7.4)中的解离百分率约为( ) • A.1% • B.10% • C.90% • D.99% • E.99. 99%
二、影响药物通过细胞膜的因素
第二章
(二)药物的浓度差、膜通透性、面积厚度
(三)血流量——影响膜两侧药物浓度差 (四)细胞膜转运蛋白的量和功能
分子量小,脂溶性高,解离度小的药物易转运
第二节 药物的体内过程
一、吸收:
定义:给药部位 影响因素 血液循环
第二章
1. 给药途径 2. 理化性质
3. 吸收环境
dC/dt = - keC
恒量消除 零级消除动力学 (Zero order elimination kinetics) 非线性动力学消除 n=0 dC/dt = - ke
第二章
血 药 浓 度 半 对 数 血 药 浓 度
零级 一级
零级
一级
时间
时间
浓度越大,消除速度越快 浓度越小,消除速度越慢
一、一级消除动力学
第2章 药物代谢动力学

药物代谢动力学研究内容
1、药物的体内过程:吸收、分布、代谢、排泄 四个基本过程
2、药物在体内随时间变化规律:数学原理和方法 定量描述
☆代谢与排泄统称消除(elimination) ☆吸收、分布、排泄统称转运(transportion) ☆代谢又称转化(transformation)
结合部位 受体
二、负荷量(load dose,DL) 定义:使血药浓度尽快达到目标血药浓度的首次
用药量。
静脉滴注: 负荷量=靶浓度(Cp)·Vss/F=Css · Vss/F = F · Dm/ CL ·τ × Vss/F = Dm/Ke ·τ=RA/Ke=1.44 t ½ RA
分次恒速给药: Ass=Dm+Ass e-ket,移项 Ass=Dm/(1- e-ket)
各药都有固定的pka。药物的pka与药物本身属于弱酸或弱碱无关,弱
酸性药pka可>7,如弱酸性药苯巴比妥pka=7.4.弱碱也一样。
弱碱性药
[BH]/B= 10pka-PH
离子障(ion-trapping)非离子型药物可以自由穿透细胞
膜,而离子型的药物被限制在膜的一侧,这种相象称
主动转运与被动转运
药物代谢(生物转化)
生物转化:药物作为外源性物质进入体内,机体 动用各种机制使药物发生结构改变。 代谢结果: 1、理化特性:极性↑、水溶性↑ 2、药理活性:减弱或消失(失活)、活性↑
毒性可能↑(生物转化≠解毒) 代谢部位:肝脏最主要、胃肠道、肺、
皮肤、肾等
药物代谢(生物转化)
三、代谢步骤: I相反应:氧化、还原、水解(生成或引入
• 恒定值
零级动力学消除
• dc/dt=-k0 (n=0) • ct=c0-k0t (y=a+bx) • 当ct =1/2c0,, t为 t ½ • t ½=0.5c0/ k0 • 变量
1、药物的体内过程:吸收、分布、代谢、排泄 四个基本过程
2、药物在体内随时间变化规律:数学原理和方法 定量描述
☆代谢与排泄统称消除(elimination) ☆吸收、分布、排泄统称转运(transportion) ☆代谢又称转化(transformation)
结合部位 受体
二、负荷量(load dose,DL) 定义:使血药浓度尽快达到目标血药浓度的首次
用药量。
静脉滴注: 负荷量=靶浓度(Cp)·Vss/F=Css · Vss/F = F · Dm/ CL ·τ × Vss/F = Dm/Ke ·τ=RA/Ke=1.44 t ½ RA
分次恒速给药: Ass=Dm+Ass e-ket,移项 Ass=Dm/(1- e-ket)
各药都有固定的pka。药物的pka与药物本身属于弱酸或弱碱无关,弱
酸性药pka可>7,如弱酸性药苯巴比妥pka=7.4.弱碱也一样。
弱碱性药
[BH]/B= 10pka-PH
离子障(ion-trapping)非离子型药物可以自由穿透细胞
膜,而离子型的药物被限制在膜的一侧,这种相象称
主动转运与被动转运
药物代谢(生物转化)
生物转化:药物作为外源性物质进入体内,机体 动用各种机制使药物发生结构改变。 代谢结果: 1、理化特性:极性↑、水溶性↑ 2、药理活性:减弱或消失(失活)、活性↑
毒性可能↑(生物转化≠解毒) 代谢部位:肝脏最主要、胃肠道、肺、
皮肤、肾等
药物代谢(生物转化)
三、代谢步骤: I相反应:氧化、还原、水解(生成或引入
• 恒定值
零级动力学消除
• dc/dt=-k0 (n=0) • ct=c0-k0t (y=a+bx) • 当ct =1/2c0,, t为 t ½ • t ½=0.5c0/ k0 • 变量
第二章 药物代谢动力学

仅从肾小球滤过,不经肾小管分泌和重吸收过程,并全部从尿液排出,内源性物质肌酐和外源性物质菊粉的肾清除率可用来测定肾小球滤过滤
(2)肾小管分泌肾小管分泌的特点:①主要在近端肾小管进行,分为有机酸分泌和有机碱分泌系统。②是主动转运过程。 载体(+),饱和现象(+),饱和性,竞争性抑制作用。丙磺舒竞争性地抑制青霉素经肾小管有机阴离子转运体(OAT)的分泌,使青霉素分泌减少,血中浓度升高,增强疗效。
消化道外吸收 Parenteral
分布:药物吸收后随血液循环到达机体各个部位 和组织的过程
药物的体内过程-分布
血浆蛋白结合率细胞膜屏障体液的pH和药物解离程度器官血流量与膜的通透性药物与组织的亲和力药物转运体
影响药物分布的因素
影响药物分布的因素
①白蛋白(albumin)主要与酸性药物结合。占血浆蛋白的55%。分子量69000。② α1酸性糖蛋白( α1 acid glycoprotein, AGP)主要与碱性药物结合,分子量44100。③脂蛋白(lipoprotein)主要与脂溶性药物结合。此外,β和γ球蛋白,主要与内源性生物活性物质结合。
药物的体内过程-代谢
Phase I
药物
无活性
活性或
排泄
氧化、还原、水解引入或脱去基团(-OH、-CH3、-NH2、-SH)
Phase II
结合
结合
内源性葡萄糖醛酸、硫酸、醋酸,甲基或某些氨基酸等与药物或I相反应的代谢物结合
专一性酶:专一性强,选择性高 如AChE, MAO 等 非专一性酶:肝微粒体细胞色素P450酶系统(肝药酶)
第二章 药物代谢动力学 (Pharmacokinetics)
内容
药物的体内过程 药物的速率过程
(2)肾小管分泌肾小管分泌的特点:①主要在近端肾小管进行,分为有机酸分泌和有机碱分泌系统。②是主动转运过程。 载体(+),饱和现象(+),饱和性,竞争性抑制作用。丙磺舒竞争性地抑制青霉素经肾小管有机阴离子转运体(OAT)的分泌,使青霉素分泌减少,血中浓度升高,增强疗效。
消化道外吸收 Parenteral
分布:药物吸收后随血液循环到达机体各个部位 和组织的过程
药物的体内过程-分布
血浆蛋白结合率细胞膜屏障体液的pH和药物解离程度器官血流量与膜的通透性药物与组织的亲和力药物转运体
影响药物分布的因素
影响药物分布的因素
①白蛋白(albumin)主要与酸性药物结合。占血浆蛋白的55%。分子量69000。② α1酸性糖蛋白( α1 acid glycoprotein, AGP)主要与碱性药物结合,分子量44100。③脂蛋白(lipoprotein)主要与脂溶性药物结合。此外,β和γ球蛋白,主要与内源性生物活性物质结合。
药物的体内过程-代谢
Phase I
药物
无活性
活性或
排泄
氧化、还原、水解引入或脱去基团(-OH、-CH3、-NH2、-SH)
Phase II
结合
结合
内源性葡萄糖醛酸、硫酸、醋酸,甲基或某些氨基酸等与药物或I相反应的代谢物结合
专一性酶:专一性强,选择性高 如AChE, MAO 等 非专一性酶:肝微粒体细胞色素P450酶系统(肝药酶)
第二章 药物代谢动力学 (Pharmacokinetics)
内容
药物的体内过程 药物的速率过程
第2章 药物代谢动力学

过5个t1/2,药物在体内可达到稳态浓度。
药物按半衰期给药的消除量和累积量关系表
半衰期 数 1 2 3 4 5 6 7 8 一次用药
消除药量 % 体存药量 %
连续恒速恒量给药
消除药量% 累积药量 %
50 75 87.5 93.75 96.87 98.44 99.22 99.7
50 25 12.5 6.25 3.13 1.56 0.78 0.3
C为药物浓度、﹣表示药物浓度下降)。是绝
大多数药物的消除方式。
(二)零级速率(恒量消除) 单位时间内体内药物浓度按恒定的量消
除。药物消除(转运)的速率与血药浓度的零
次方成正比,dC/dt=﹣KC0,是体内药量 超过机体消除能力极限时的消除方式。极个 别药用量大时以此消除。
一级动力学
零级动力学
一级与零级消除比较
当pH=pKa时,[HA]=[A-]
当pH=pKa时,[B]=[BH+]
因此,pKa是指弱酸性或弱碱性药物
在50%解离时溶液的pH值。各药均有其 特有的、固定的pKa。
当pH与pKa的差值以数学值增减时,
解离型药物与非解离型药物的浓度差异 比值相应以指数值变化。
弱酸性药物:pKa=3.4
pH-pKa 1.4-3.4 1 在胃 =10 = 100 =10 液: [HA]
血管外单次用药的时间-药物浓度曲线图
最小中毒浓度 血 药 浓 最小有效浓度 度 高峰时间 安 全 范 围
高峰浓度
待 期 伏 潜潜 伏 期
时间(t)
持续期
残留期
二、药物消除速率类型
(一)一级速率(恒比消除)
单位时间体内药物按恒定比例消除。
药物消除(转运)的速率与血药浓度的一次 方成正比,用数学公式 dC/dt=﹣KeC1 表示 ( dC/dt 为消除速率、 Ke 为消除速率常数、
药物按半衰期给药的消除量和累积量关系表
半衰期 数 1 2 3 4 5 6 7 8 一次用药
消除药量 % 体存药量 %
连续恒速恒量给药
消除药量% 累积药量 %
50 75 87.5 93.75 96.87 98.44 99.22 99.7
50 25 12.5 6.25 3.13 1.56 0.78 0.3
C为药物浓度、﹣表示药物浓度下降)。是绝
大多数药物的消除方式。
(二)零级速率(恒量消除) 单位时间内体内药物浓度按恒定的量消
除。药物消除(转运)的速率与血药浓度的零
次方成正比,dC/dt=﹣KC0,是体内药量 超过机体消除能力极限时的消除方式。极个 别药用量大时以此消除。
一级动力学
零级动力学
一级与零级消除比较
当pH=pKa时,[HA]=[A-]
当pH=pKa时,[B]=[BH+]
因此,pKa是指弱酸性或弱碱性药物
在50%解离时溶液的pH值。各药均有其 特有的、固定的pKa。
当pH与pKa的差值以数学值增减时,
解离型药物与非解离型药物的浓度差异 比值相应以指数值变化。
弱酸性药物:pKa=3.4
pH-pKa 1.4-3.4 1 在胃 =10 = 100 =10 液: [HA]
血管外单次用药的时间-药物浓度曲线图
最小中毒浓度 血 药 浓 最小有效浓度 度 高峰时间 安 全 范 围
高峰浓度
待 期 伏 潜潜 伏 期
时间(t)
持续期
残留期
二、药物消除速率类型
(一)一级速率(恒比消除)
单位时间体内药物按恒定比例消除。
药物消除(转运)的速率与血药浓度的一次 方成正比,用数学公式 dC/dt=﹣KeC1 表示 ( dC/dt 为消除速率、 Ke 为消除速率常数、
第二章药物代谢动力学课件

pKa = pH - log
[HA]
[ A ]
10 pH-pKa =
[HA]
碱性药:pKa-pH
6
色甘酸钠 (Cromolyn Sodium):pKa-2, 酸性
pH=4
pH=7
总量 HAH+ + A
101 1
102
A + H+HA 总量
105
1 100001
10pH-pKa =
[ A ] [HA]
• 后果:代谢失活,代谢活化,毒性增加 • 部位:肝脏、胃肠道、肺、皮肤、肾 • 步骤:
Ⅰ相反应(第一步) 氧化 还原 水解 极性增加 Ⅱ相反应(第二步)结合反应 极性进一步增加
葡萄糖醛酸、硫酸、谷胱甘肽、甘氨酸
15
• 主要酶系:细胞色素P450酶系统 (cytochrome P450 enzymatic system)
达峰时间(Tmax)
22
一、一次给药的药—时曲线下面积
药-时曲线下面积 (area under the time-concentration
curve, AUC):药 -时曲线下覆盖 的面积,与吸收
后进入体循环的药 量成正比,反映进 入体循环药物的总 量,其单位是 g/(ml ·h)。
23
二、多次给药的稳态血浆浓度
• 体液pH ;吸收部位生物膜面积;膜两侧药物 浓度梯度;给药部位血循环情况;给药途径; 在胃肠中崩解程度;药物分子量大小;脂溶性 大小;极性大小和药物的pH等。
9
• 首关消除(first pass elimination)
– 某些药物首次通过肠壁或经门静脉进入肝脏时 被其中的酶所代谢致使进入体循环药量减少的 一种现象。也称首关代谢、首关效应或第一关 卡效应。 如硝酸甘油口服 首关消除高,则生物利用度低。
[HA]
[ A ]
10 pH-pKa =
[HA]
碱性药:pKa-pH
6
色甘酸钠 (Cromolyn Sodium):pKa-2, 酸性
pH=4
pH=7
总量 HAH+ + A
101 1
102
A + H+HA 总量
105
1 100001
10pH-pKa =
[ A ] [HA]
• 后果:代谢失活,代谢活化,毒性增加 • 部位:肝脏、胃肠道、肺、皮肤、肾 • 步骤:
Ⅰ相反应(第一步) 氧化 还原 水解 极性增加 Ⅱ相反应(第二步)结合反应 极性进一步增加
葡萄糖醛酸、硫酸、谷胱甘肽、甘氨酸
15
• 主要酶系:细胞色素P450酶系统 (cytochrome P450 enzymatic system)
达峰时间(Tmax)
22
一、一次给药的药—时曲线下面积
药-时曲线下面积 (area under the time-concentration
curve, AUC):药 -时曲线下覆盖 的面积,与吸收
后进入体循环的药 量成正比,反映进 入体循环药物的总 量,其单位是 g/(ml ·h)。
23
二、多次给药的稳态血浆浓度
• 体液pH ;吸收部位生物膜面积;膜两侧药物 浓度梯度;给药部位血循环情况;给药途径; 在胃肠中崩解程度;药物分子量大小;脂溶性 大小;极性大小和药物的pH等。
9
• 首关消除(first pass elimination)
– 某些药物首次通过肠壁或经门静脉进入肝脏时 被其中的酶所代谢致使进入体循环药量减少的 一种现象。也称首关代谢、首关效应或第一关 卡效应。 如硝酸甘油口服 首关消除高,则生物利用度低。
药理学第二章药物代谢动力学PPT课件

半衰期(T1/2)
总结词
描述药物在体内消除一半所需时间的参数。
详细描述
半衰期是药物在体内消除一半所需的时间,它是药物代谢动力学的重要参数之一。T1/2值越短,药物 消除越快。药物的消除途径、代谢速率和排泄速率等因素都会影响T1/2值。
清除率(Cl)
总结词
描述肾脏清除药物的能力的参数。
详细描述
清除率是指肾脏清除药物的能力,它是药物代谢动力学的重要参 数之一。Cl值越大,肾脏清除药物的能力越强。药物的排泄速率 、尿液pH值和尿液流量等因素都会影响Cl值。
二室模型
总结词
二室模型考虑了药物在体内分布的不均 匀性,将身体分为中央室和周边室两个 部分。
VS
详细描述
二室模型将身体分为中央室和周边室两个 部分,中央室包括血液和主要的脏器,周 边室包括其他组织。该模型适用于药物在 体内分布不均匀,且在中央室和周边室的 转运速率不同的情况。
微生物模型
总结词
微生物模型是用于描述药物在微生物中的代谢和消除过程的模型,常用于药物制剂的微 生物学质量控制。
05
药物代谢动力学的实际应用
个体化给药方案设计
根据患者的年龄、体重、性别、生理状态等因素,制定个性化的给药方案,确保 药物在体内达到最佳的治疗效果。
通过监测患者的药物代谢情况,调整给药剂量和频率,以实现最佳的治疗效果并 减少不良反应。
新药研发与评价
药物代谢动力学是新药研发的重要环 节,用于评估药物的吸收、分布、代 谢和排泄等特性。
疾病状态
疾病状态可以影响药物的吸收、分布、代谢和排泄,导致药 物代谢动力学参数的变化。
肝肾功能不全的患者对药物的代谢和排泄能力较弱,需要调 整药物剂量。
药理学第2章药物代谢动力学PPT课件

影响药物排泄的因素
肾功能
肾排泄是药物排泄的主要途径,肾功能不全 会影响药物的排泄速度和能力。
肝功能障碍
肝脏是药物代谢的主要器官,肝功能障碍会 影响胆汁排泄。
年龄
儿童和老人的肾功能相对较弱,药物的排泄 速度较慢。
遗传因素
某些药物的排泄速度存在个体差异,与遗传 因素有关。
药物排泄的研究方法
尿液检测
通过收集尿液并测定其中的药物浓度,可以了解 药物排泄的速度和量。
胆汁检测
通过收集胆汁并测定其中的药物浓度,可以了解 胆汁排泄的情况。
皮肤排泄研究
通过皮肤分泌物的测定,可以了解某些药物通过 皮肤排泄的情况。
THANK YOU
感谢聆听
制剂因素
药物的剂型、制备工艺、辅料等 也会影响其吸收。例如,药物的 溶解度、溶出速率等会影响其在 体内的吸收。
80%
生理因素
胃肠道的pH值、胃排空速率、肠 道蠕动等生理因素也会影响药物 的吸收。此外,人体的新陈代谢 和排泄也会影响药物的吸收。
药物吸收的研究方法
动物实验
通过给动物用药,观察其体内 药物浓度的变化,从而了解药 物的吸收特性。
药物代谢动力学的重要性
指导临床合理用药
通过了解药物的代谢动力学特性,可以制定合理的 给药方案,提高治疗效果并降低不良反应的发生率 。
促进新药研发
了解药物的代谢动力学特性是新药研发的重要环节 ,有助于发现潜在的药物候选者并进行优化。
保障用药安全
通过药物代谢动力学研究,可以评估药物的疗效和 安全性,为保障用药安全提供科学依据。
生理屏障
如细胞膜、血脑屏障等生理屏障限制某些药物的 分布。
药物分布的研究方法
01
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.消化道内药物吸收
口服给药 影响药物经胃肠道吸收的因素 (1)药物方面 药物的理化性质(脂溶性、解离度、
分子量等)、剂型(包括药物粒径的大小、赋形剂 种类等)。 (2)机体方面 ①胃肠内pH ②胃排空速度和肠蠕动 ③胃肠内容物 ④首过效应 ⑤药物转运体
首过效应(first-pass effect)***
一、概述
➢ 药物代谢动力学的概念 是指应用数学原理和动力学模型来研究机体对
药物的处置(disposition)过程,即药物在体内 的吸收、分布、代谢和排泄过程以及体内药物浓度 随时间变化的规律,进而指导临床制定合理的给药 方案或对某些药物现象作出正确的解析。
体内过程
以数学模型与 公式定量描述
药物的体内过程(ADME)
2.药物的极性 极性药物易从胆汁排泄.
胆汁排泄与肝肠循环***
肝肠循环(hepatoenteral circulation)
药物 入血
肝脏
胆汁
粪排泄 小肠
十二指肠
肝肠循环的临床意义: 延长药物的作用时间。
前提:药物从胆汁的排出量多。
问题: 1.肝肠循环明显的药物,口服后其血药 浓度曲线特 征? 2.如何设计一个实验证实某药有肝肠循环?
第二章 药物代谢动力学 Pharmacokinetics
学习目标
1.掌握药动学、吸收、分布、代谢、排泄的概念; 掌握一级动力学、零级动力学的特点;掌握各药 动学参数的概念及其临床意义。
2.熟悉药物主动转运和被动转运的特点、熟悉血浆 蛋白结合的临床意义。
3.了解房室模型的概念及米—曼氏速率过程。
第一节 药物的体内过程
药物与血浆蛋白结合的临床意义
竞争血浆蛋白结合位点
置换作用
置换作用仅对蛋白结合率高的药物有临床意义 华法令蛋白结合率97%,游离型3% 用蛋白结合率99.8%的药物置换华法令,若置换出3% 华法令的抗凝作用则加倍 置换作用对蛋白结合率低的药物临床意义不大
• 器官血流量与膜的通透性
器官血流量 膜的通透性
外排性转运体 (efflux
transporter)胆管侧
Ⅰ相代谢 P~gp
Ⅱ相代谢
三、 药物的体内过程
(一) 吸 收
➢ 吸收的概念
药物由给药部位进入血液循环的过程称为吸 收(absorption)
不同给药途径吸收快慢依次为:气雾吸入>腹 腔注射>吸入给药>舌下给药>肌内注射>皮下注射> 口服>直肠给药>皮肤给药。
distribution metabolism
absorption
excretion
二、药物的跨膜转运及药物转运体
(一)药物的跨膜转运
药物的跨膜转运机制及其分类
(二)药物转运体
机体主要器官的转运体 (箭头表示转运体转运药物的方向,缩写代表
各种转运体)
摄取性转运体 (uptake transporter)血管侧
给药,直肠给药等。
萘洛尔、可乐定、利多卡因
等都有明显的首过效应
药物转运体
寡肽转运体Pept1
β-内酰胺抗 生素 ACEI
非肽类药物 伐昔洛韦
外排泵
抗肿瘤药物多 药耐药的原因
P~gp
2.消化道外的药物吸收
(1)注射给药 肌肉注射、皮下注射吸收速率取决与于药物性质、
分子量、血流量等。
(2)吸入给药 少部分脂溶性、挥发性药物(乙醚)经肺吸收,
药物与血浆蛋白结合
药物与血浆蛋白结合的特点***
1.结合机制为范德华力、氢键或离子键结合,结合为 疏松、可逆的,结合率因药而异。 2.游离型(free)药物和结合型(bound)药物处于动态 平衡。 3.只有游离型药物才能透过细胞膜。 4.只有游离型药物才有药理学活性。 5.有饱和现象。 6.有竞争性抑制现象(药物相互作用)。平衡透析法
(4)脑
脑内CYP含量是肝脏CYP的3%~10%
(5)皮肤
肝药酶的特性
➢选择性低,可催化多种药物; ➢变异性大,易受多种因素影响,如遗传、年龄、 营养状况、机体状态、疾病等的影响,个体差 异较大;
➢活性易受多种因素的影响,可能增强或减弱。
4.影响代谢的因素
(1)酶的诱导和抑制
概念:某些药物可使肝药酶的活性增强或减弱, 进而影响药物作用的疗效及与其他药物的相互作用。
Log C
算术
dC - kC dt
K/2.303
积分后
Ct C0ekt
t
t
多数药物属一级动力学过程,因多数药物按被动转
运的简单扩散进行转运。
(二)药物在体内的速率过程
1.一级动力学过程 (一级速率过程) 一级动力学过程的特点*** (1)单位时间内转运率不变,药物转运呈指数衰减。 (2)清除率,速率常数,分布容积, 半衰期恒定, 不因剂量而改变。 Log C (3)AUC与所给剂量成正比。
t
2.零级动力学(zero-order kinetics)过程(定量转 运过程)
概念:药物在体内以恒定的速率消除,即不论血浆药 物浓度高低,单位时间内消除的药物量不变,而单位 时间内消除的药物百分率随时间改变。
dC - KC0 K dt
Log C
算术
Ct C0 - Kt
t
t
2.零级动力学(zero-order kinetics)过程(定量转 运过程)
概念: 指某些药物首次通过肠壁或肝脏时被其中的酶代谢,
使进入体循环的有效药量减少的现象。 Cout
首关效应的特点:
代谢
Cin
首关效应的程度与肠黏膜及肝脏的酶活性成
正比,为剂量依赖性。 硝酸甘油、氯丙嗪、乙酰水
降低首关效应的方法: 杨酸、派醋甲酯、喷他佐辛、
改变给药途径,口腔 哌替啶、异丙肾上腺素、普
(2)还原型与一氧化碳结合形成黄色复合体,在450nm有 最大吸收峰。
(3)在肝微粒体内含量丰富。
(4)分子多态性(Polymorphism)。 自然界中同种生物群体某些特征存在两种以上不同类型的现象。
基因超家族细胞色素P450的表示法
根据基因编码的蛋白质氨基酸序列的相似程度分类: CYP3A4
基因家族 亚家族 酶个体(基因号码) 人肝脏中常见细胞色素P450的比例:
结合物:葡醛酸,硫酸,甘氨酸,谷氨酰胺,谷胱甘肽等。
3.药物代谢酶
肝内代谢
特点:专一性强,选择性高
催化酶 专一性酶: AChE,单胺氧化酶(MAO)
非专一性酶: 肝细胞的微粒体混合功能氧
化酶系统(肝药酶)
细胞色素P450(cytochrome P450, CYP)代谢酶
(1)性质 血红素铁蛋白质,分子量约50000。
CYP1B1 CYP2A6
CYP1A1/2
CYP2B6
Non-CYP
CYP2C8
enzymes
CYP2C9
CYP3A4/5/7
CYP2C19
CYP 2D6 CYP2E1
肝外代谢
(1)胃肠道 小肠上皮细胞的CYP3A4含量是肝脏 CYP3A4的50%
(2)肾脏 在肾脏可进行I,II相生物转化
(3)肺脏
3.其他途径
➢肠道排泄 ➢唾液排泄 ➢粪便排泄
➢肺排泄 ➢汗腺排泄 ➢泪液排泄
排泄途径
尿液
胆汁
粪便
肺脏
汗腺
乳汁
第二节 药物的速率过程
1.掌握房室模型的概念和药时曲线的意义 2.掌握各药代动力学参数的概念和临床意义 3.掌握一级动力学和零级动力学的概念和特点
一、药动学基本原理 (一) 房室模型
(三) 代谢(metabolism)
概念:在体内吸收、分布的同时,药物在药物代谢酶 的作用下进行化学结构的改变,成为代谢或生物转化。
1.代谢的意义 ①灭活(inactivation) 转化为活性低或无活性代谢 产物。 ②活化(activation) 转化为有活性代谢产物。 ③毒性 转化为有毒性代谢产物。 ④转向 将活性药物转化为其他活性物质。
1.一室模型
药物
k
机体
dC - kC 积分后 dt
Log C
C0 K/2.303
K:消除速率常数
t
Ct C0ekt
取对数
logCt=logC0 -
ke 2.303
t
2.二室模型
药物
Ke(k10) 中央室 k12 k21 周边室
中央室 血液、细胞外液、血流丰富的心、肝、肺, 脾、肾。
周边室 血流贫乏的肌肉、脂肪、皮肤等。 假定:药物仅从中央室消除。
与药物结合的血浆蛋白种类
1.白蛋白(albumin)
特点 (1)主要与酸性药物结合 (2)占血浆蛋白的55% (3)分子量69000
2.a1酸性糖蛋白(a1 acid glycoprotein, AGP)
主要与碱性药物结合,分子量44100。
3.脂蛋白(lipoprotein) 主要与脂溶性药物结合。
生理药动学模型 性质:建立在机体 的生理、生化、解 剖和药物热力学 性质基础上的一种 整体模型。
生理药物代谢动力学模型示意图 Q表示血流速率
(二)药物在体内的速率过程
概念:药物吸收进入血液循环后,分布、代谢和排泄 过程可使其血药浓度减退
1.一级动力学过程(一级速率过程)
概念:单位时间内药物量或浓度按恒定比例消除
特点: ➢有一定的特异性 ➢有种属差异性
药物
诱导
药物
抑制
原形药 药效减弱 代谢物 药效增强
原形药 药效增强
代谢物
(2)生理因素 1)年龄 新生儿,老年人肝药酶活性低,对药物反应敏感 2)性别 3)种族和个体差异 4)疾病
⑶药物因素
(四) 排泄(excretion)