空调机温度控制系统

合集下载

课程设计报告空调温度控制系统设计Word

课程设计报告空调温度控制系统设计Word

课程设计课程设计名称:空调温度控制系统设计专业班级:学生姓名:学号:指导教师:课程设计地点:课程设计时间: 2008.12.29-01.04计算机控制技术课程设计任务书摘要近几年,随着人民生活水平的逐步提高,居住条件也越来越宽敞;另一方面,环境保护运动的蓬勃发展,也要求进一步提高制冷和空调系统的利用率。

此外,人们对舒适的生活品质与环境愈来愈重视,要求也愈来愈高,不仅对室内温、湿度提出了较高的要求,也希望室内环境趋于自然环境。

综观空调器的发展过程,有三个主要的发展阶段:(1)从异步电机的定频控制发展到变频控制。

(2)从异步电机变频控制发展到无刷直流电机的变频控制。

(3)控制方法从简单的开关控制向智能控制转变。

随着对变频空调器研究的日渐深入,控制目标逐渐从单一的室温控制向温湿度控制、舒适度控制转移;控制方法从简单的开关控制向PID控制、神经网络控制、专家系统控制等智能控制方向发展。

由于神经网络控制和专家系统控制实现难度较大而且效果不一定很理想,因此本设计采用PID控制算法。

本设计从硬件和软件两方面完成了空调的温度控制系统,主要是以PIC系列单片机为核心的控制系统设计,采用PID控制算法,即通过A/D转换器将温度传感器采集来的温度数据送入单片机,单片机将采集的数据与设定温度相比较决定压缩机的工作状态,单片机通过对制冷压缩机的控制,调节压缩机的转速,实现了空调的制冷。

空调的硬件电路只是起到支持作用,因为作为自动化控制的大部分功能,只能采取软件程序来实现,而且软件程序的优点是显而易见的。

它既经济又灵活方便,而且易于模块化和标准化。

同时,软件程序所占用的空间和时间相对来说比硬件电路的开销要小得多。

同时,与硬件不同,软件有不致磨损、复制容易、易于更新或改造等特点,但由于它所要处理的问题往往远较硬件复杂,因而软件的设计、开发、调试及维护往往要花费巨大的经历及时间。

对比软件和硬件的优缺点,本设计采用软硬件结合的办法设计。

空调温度控制系统

空调温度控制系统

关于空调温度控制系统的研讨摘要本文介绍了空调机温度控制系统。

本温度控制系统采用的是AT80C51单片机采集数据,处理数据来实现对温度的控制。

主要过程如下:利用温度传感器收集的信号,将电信号通过A/D转换器转换成数字信号,传送给单片机进行数据处理,并向压缩机输出控制信号,来决定空调是出于制冷或是制热功能。

当安装有LED实时显示被控制温度及设定温度,使系统应用更加地方便,也更加的直观。

关键字 AT80C51单片机 A/D转换器温度传感器随着人们生活水平的日益提高,空调已成为现代家庭不可或缺的家用电器设备,人们也对空调的舒适性和空气品质的要求提出了更高的要求。

现代的只能空调,不仅利用了数字电路技术与模拟电路技术,而且采用了单片机技术,实现了软硬件的结合,既完善了空调的功能,又简化了空调的控制与操作;不仅满足了不同用户对环境温度的不同要求,而且能全智能调节室内的温度。

为此,文中以单片机AT80C51为核心,利用LM35温度传感器、ADC0804转换器和数码管等,对温度控制系统进行了设计。

一、总体设计方案空调温度控制系统,只要完成对温度的采集、显示以及设定等工作,从而实现对空调控制。

传统的情况时采用滑动电阻器电阻充当测温器件的方案,虽然其中段测量线性度好,精度较高,但是测量电路的设计难度高,且测量电路系统庞大,难于调试,而且成本相对较高。

鉴于上述原因,我们采用了ADC0804将输入的模拟信号充当测温器件。

外部温度信号经ADC0804将输入的模拟信号转换成8位的数字信号,通过并口传送到单片机(AT80C51)。

单片机系统将接收的数字信号译码处理,通过数码管将温度显示出来,同时单片机系统还将完成按键温度设定、一段温度内空调没法使用等程序的处理,将处理温度信号与设定温度值比较形成可控制空调制冷、制热、停止工作三种工作状态,从而实现空调的智能化。

原理图如下图所示:图 1 系统原理图二、硬件电路设计该空调温度控制系统的硬件电路,只要由单片机AT80C51最小系统、8段译码管、数码管、按键电路、驱动电路、A/D转换电路、温度采样电路等组成。

空调自动控制系统软件设计及调试

空调自动控制系统软件设计及调试

空调自动控制系统软件设计及调试一、软件设计1.需求分析:首先需要明确用户对空调自动控制的需求,包括温度设定范围、湿度设定范围、日常工作时间等。

根据需求分析确定软件的功能模块。

2.系统架构设计:根据软件功能模块,设计系统的整体架构,包括用户界面模块、数据处理模块、控制策略模块等。

3.用户界面设计:设计用户友好的界面,让用户能够方便地操作和监控空调自动控制系统。

界面应包括温度、湿度显示、温度调节按钮、模式选择按钮等。

4.数据处理设计:根据用户设定的温度和湿度范围,对室内温度和湿度进行实时监测和处理。

如果温度或湿度超出设定范围,则进行相应的控制策略。

5.控制策略设计:设计空调的控制策略,包括温度和湿度的控制算法、设备启动和关闭的逻辑等。

控制策略应根据实际需求进行优化,以提高系统的能效和舒适性。

6.后台管理设计:设计数据库和日志记录功能,对空调自动控制系统的运行数据进行记录和管理,方便系统的运维和故障排查。

二、软件调试1.单元测试:对软件中各个模块进行单元测试,验证其功能的正确性。

可利用模拟数据进行测试,或者连接实际空调设备进行测试。

2.集成测试:将各个模块进行集成测试,验证模块之间的接口和数据传递是否正常。

测试包括正常场景和异常场景的模拟,以确保系统的稳定性和鲁棒性。

3.功能测试:对整个系统进行功能测试,测试用户界面的操作性、数据处理的准确性和控制策略的正常运行。

可通过模拟用户场景实现测试,或者实际将系统投入到使用中进行测试。

4.性能测试:测试系统对大规模数据的处理能力,如同时控制多个空调设备的运行等。

通过监测系统的响应时间和资源占用情况,评估系统的性能是否满足需求。

5.软件优化:根据测试结果,对系统进行优化,包括减少资源占用、提高响应速度等。

优化的目标是提高系统的稳定性和用户体验。

6.用户验收测试:将系统交付给用户进行验收测试,确保系统满足用户需求并符合设计要求。

总结:空调自动控制系统的软件设计和调试是一个复杂的过程,需要对用户需求进行详细分析,设计合理的系统架构,并进行多层次的测试和优化。

空调外机 控制原理

空调外机 控制原理

空调外机控制原理
空调外机的控制原理是通过传感器检测环境温度和湿度,并与设定值进行比较,然后向控制系统发送信号,控制系统根据传感器信号调整压缩机运行和制冷介质流动的速度,以达到设定的温度和湿度目标。

在空调外机中,有两个主要的控制回路,分别是温度控制回路和压力控制回路。

温度控制回路主要通过温度传感器测量环境温度,然后将得到的信号传送给控制系统。

控制系统根据设定的温度值和实际测量值进行比较,如果实际温度高于设定值,则控制系统会发送信号给压缩机,使其启动,并控制制冷介质的流动速度,降低室内温度。

反之,如果实际温度低于设定值,则压缩机停止运行,制冷介质暂停流动。

另一方面,压力控制回路主要通过压力传感器测量冷媒压力,然后将得到的信号传送给控制系统。

控制系统根据设定的压力范围和实际测量值进行比较,如果实际压力超过设定范围,则控制系统会发送信号给压缩机,使其停止运行或调整运行速度,以保护系统和设备的安全运行。

同时,控制系统还可以根据压力信号调节膨胀阀的开度,以控制冷媒流量和压力。

除了温度和压力控制外,空调外机还可以通过其他传感器来检测环境湿度、风速等参数,并根据实际需求进行相应的控制。

这些传感器与控制系统之间通过电气信号进行连接和通信,从而实现对外机的精确控制。

总的来说,空调外机的控制原理是通过传感器检测环境温度、
湿度和压力等参数,然后将得到的信号传送给控制系统进行处理,最终控制压缩机的启停和制冷介质的流动,以达到设定的温度和湿度目标。

空调控制器 原理

空调控制器 原理

空调控制器原理
空调控制器是一种电子设备,用于控制空调系统的运行和调节室内温度。

它的主要原理是通过感知室内温度和设定的温度值之间的差异,并根据这个差异调节空调系统的运行模式和风速,以达到设定的温度目标。

在空调控制器中,通常包含一个温度传感器,用于感知室内温度。

该传感器能够将感知到的温度信号转化为电信号,传送给控制器的微处理器。

同时,控制器还包含一个设定温度值的调节器,它可以根据用户的需求来设定室内温度。

用户可以通过控制器上的按钮或者是遥控器来调节设定温度的值。

当室内温度与设定温度值之间存在差异时,控制器的微处理器会根据预设的算法计算出这个差值,并将相应的控制信号传送给空调系统的主控制单元。

主控制单元会根据控制信号来调节空调系统的运行模式。

比如,当室内温度高于设定温度值时,控制器会发送一个信号,使空调系统切换到制冷模式,并调节风速,以加快室内温度的降低。

相反,当室内温度低于设定温度值时,控制器会发送一个信号,使空调系统切换到制热模式,并调节风速,以提高室内温度。

此外,空调控制器还可以具备其他的功能,如定时启动、风向控制、湿度调节等。

这些功能可以通过控制器上的不同按键或者是遥控器上的不同操作来实现。

综上所述,空调控制器通过感知室内温度和设定的温度值之间的差异,根据差值调节空调系统的运行模式和风速,从而实现室内温度的控制。

这样,用户就可以根据自己的需求和舒适感来调节空调的运行,提供更加舒适和节能的室内环境。

空调自动控制原理图

空调自动控制原理图

空调自动控制原理图
以下是空调自动控制的原理图,没有标题的文字。

1. 室内温度传感器:将室内温度转化为电信号。

2. 室外温度传感器:测量室外温度情况。

3. 室内湿度传感器:将室内湿度转化为电信号。

4. 室外湿度传感器:测量室外湿度情况。

5. 温度控制器:接收室内温度传感器的信号并与设定温度进行比较,根据比较结果控制空调开关或调整温度。

6. 湿度控制器:接收室内湿度传感器的信号并与设定湿度进行比较,根据比较结果控制空调开关或调整湿度。

7. 控制面板:提供操作界面,用户可以通过控制面板设置温度和湿度等参数。

8. 冷凝器:通过制冷剂的循环和传热,将室内热量排出去,降低室内温度。

9. 蒸发器:通过制冷剂的循环和传热,从室内吸收热量,提高室内温度。

10. 电风扇:控制室内空气的流动,使冷热空气均匀分布。

11. 压缩机:提供制冷剂的压缩和循环,实现室内空气的冷却。

12. 膨胀阀:控制制冷剂的流量,调节制冷效果。

以上是空调自动控制的原理图。

[空调温控器的原理及检修方法分析]空调温控器

[空调温控器的原理及检修方法分析]空调温控器空调温控器的原理及检修方法分析1引言近年来随着我国经济快速发展,人们对生活环境办公环境有着越来越高的要求,对温度湿度的要求也越来越严格。

空调温控器分为电子式和机械式两种,按显示不同分为液品显示和调节式。

空调温控器是通过程序编辑,用程序来控制并向执行器发出各种信号,从而达到控制空调风机旁管以及电动二通阀的目的。

2空调温控器的原理温度控制器是对空调房间的温度进行控制的电开关设备。

温度控制器所控制的空调房间内的温度范围。

窗式空调常用的温度控制器是以压力作用原理来推动触点的通与断。

其结构由波纹管、感温包(测试管)、偏心轮、微动开关等组成一个密封的感应系统和一个转送信号动力的系统。

控制方法一般分为两种;一种是由被冷却对象的温度变化来进行控制,多采用蒸气压力式温度控制器,另一种由被冷却对象的温差变化来进行控制,多采用电子式温度控制器。

温控器分为:机械式分为蒸气压力式温控器、液体膨胀式温控器、气体吸附式温控器、金属膨胀式温控器。

其中蒸气压力式温控器又分为充气型、液气混合型和充液型。

家用空调机械式都以这类温控器为主。

电子式分为电阻式温控器和热电偶式温控器。

3电路系统的作用空调机电路系统的作用是控制空调正常和多功能的运行,保护压缩机和风扇电机正常运行。

电路系统的组成部件主要有温度控制器、热保护器、主控开关、运转电容器,风扇电动机的运转电容器等被固定在控制盒内。

温度控制器的作用只是控制压缩机的启动和停止。

4空调温控器的检修方法当空调器不能正常运行时,除需检查压缩机的启动继电器、过热、过流保护器和电容器外,还必须检查一下电气控制系统中非常重要的控制保护和执行部件—空调温控器主控选择开关。

下面介绍几种常见的空调温控器的快速检测方法。

4.1波纹管式或膜片式空调温控器1)故障现象之一触点接触不良或烧毁,造成电路不能接通;触点频繁动作起弧粘连,造成电路不能断;感温腔内的感温剂泄漏,造成触点不能动作而失去控制作用等。

空调温度控制系统的数学模型

空调温度控制系统的数学模型一、 恒温室的微分方程为了研究上的方便,把图所示的恒温室看成一个单容对象,在建立数学模型,暂不考虑纯滞后。

1. 微分方程的列写根据能量守恒定律,单位时间内进入恒温室的能量减去单位时间内由恒温室流出的能量等于恒温室中能量蓄存的变化率。

即,⎡⎤⎛⎫⎛⎫⎛⎫=+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦恒温室内蓄每小时进入室内每小时室内设备照热量的变化率的空气的热量明和人体的散热量 ⎡⎤⎛⎫⎛⎫-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦每小时从事内排每小时室内向出的空气的热量室外的传热量上述关系的数学表达式是:111()()c a b n a d C Gc q Gc dt αθθθθθγ-=+-+ (2-1) 式中 1C —恒温室的容量系数(包括室内空气的蓄热和设备与维护结构表层的蓄热)(千卡/ C ︒ );a θ—室内空气温度,回风温度(C ︒);G —送风量(公斤/小时);1c —空气的比热(千卡/公斤 );c θ —送风温度(C ︒);n q —室内散热量(千卡/小时);b θ—室外空气温度(C ︒);γ—恒温室围护结构的热阻(小时 C ︒/千卡)。

将式(2—1)整理为:111111111n b a c a q d Gc C dt Gc Gc Gc θθθγθγγγ++=++++ 11111n a q Gc Gc Gc γθγ⎛⎫+ ⎪ ⎪=+ ⎪+ ⎪⎝⎭(2-2)或 11()a a c f d T K dtθθθθ+=+ (2-3) 式中 111T R C = —恒温室的时间常数(小时)。

1111R Gc γ=+ —为恒温室的热阻(小时 /千卡)1111Gc K Gc γ=+ —恒温室的放大系数(/C C ︒); 1b n f q Gc θγθ+= —室内外干扰量换算成送风温度的变化(C ︒)。

式(2—3)就是恒温室温度的数学模型。

式中 和 是恒温的输入参数,或称输入量;而 是恒温室的输入参数或称被调量。

空调系统的温度控制和在线辨识

中 图 分 类 号 TP 2 3 7
文献标 识码 A
文 章 编 号 1 7 — 1 7 2 l ) 10 0 — 3 6 30 2 ( O 1 0 - 1 40
DOI 1 . 7 3 jis . 6 3 0 2 . 0 1 0 . 2 0 3 8 /.s n 1 7 — 1 7 2 1 . 1 0 4
t e ho s t g t e . The a t a pp ia i ho h i a i iy wo m t d o e h r c u la lc ton s ws t e rv ld t . Key wo ds tme d ly;ie a i on r l n iIa l e r nsor ton;o i e i e tfc to r i ~ ea t r tve c t o ;a t p a e t a f ma i统 是 发 射 场 重 要 保 障 设
备 , 责提供 满足卫 星和 运载测试 所需 的温湿 度 、 负 洁 净 度 环 境 。 发 射 场 中 央 空 调 系 统 具 有 以 下 3个
特点 :
对 发 射 场 中 央 空 调 系统 进 行 状 态 监 测 涉 及 控 制 系统在 线 闭环 辨 识 。相 对 于开 环 辨识 而 言 , 闭 环 辨 识 较 为 复 杂 , 辨 识 结 果 远 不 如 开 环 辨 识 结 其 果 的 可 信 度 高 。 直 接 辨 识 法 是 一 种 开 环 辨 识 ] 方 法 , 方 法 采 用 逆 拉 氏 变 换 得 到 最 小 二 乘 的 回 该
第 2 卷 第 1 2 期
VoJ 2 NO .2 .1
空 调 系 统 的 温 度 控 制 和 在 线 辨 识
李 耀 凯 , 王 建 , 任 永 平

空调机组温湿度控制介绍


焓湿图和基本概念
▪ 1.干球温度是温度计在普通空气中所测出的温度,即我们一般天气预报里常 说的气温。
▪ 2. 露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的 温度。形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。露 点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水 汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高 于露点温度。所以露点与气温的差值可以表示空气中的水汽距离饱和的程度。 在100%的相对湿度时,周围环境的温度就是露点温度。露点温度越小于周 围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温 度影响,但受压力影响。在上图中,点B对应的干球温度即为点A的露点温度。
风机运行模式连锁,正常模式下,风机运行,风阀打开;风机关闭,风阀关闭。 冬季,当风机停止时,请特别注意新风阀关闭,以保护预热盘管。
2.各过滤段 ▪ 空调机组根据过滤精度可安装初效过滤段及中效过滤段,通用设计两级一般采用袋式
过滤器,也有空调设计初效采用板式过滤级器。箱体外侧安装有压差表,可直接观察 压差变化;且安装有压差开关,根据设定值自动报警。
温湿度控制介绍
一、空调各功能段作用及控制 二、空调温湿度控制基本原理
一、空调各功能段作用及控制������
▪ 完整空调功能段布置示意图:
▪ 现场AHU空调主要有以下功能段组成:进风段-初效段-预热段-回风 段-表冷段- 加湿段-加热段-风机段-中效段-出风段等。
1.进风段������ ▪ 空调机组一般设有进风室及进风段,并在入口处安装有电动风阀。风阀执行器动作与
▪ 空调保温:当风机停机时,预热阀自动调节其开度大小,以保证预热盘管后温度保持 在保温温度15℃(可设),从而保护预热盘管。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2单片机与空调控制系统
空调控制系统要控制的是空气温度,是通过压缩机的运行、停止控制的,实际上单片机直接控制的是压缩机的工作状态。该系统要实现以下功能。
(1)根据环境温度控制压缩机:控制参数是温度,控制参数是压缩机电路通、断的状态。
(2)设置希望的环境温度值:由人手动控制
(3)显示设定的温度值
1.3
2.2.3数字显示...............................................................................................................8
2.2.4降温驱动控制电路的选择...................................................................................9
关键词:电子、单片机、空调、温度、电路
诚信责任书..............................................................................................................................Ⅱ
1.1空调
一、空调
“空调”即房间空气调节器,是一种用于给房间(或封闭空间、区域)提供处理空气的机组。它的功能是对该房间(或封闭空间、区域)内空气的温度、适度、洁净度和空气流速等参数进行调节,以满足人体舒适或工艺过程的要求。
二、空调的工作原理
空调器的制冷系统由蒸发器、压缩机、冷凝器和毛细管四个主要部分组成。按照制冷循环工作的顺序,依然用管道接成一个整体。系统工作时,蒸发器内的制冷剂吸收室内空气的热量而蒸发成为压力和温度均较低的蒸汽,被压缩机吸入并压缩后,制冷剂的压力和温度均升高,然后排入冷凝器。制冷剂蒸气在冷凝器内通过放热给室外空气而冷凝成为压力较高的液体。制冷剂液体通过毛细空的气流,压力和温度均降低,再进入蒸发器蒸发,如此周而复始地循环,从而达到降低室内温度的目的。
随着中国经济的发展和人民生活水平的提高,空调作为一款重要的家用电器,在国民经济生产和人们社会生活中扮演的角色也越来越重要。
进入21世纪以来,我国空调行业持续快速发展。改革开放带动国内经济高速发展,空调产品也由“生活奢侈品”逐渐转变为日常生活用品,大大刺激了国内空调产业的发展。我国空调市场趋于成熟,消费者对品牌认知度不断增强,品牌集中度持续提升,产业升级步伐加快,空调业逐步走向发展壮大。
特此声明。
课程(设计)作者签名:
日期:
空调机温度控制系统
摘 要
新世纪里,人们生活质量不断提高,同时也对高科技电子产业提出了更高的要求,为了使人们生活更人性化、智能化。我设计了这一个基于单片机的空调温度控制系统,人们只有生活在一定的温度环境内才能长期感觉舒服,才能保证不中暑不受冻,所以对室内温度要求要高。对于不同地区空调要求不同,有的需要升温,有的需要降温。一般都要维持在22~26°C。
3、升温
热泵型与电热型空调器都有升温功能。升温能力随室外环境温度下降逐步变小,若温度在-5℃时几乎不能满足供热要求。
4、净化空气
空气中含有一定量有害气体如NH3、SO2等,以及各种汗臭、体臭和浴厕臭等臭气。空调净化方法有:换新风、过滤、利用活性炭或光触煤吸附和吸收等。
A、换新风:利用风机系统将室内潮湿空气往室外排,使室内形成一定程度负压,新鲜空气从四周门缝、窗缝进入室内,改善室内空气质量。
2.2.1温度传感部分的选择..........................................................................................6
2.2.2A/D转换方案设计................................................................................................7
单片机课程(设计)
(设计目)题:空调机温度控制系统
学 院:明德学院
专 业:机械设计制造及其自动化
班 级:机电12151
学 号:
学生姓名:
指导教师:
2015年 6月
贵州大学单片机课程(设计)
诚信责任书
本人郑重声明:本人所呈交的课程设计,是在指导老师的指导下独立进行研究所完成。在文本设计中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。
1 绪论
随着时代科技的迅猛发展,微电子学和计算机等现代电子技术的成就给传统的电子测量与仪器带来了巨大的冲击和革命性的影响。常规的测试仪器仪表和控制装置被更先进的智能仪器所取代,使得传统的电子测量仪器在远离、功能、精使得科学实验和应用工程的自动化程度得以显著提高。作为体重测量仪器,电子体重秤以其测量的准确性和高速性开始逐渐取代传统的仪表体重秤,成为测量体重领域的主流产品。
三、空调的功能
1、降温
在空调器设计与制造中,一般允许将温度控制在16~32℃之间。若温度设定过低,一方面增加不必要的电力消耗,一方面造成室内温度偏大时,人们进入房间不能很快适应温度变化,容易患感冒。
2、除湿
空调器在制冷过程中伴有除湿作用。人们感觉舒适的环境相对湿度应在40~60%左右,当相对温度过大如在90%以上,即使温度在舒适范围内,人的感觉仍然不佳。
目前,虽然我国大量生产空调制冷产品,但由于我国人口众多,需求量过盛,在我国的北方地区,还有好多家庭还没有安装有效地室内温控系统。温度不能很好的控制在一定的范围内,夏天室内温度过高,冬天温度过低,这些均对人们正常生活带来不利的影响,温度、湿度均达不到人们的要求。以前温度控制主要利用机械通风设备进行室内、外空气的交换来达到降低室内温度,实现室内温度适宜人们生活。以前通风设备的开启和关停,均是由人手动控制的,即由人们定时查看室内外的温度、湿度情况,按要求开关通风设备,这样人们的劳动强度大,可靠性差,而且消耗人们体力,劳累成本过高。为此,需要有一种符合机械温控要求的低成本的控制器,在温差和湿度超过用户设定值范围时,启动制冷通风设备,否则自动关闭制冷通风设备。鉴于目前大多数制冷设备现在状况,我设计了一款基于MCS51单片机空调温度控制系统。
相关文档
最新文档