初中数学规律题汇总(全部有解析)知识讲解

合集下载

初中数学规律题总结

初中数学规律题总结

初中数学规律题解题基本方法(一)数列的找规律初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n 位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

十道初中数学找规律的题型及解题思路

十道初中数学找规律的题型及解题思路

十道初中数学找规律的题型及解题思路这里有10道初中数学找规律的题目,涵盖了常见的数列、图形等多种类型,希望能帮助学生更好地掌握找规律的技巧:数列找规律1.等差数列:1.1, 4, 7, 10, ... 下一个数是多少?2.100, 97, 94, ... 第10个数是多少?2.等比数列:1.2, 4, 8, 16, ... 第8个数是多少?2.81, 27, 9, ... 第6个数是多少?3.混合数列:1.1, 4, 9, 16, 25, ... 下一个数是多少?(提示:考虑每个数的平方)2.2, 5, 10, 17, ... 下一个数是多少?(提示:观察相邻两数的差)4.周期数列:1.1, 2, 3, 1, 2, 3, ... 第20个数是多少?2.A, B, C, A, B, C, ... 第100个数是多少?图形找规律图形的变化:1.一组图形,每个图形由小方块组成,观察图形的变化规律,画出下一个图形。

图形的旋转:1.一个图形不断旋转,观察旋转的规律,画出旋转后的图形。

图形的翻转:1.一个图形不断翻转,观察翻转的规律,画出翻转后的图形。

数字与图形结合数字与图形对应:1.一组图形,每个图形对应一个数字,找出数字与图形之间的对应关系。

图形中的数字规律:1.一个图形中包含多个数字,找出数字之间的规律。

综合题型1.数字和图形的综合:1.一组图形和数字交替出现,找出数字和图形之间的关系。

解题技巧:•观察:仔细观察数列或图形的变化规律,找出其中的共同点和差异点。

•比较:比较相邻的数或图形,找出它们的递增、递减或其他变化关系。

•联想:将题目与以前学过的知识联系起来,寻找解题思路。

•归纳:根据观察和比较的结果,归纳出一般性的规律。

•验证:将得到的规律代入后面的数或图形中进行验证,确保规律的正确性。

注意事项:•找规律题的答案可能不唯一,只要找到一种合理的规律即可。

•遇到困难时,可以尝试从不同的角度去观察和分析。

完整版本初中数学规律题汇总全部有解析

完整版本初中数学规律题汇总全部有解析

初中数学律拓展研究“有比才有” 。

通比,能够事物的相同点和不一样点,更简单找到事物的化律。

找律的目,往常依据必定的序出一系列量,要求我依据些已知的量找出一般律。

揭露的律,经常包含着事物的序列号。

所以,把量和序列号放在一同加以比,就比简单此中的神秘。

初中数学考中,常出数列的找律,本文就此的解方法行探究:一、基本方法——看增幅(一)如增幅相等(等差数列):每个数和它的前一个数行比,如增幅相等,第n 个数能够表示: a1+(n-1)b ,此中 a 数列的第一位数, b增幅, (n-1)b 第一位数到第n 位的增幅。

而后再化代数式a+(n-1)b 。

例: 4、10、 16、 22、28⋯⋯,求第 n 位数。

剖析:第二位数起,每位数都比前一位数增添6,增幅都是 6,所以,第 n 位数是: 4+(n-1) 6 = 6n-2(二)如增幅不相等,可是增幅以相同幅度增添(即增幅的增幅相等,也即增幅等差数列)。

如增幅分 3、5、7、9,明增幅以相同幅度增添。

此种数列第 n 位的数也有一种通用求法。

基本思路是: 1、求出数列的第 n-1 位到第 n 位的增幅;2、求出第 1 位到第第 n 位的增幅;3、数列的第 1 位数加上增幅即是第 n 位数。

此解法然,可是此的通用解法,自然此也可用其余技巧,或用剖析察的方法求出,方法就的多了。

(三)增幅不相等,可是增幅同比增添,即增幅等比数列,如:2、3、5、9,17 增幅 1、 2、 4、 8.(四)增幅不相等,且增幅也不以相同幅度增添(即增幅的增幅也不相等)。

此大体没有通用解法,只用剖析察的方法,可是,此包含第二的,如用剖析察法,也有一些技巧。

二、基本技巧1(一)出序列号:找律的目,往常依据必定的序出一系列量,要求我依据些已知的量找出一般律。

找出的律,往常包序列号。

所以,把量和序列号放在一同加以比,就比简单此中的神秘。

比如,察以下各式数:0, 3, 8, 15, 24,⋯⋯。

中考数学找规律题型汇总及解析.doc

中考数学找规律题型汇总及解析.doc

中考数学找规律题型扩展及解析“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第 n 个数可以表示为: a1+(n-1)b,其中 a 为数列的第一位数, b 为增幅, (n-1)b 为第一位数到第 n 位的总增幅。

然后再简化代数式 a+(n-1)b。

例:4、10、 16、22、28,求第 n 位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是 6,所以,第 n 位数是: 4+(n-1) 6=6n- 2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、 5、 7、 9,说明增幅以同等幅度增加。

此种数列第 n 位的数也有一种通用求法。

基本思路是: 1、求出数列的第n-1 位到第 n 位的增幅;2、求出第 1 位到第第 n 位的总增幅;3、数列的第 1 位数加上总增幅即是第n 位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17 增幅为 1、2、 4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

初中数学规律题、数学24题、几何模型汇总(全部有解析)

初中数学规律题、数学24题、几何模型汇总(全部有解析)

初中数学规律题拓展研究“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b 为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学规律题汇总(全部有解析)讲解学习

初中数学规律题汇总(全部有解析)讲解学习

初中数学规律题汇总(全部有解析)初中数学规律题拓展研究“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学规律题总结

初中数学规律题总结

初中数学规律题解题基本方法(一)数列的找规律初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

精编初中数学规律题应用汇总(全部有解析)

精编初中数学规律题应用汇总(全部有解析)

规律题应用知识汇总ﻫ一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

ﻫ分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2 (二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

ﻫ(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.ﻫ(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

ﻫ二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例如,观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第1002-。

ﻫ解答这一题,可以先找一般规律,然个数是10021-,第n个数是n1后使用这个规律,计算出第100个数。

我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。

序列号:1,2,3, 4,5,……。

ﻫ容易发现,已知数的每一项,都等100—1于它的序列号的平方减1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学规律题拓展研究“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b 为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例如,观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是 10021- ,第n 个数是 n 12-。

解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。

我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。

序列号: 1,2,3, 4, 5,……。

容易发现,已知数的每一项,都等于它的序列号的平方减1。

因此,第n 项是2n -1,第100项是2100—1(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n 、3n 有关。

例如:1,9,25,49,(81),(121),的第n 项为( 2)12(-n ),1,2,3,4,5.。

,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。

(三)看例题:A : 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18答案与3有关且是n 的3次幂,即:n 3+1B :2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:n 2(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。

再在找出的规律上加上第一位数,恢复到原来。

例:2、5、10、17、26……,同时减去2后得到新数列: 0、3、8、15、24……, 序列号:1、2、3、4、5,从顺序号中可以看出当n=1时,得1*1-1得0,当n=2时,2*2-1得3,3*3-1=8,以此类推,得到第n 个数为12-n 。

再看原数列是同时减2得到的新数列,则在12-n 的基础上加2,得到原数列第n 项12+n(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。

例 : 4,16,36,64,?,144,196,… ?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方,得到新数列第n 项即n 2,原数列是同除以4得到的新数列,所以求出新数列n 的公式后再乘以4即,4 n 2,则求出第一百个数为4*1002=40000(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。

当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。

(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。

三、基本步骤1、 先看增幅是否相等,如相等,用基本方法(一)解题。

2、 如不相等,综合运用技巧(一)、(二)、(三)找规律3、 如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、 最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······ 2,5,10,17,26,····· 0,6,16,30,48······(1)第一组有什么规律?答:从前面的分析可以看出是位置数的平方减一。

(2)第二、三组分别跟第一组有什么关系?答:第一组是位置数平方减一,那么第二组每项对应减去第一组每项,从中可以看出都等于2,说明第二组的每项都比第一组的每项多2,则第二组第n 项是:位置数平方减1加2,得位置数平方加1即12+n 。

第三组可以看出正好是第一组每项数的2倍,则第三组第n 项是:()122-⨯n(3)取每组的第7个数,求这三个数的和?答:用上述三组数的第n 项公式可以求出,第一组第七个数是7的平方减一得48,第二组第七个数是7的平方加一得50,第三组第七个数是2乘以括号7的平方减一得96,48+50+96=1942、观察下面两行数2,4,8,16,32,64, ...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和。

(要求写出最后的计算结果和详细解题过程。

)解:第一组可以看出是2n ,第二组可以看出是第一组的每项都加3,即2n +3, 则第一组第十个数是210=1024,第二组第十个数是210+3得1027,两项相加得2051。

3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002个中有几个是黑的?解:从数列中可以看出规律即:1,1,1,2,1,3,1,4,1,5,…….,每二项中后项减前项为0,1,2,3,4,5……,正好是等差数列,并且数列中偶项位置全部为黑色珠子,因此得出2002除以2得1001,即前2002个中有1001个是黑色的。

4、2213-=8 2235-=16 2257-=24 ……用含有N 的代数式表示规律 解:被减数是不包含1的奇数的平方,减数是包括1的奇数的平方,差是8的倍数,奇数项第n 个项为2n-1,而被减数正是比减数多2,则被减数为2n-1+2,得2n+1,则用含有n 的代数式表示为:()()221212--+n n =8n 。

写出两个连续自然数的平方差为888的等式解:通过上述代数式得出,平方差为888即8n=8X111,得出n=111,代入公式:(222+1)2-(222-1)2=888五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差六、数字推理基本类型按数字之间的关系,可将数字推理题分为以下几种类型:1.和差关系。

又分为等差、移动求和或差两种。

(1)等差关系。

12,20,30,42,( 56 )127,112,97,82,( 67 )3,4,7,12,( 19 ),28(2)移动求和或差。

从第三项起,每一项都是前两项之和或差。

1,2,3,5,( 8 ),13A.9B.11C.8D.7选C。

1 +2=3,2+ 3=5,3+ 5=8,5+ 8=130,1,1,2,4,7,13,( 24)A.22B.23C.24D.25选C。

注意此题为前三项之和等于下一项。

一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。

5,3,2,1,1,(0 )A.-3B.-2C.0D.2选C。

前两项相减得到第三项。

2.乘除关系。

又分为等比、移动求积或商两种(1)等比,从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。

8,12,18,27,(40.5)后项与前项之比为1.5。

6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,3(2)移动求积或商关系。

从第三项起,每一项都是前两项之积或商。

2,5,10,50,(500)100,50,2,25,(2/25)3,4,6,12,36,(216) 从第三项起,第三项为前两项之积除以21,7,8,57,(457)第三项为前两项之积加 13.平方关系1,4,9,16,25,(36),49 为位置数的平方。

66,83,102,123,(146) ,看数很大,其实是不难的,66可以看作64+2,83可以看作81+2,102可以看作100+2,123可以看作121+2,以此类推,可以看出是8,9,10,11,12的平方加24.立方关系1,8,27,(81),125 位置数的立方。

3,10,29,(83),127 位置数的立方加 20,1,2,9,(730) 后项为前项的立方加15.分数数列。

关键是把分子和分母看作两个不同的数列,有的还需进行简单的通分,则可得出答案21 34 49 516 625 (736)分子为等比即位置数的平方,分母为等差数列,则第n 项代数式为:21+n n 2/3 1/2 2/5 1/3 (1/4) 将1/2化为2/4,1/3化为2/6,可得到如下数列:2/3, 2/4, 2/5, 2/6, 2/7, 2/8 …….可知下一个为2/9,如果求第n 项代数式即:22+n ,分解后得:21+-n n 6.、质数数列2,3,5,(7),11 质数数列4,6,10,14,22,(26) 每项除以2得到质数数列20,22,25,30,37,(48) 后项与前项相减得质数数列。

7.、双重数列。

又分为三种:(1)每两项为一组,如1,3,3,9,5,15,7,(21) 第一与第二,第三与第四等每两项后项与前项之比为32,5,7,10,9,12,10,(13)每两项中后项减前项之差为31/7,14,1/21,42,1/36,72,1/52,(104 )两项为一组,每组的后项等于前项倒数*2(2)两个数列相隔,其中一个数列可能无任何规律,但只要把握有规律变化的数列就可得出结果。

相关文档
最新文档