初中数学找规律题(有标准答案)

合集下载

初中数学找规律练习题(有答案)

初中数学找规律练习题(有答案)

精心整理一、简答题1、已知a、b互为相反数,c、d互为倒数,m的倒数等于它本身,则的值是多少?(4分)2、先阅读,再解题:因为,?,?……所以.参照上述解法计算:3、目前市场上有一种数码照相机,售价为3800元/架,预计今后几年内平均每年比上一年降价4%.3年后这种数码相机的售价估计为每架多少元(精确到1元)?4、已知a、b互为相反数,m、n互为倒数,x绝对值为2,求的值5、如果规定符号“﹡”的意义是﹡=,求2﹡﹡4的值。

6、某商店营业员每月的基本工资为300元,奖金制度是:每月完成规定指标10000元营业额的,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,问他九月份的收入为多少元?7、王叔叔家的装修工程接近尾声,油漆工程结束了,经统计,油漆工共做50工时,用了150升油漆,已知油漆每升128元,共粉刷120平方米,在结算工钱时,有以下几种结算方案:(1)按工时算,每6工时300元。

(2)按油漆费用来算,油漆费用的15%为工钱;(3)按粉刷面积来算,每6平方米132元。

请你帮王叔叔算一下,用哪种方案最省钱?8、定义一种新的运算:观察下列式子1⊙3=1×4+3=7;3⊙(-1)=3×4+(-1)=11;5⊙4=5×4+4=24;4⊙(-3)=4×4+(-3)=13.⑴请你想一想:a⊙b=??????????;⑵请你判断a⊙b??????b⊙a(填入“=”或“≠”)???⑶若a=-2,b=-4,求(2a-b)⊙(a-2b)的值.9、阅读下列材料:1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),3×4=(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n×(n+1)=________;(3)1×2×3+2×3×4+3×4×5=________.10、从2004年8月1日起,浙江省城乡居民生活用电执行新的电价政策:安装“一户一表”的居民用户,按所抄见电量(每家用户电表所表示的用电量)实行阶梯式累进加价,收费标准如下:月用电量不超过50千瓦时的部分超过50千瓦时不超过200千瓦时的部分超过200千瓦时的部分收费标准(元/千瓦时)0.53 0.56 0.63 ????例:若某户月用电300千瓦时,需交电费为????(元)(1)若10月份许老师家用电量为130千瓦时,则10月份许老师家应付电费多少元??(2)已知许老师家10月份的用电量为千瓦时,请完成下列填空(用代数式表示):①若千瓦时,则10月份许老师家应付电费为?????????????元;②若千瓦时,则10月份许老师家应付电费为???????元;③若千瓦时,则10月份许老师家应付电费为??????????元。

初中数学找规律题及其答案.

初中数学找规律题及其答案.

整式的加减——专题训练与提升1、根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有个图中有个点.2、找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有幅图中共有 个.个.3、如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子个图案需棋子 枚.枚.4、观察图中每一个大三角形中白色三角形的排列规律,观察图中每一个大三角形中白色三角形的排列规律,则第则第5个大三角形中白色三角形有形有 个.个.5、观察下列图形,它们是按一定规律排列的,依照此规律,第16个图形共有个图形共有个★.个★.6、如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是个“广”字中的棋子个数是 ,第n 个“广”字中的棋子个数是中的棋子个数是 .7、如图1是二环三角形,可得S=S=∠∠A 1+∠A 2+…+∠A 6=360=360°,下图°,下图2是二环四边形,可得S=S=∠∠A 1+∠A 2+…+∠A 7=720=720°,图°,图3是二环五边形,可得S=1080S=1080°,…聪明的同°,…聪明的同学,请你根据以上规律直接写出二环n 边形(边形(n n ≥3的整数)中,的整数)中,S= S= S= 度.(用含n 的代数式表示最后结果)的代数式表示最后结果)8、观察下列图形(每幅图中最小的三角形都是全等的),请写出第n 个图中最小的三角形的个数有角形的个数有 个.个.9、将一个正三角形纸片剪成四个全等的小正三角形,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪再将其中的一个按同样的方法剪成四个更小的正三角形,成四个更小的正三角形,…如此继续下去,…如此继续下去,结果如下表.结果如下表.则则a n = = .(用含n 的代数式表示)的代数式表示)所剪次数所剪次数正三角形个数正三角形个数正三角形个数1010、用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图、用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为个数为 (用含n 的代数式表示).1111、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010××10的正方形图案,则其中完整的圆共有圆共有 个.个.1212、根据下列图形的排列规律,第、根据下列图形的排列规律,第2008个图形是福娃个图形是福娃 (填写福娃名称即可).1313、用火柴棒按照如图所示的方式摆图形,则第、用火柴棒按照如图所示的方式摆图形,则第n 个图形中,所需火柴棒的根数是 .1414、下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第、下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依次规律,拼搭第8个图案需小木棒木棒根.根.1515、一张长方形桌子需配、一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么8张桌子需配椅子椅子 把.把.1616、下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上、下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上有n (n ≥2个圆点时,图案的圆点数为S n .按此规律推断S n 关于n 的关系式为:S n = = .1717、如图是由火柴棒搭成的几何图案,则第、如图是由火柴棒搭成的几何图案,则第n 个图案中有个图案中有 根火柴棒.(用含n 的代数式表示)的代数式表示)1818、观察下列图形的构成规律,根据此规律,第、观察下列图形的构成规律,根据此规律,第8个图形中有个图形中有 个圆.个圆.1919、观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则、观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b 的值为 . 表一:表一:表二:表二:表三:表三:2020、如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正、如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正六边形,则第n 层有层有 个白色正六边形.个白色正六边形.2121、把边长为、把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;…依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有同样的方法分割,得到的图形中含有 个边长是1的正六边形.的正六边形.0 1 2 3 .... 1 3 5 7 .... 2 5 8 11 11 .... .... 3 7 11 11 15 15 15 .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... 11 14 a 11 1317 b2222、观察下列图形的排列规律(其中☆,□,●分别表示五角星、正方形、圆)●□、观察下列图形的排列规律(其中☆,□,●分别表示五角星、正方形、圆)●□☆●●□☆●□☆●●□☆●…若第一个图形是圆,则第2008个图形是个图形是 (填名称).2323、下列图中有大小不同的菱形,第、下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,按照图示的规律摆下去,则第n 幅图中有幅图中有 个菱形.菱形.2424、如图,观察下列图案,它们都是由边长为、如图,观察下列图案,它们都是由边长为1cm 的小正方形按一定规律拼接而成的,依此规律,则第16个图案中的小正方形有个图案中的小正方形有 个.个.2525、用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第、用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子个图形需棋子 枚.(用含n 的代数式表示)的代数式表示)2727、如图所示是一副“三角形图”、如图所示是一副“三角形图”,第一行有一个三角形,第二行有2个三角形,第三行有4个三角形,第四行有8个三角形,…,你是否发现三角形的排列规律,请写出第七行有写出第七行有 个三角形.个三角形.2828、如图,用、如图,用3根小木棒可以摆出第(根小木棒可以摆出第(11)个正三角形,加上2根木棒可以摆出第(根木棒可以摆出第(22)个正三角形,再加上2根木棒可以摆出第(根木棒可以摆出第(33)个正三角形…这样继续摆下去,当摆出第(摆出第(n n )个正三角形时,共用了木棒)个正三角形时,共用了木棒 根.根.2929、观察下列图形,根据变化规律推测第、观察下列图形,根据变化规律推测第100个与第个与第 个图形位置相同.个图形位置相同.3030、如图,用火柴棒按以下方式搭小鱼,搭、如图,用火柴棒按以下方式搭小鱼,搭1条小鱼用8根火柴棒,搭2条小鱼用14根,…,则搭n 条小鱼需要条小鱼需要 根火柴棒.(用含n 的代数式表示)的代数式表示)整式的加减——专题训练与提升参考答案1.n2-n+1 2.(2n-1) 3.302 4.121 5.49 6.152n+5 7.360(n-2)13.3n+1 14.88 15.20.欢欢8.4n-1 9.3n+1 10.2n+2 11.181 12.欢欢16.4n-4 17.2n(n+1) 18.65 19.37 20.6n 21.15 22.正方形23.(2n-1) 24.136 26.3n+1 27.64 28.2n+1 29.1或4 30.6n+2。

初一找规律经典题型(含部分答案)

初一找规律经典题型(含部分答案)

图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索: 一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。

然后再简化代数式a+(n-1)b 。

例:4、10、16、22、28……,求第n 位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1) 6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。

(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差n =3n =4n =5……数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

七年级数学找规律题(含答案)

七年级数学找规律题(含答案)

七年级数学找规律题(含答案)1.观察下图,寻找规律,在“?”处填上的数字是( ). A.128 B.136 C.162 D.188 【答案】C2.寻找规律计算1 - 2+3 - 4+5 - 6+…+2015 - 2016等于 ( ) A.0 B.- 1 C.- 1008D.1008【答案】C3.找规律:21-20=20 ;22-21=21 ;23-22=2 2;………利用你的发现,求20+21+22+23+…+22018+22019的值是( ) A .22019 -1 B .22019 +1C .22020 -1D .22020 +1【答案】C4.先找规律,再填数:1111122+-=,111134212+-=,111156330+-=,111178456+-=,…,1120132014+-( )=()12014⨯.【答案】11007,2013. 5.找规律填上合适的数:﹣2,4,﹣8,16, ,64,… 【答案】﹣32.6.寻找规律,根据规律填空:31,152-,353,634-,995, ,…,第n 个数是 . 【答案】1436-14)1(21--+n n n (或:当n 时奇数时,142-n n;当n 时偶数时,142--n n )7.先找规律,再填数: 111111*********1,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】8.找规律填数:﹣1,2,﹣4,8,________ 【答案】﹣169.先找规律,再填数:11+12-1=12,13+14-12=112,15+16-13=130,17+18-14=156,12011+12012-________=120112012⨯ 【答案】10.已知C 32=3×21×2=3, C 53=5×4×31×2×3=10,C 64 =6×5×4×31×2×3×4=15,…观察以上计算过程,寻找规律计算C 85=_____. 【答案】56.11.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C .【答案】21012.观察下列各式并找规律,再猜想填空:()()()()223322332248a b a ab b a b x y x xy y x y +-+=++-+=+, ,则()()2223469a b a ab b +-+= ______ .【答案】33827a b + 13.观察下列计算:,,,……从计算结果中找规律,利用规律计算_______________ 【答案】14.已知: 233212C ⨯=⨯=3,35543123C ⨯⨯=⨯⨯=10,3565431234C ⨯⨯⨯=⨯⨯⨯=15,…,观察上面的计算过程,寻找规律并计算:34C =_____. 【答案】4. 15.已知:2332312C ⨯==⨯,3554310123C ⨯⨯==⨯⨯,466543151234⨯⨯⨯==⨯⨯⨯C ,…,观察上面的计算过程,寻找规律并计算C 106=_____. 【答案】21016.找规律:﹣12,2,﹣92,8,﹣252 ,18…,则第7个数为_____;第n 个数为_____(n 为正整数)【答案】﹣492 (﹣1)nn 22.17.观察烟花燃放图形,找规律:依此规律,第n 个图形中共有_________个★. 【答案】2+2n18.找规律,并按规律填上第五个数:,169,87,45,23-- . 【答案】-113219.观察下面的一列数,从中寻找规律,然后按规律填写接下去的3个数.12,34-,56,78-,910,________,________,________,… 【答案】1112-1314 1516- 20.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a b m -+=_____.【答案】4321.观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a+b+c 的值为 .【答案】7622.观察下面的一列数,从中寻找规律,然后按规律写出接下去的三个数.12 ,-34 ,56 ,-78 ,910,… ________,…【答案】-1112;1314;−1516. 23.找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有________个.【答案】2n -124.观察下列各组勾股数,并寻找规律:①4,3,5; ②6,8,10; ③8,15,17; ④10,24,26 …… 请根据你发现的规律写出第⑦组勾股数:____________. 【答案】16,63,6525.用火柴棒按以下方式搭“小鱼” .…………搭1条“小鱼”需用8根火柴棒,搭2条“小鱼”需用14根火柴棒,搭3条“小鱼”需用20根火柴棒……观察并找规律,搭10条“小鱼”需用火柴棒的根数为 . 【答案】62 26.观察下列计算111122=-⨯ ,1112323=-⨯,1113434=-⨯,1114545=-⨯,……, (1)第n 个式子是_____________________________________; (2)从计算结果中找规律,利用规律计算:112⨯+123⨯+134⨯+145⨯+…+120092010⨯ 【答案】(1)()11111n n n n =-++;(2)20092010. 27.探究:()21112222122-=⨯-⨯=, () 3222? 2-==, ()4322? 2-==,……(1)请仔细观察,写出第4个等式; (2)请你找规律,写出第n 个等式;(3)计算:012201620172018222222+++⋅⋅⋅⋅⋅⋅++-. 【答案】(1)544442222122-=⨯-⨯=;(2)12222122n n n n n +-=⨯-⨯=;(3)-128.阅读下文,寻找规律:已知1x ≠时, ()()2111x x x -+=-,()()23111x x x x -++=-, ()()234111x x x x x -+++=-……(1)填空: ()1(x - 5)1x =-. (2)观察上式,并猜想:①()()211n x x x x -+++⋅⋅⋅+= . ②()()10911x x x x -++⋅⋅⋅++= . (3)根据你的猜想,计算:①()()234512122222-+++++= . ②23420161+3+3+3+33⋅⋅⋅⋅⋅⋅=_____________________【答案】(1)2341+x x x x +++(2)11n x+-; 111x -(3)612- (或 -63); 20173-1229.小明同学在一次找规律的游戏中发现如下的数字和规律,请你按照所给的式子,解答下列问题:21342+== 213593++== 21357164+++== 213579255++++==()1试猜想:135791129++++++⋯+=①______.()()135********n n ++++++⋯+-++=②______.()2用上述规律计算:2123255759+++⋯++=______.【答案】(1)①225;②(n+1)²(2)80030.找规律并解答问题.(1)按下图方式摆放黑色围棋子,填一填,每个图共需几枚棋子.(2)根据你发现的规律,算一算第13个图,共需要( )枚棋子.【答案】(1)详见解析;(2)40枚.31.观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则a=,ba+= .表一表二表三【答案】17=a2372=+ba32.细观察,找规律.下列各图中的1MA与nNA平行.()1图①中的12A A∠+∠=______ 度,图②中的123A A A∠+∠+∠=______ 度,图③中的1234A A A A ∠+∠+∠+∠=______ 度, 图④中的12345A A A A A ∠+∠+∠+∠+∠=______ 度,⋯,第⑩个图中的12311A A A A ∠+∠+∠+⋯+∠=______ 度()2第n 个图中的1231n A A A A +∠+∠+∠+⋯+∠=______ ()3请你证明图②的结论.【答案】(1)180;360;540;720;1800;(2)180n °;(3)详见解析. 33.找规律:(1)填空:41=________;42=______;43=______;44=______;45=________;46=________;…(2)你发现4的幂的个位数字有什么规律? (3)4250的个位数是什么数字?为什么?【答案】(1)4, 16, 64,256,1224,4896;(2)是循环数;(3)6. 34.观察等式找规律: ①第1个等式:22﹣1=1×3; ②第2个等式:42﹣1=3×5; ③第3个等式:62﹣1=5×7; ……(1)写出第5个等式: ; 第6个等式: ;(2)写出第n 个等式(用字母n 表示): ; (3)求111113355740254027++++⨯⨯⨯⨯的值.【答案】(1)102﹣1=9×11;122﹣1=11×13;(2)4n 2﹣1=(2n ﹣1)(2n+1);(3)2013402735.观察表l ,寻找规律.表2是从表l 中截取的一部分,其中a ,b ,c 的值分别为( )A.20,25,24B.25,20,24C.18,25,24D.20,30,25【答案】A36.阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4….(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)= .(2)根据你的猜想,计算:1+3+32+33…+3n= .(其中n是正整数)【答案】(1)1﹣x n+1,(2)﹣.37.如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;…,则第⑥个图中,看得见的小立方体有_____个.【答案】9138.找规律.一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。

(完整版)七年级找规律经典题汇总带答案

(完整版)七年级找规律经典题汇总带答案

……一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。

1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。

七年级找规律试题及答案

七年级找规律试题及答案

七年级找规律试题及答案
一、选择题
1. 下列数列中,哪一个是按照规律排列的?
A. 2, 4, 8, 16, 32
B. 1, 3, 5, 7, 11
C. 3, 6, 12, 24, 48
D. 2, 5, 8, 11, 14
答案:A
2. 观察下列数列,找出缺失的数字。

2, 4, 8, 16, ?
A. 32
B. 24
C. 18
D. 20
答案:A
二、填空题
3. 完成下列数列:1, 2, 4, 8, _, _, 128。

答案:16, 32
4. 找出下列数列的规律,并填写缺失的数字:3, 7, 15, 31, _, _。

答案:63, 127
三、解答题
5. 一个数列的前几项是:2, 5, 8, 11, 14, ... 请找出数列的第10
项。

答案:第10项是23。

6. 观察下列数列,找出规律并写出下一个数字:1, 4, 9, 16, 25, 36, _。

答案:49
四、应用题
7. 一个等差数列的前三项分别是2, 5, 8,求这个数列的第10项。

答案:第10项是23。

8. 一个等比数列的前三项分别是3, 6, 12,求这个数列的第5项。

答案:第5项是48。

五、思考题
9. 一个数列的前几项是:1, 2, 4, 7, 11, ... 请找出数列的第100项。

答案:第100项是2584。

10. 一个数列的前几项是:1, 1, 2, 3, 5, 8, 13, ... 请找出数列的第10项。

答案:第10项是55。

初中数学找规律专项练习题(有答案)

初中数学找规律专项练习题(有答案)

2 2 2 21、观察规律:1=1 ; 1+3=2; 1+3+5=3 ; 1+3+5+7=4 ;,,则2+6+10+14+, +2014 的值是__________________2、用四舍五入法对31500取近似数,并精确到千位,用科学计数法可表示为_____________________________3、观察下面的一列数:0,- 1, 2,- 3 , 4,- 5, 6,请你找出其中排列的规律,并按此规律填空.(1 )第10 个数是__________________________ ,第21个数是 ______________________ .(2)- 40是第 _个数,26是第 ____________ 个数.1 3 _5 _94、一组按规律排列的数:’-,,'■,!■,请你推断第9个数是100 101(-2 ) + (-2 )=6、若@ 寸 + 0 + 1)'二0 ,则严 + 严= ________________________ .7、大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成 ___________ 个。

2 4 _16 32 648、猜数字游戏中,小明写岀如下一组数:■,,丨,丨’1, !■,,小亮猜想岀第六个数字是,,根据此规律,第n个数是_已知疔—1、则___________________9、10、若(盘-2严"与丨b+5|的值互为相反数,则= _______11、在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等,而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:请将二进位制10101010(二)写成十进位制数为 _______________________ .12、为求1 I _ _ ■ L 111值,可令S=1 丨 _ 」_ ■ L 111,贝0 2S= _•二丨 _ - ■ _ 1 1,因此O20ll 12S-S = - 1 ,所以- - + 二‘二—1。

初一数学找规律题及答案

初一数学找规律题及答案

归纳—猜想——找规律具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢?23581217____3、请填出下面横线上的数字。

112358____214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字36101521___第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为_________个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n =? 观察下面三个特殊的等式将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯ 读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221⑵()()=++++⨯⨯+⨯⨯21432321n n n⑶()()=++++⨯⨯+⨯⨯21432321n n n4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ 参考答案:一、1、(1)1004的平方(2)n+1的平方2、2330。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学找规律题(有答案)————————————————————————————————作者:————————————————————————————————日期:初中数学找规律题(有答案)“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b 为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例如,观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是 10021- ,第n 个数是 n 12-。

解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。

我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。

序列号: 1,2,3, 4, 5,……。

容易发现,已知数的每一项,都等于它的序列号的平方减1。

因此,第n 项是2n -1,第100项是2100—1(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n 、3n 有关。

例如:1,9,25,49,(81),(121),的第n 项为( 2)12(-n ),1,2,3,4,5.。

,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。

(三)看例题:A : 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18答案与3有关且是n 的3次幂,即:n 3+1B :2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:n 2(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。

再在找出的规律上加上第一位数,恢复到原来。

例:2、5、10、17、26……,同时减去2后得到新数列: 0、3、8、15、24……, 序列号:1、2、3、4、5,从顺序号中可以看出当n=1时,得1*1-1得0,当n=2时,2*2-1得3,3*3-1=8,以此类推,得到第n 个数为12-n 。

再看原数列是同时减2得到的新数列,则在12-n 的基础上加2,得到原数列第n 项12+n(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。

例 : 4,16,36,64,?,144,196,… ?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方,得到新数列第n 项即n 2,原数列是同除以4得到的新数列,所以求出新数列n 的公式后再乘以4即,4 n 2,则求出第一百个数为4*1002=40000(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。

当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。

(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。

三、基本步骤1、 先看增幅是否相等,如相等,用基本方法(一)解题。

2、 如不相等,综合运用技巧(一)、(二)、(三)找规律3、 如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、 最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······ 2,5,10,17,26,····· 0,6,16,30,48······(1)第一组有什么规律?答:从前面的分析可以看出是位置数的平方减一。

(2)第二、三组分别跟第一组有什么关系?答:第一组是位置数平方减一,那么第二组每项对应减去第一组每项,从中可以看出都等于2,说明第二组的每项都比第一组的每项多2,则第二组第n 项是:位置数平方减1加2,得位置数平方加1即12+n 。

第三组可以看出正好是第一组每项数的2倍,则第三组第n 项是:()122-⨯n(3)取每组的第7个数,求这三个数的和?答:用上述三组数的第n 项公式可以求出,第一组第七个数是7的平方减一得48,第二组第七个数是7的平方加一得50,第三组第七个数是2乘以括号7的平方减一得96,48+50+96=1942、观察下面两行数2,4,8,16,32,64, ...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和。

(要求写出最后的计算结果和详细解题过程。

)解:第一组可以看出是2n ,第二组可以看出是第一组的每项都加3,即2n +3, 则第一组第十个数是210=1024,第二组第十个数是210+3得1027,两项相加得2051。

3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002个中有几个是黑的?解:从数列中可以看出规律即:1,1,1,2,1,3,1,4,1,5,…….,每二项中后项减前项为0,1,2,3,4,5……,正好是等差数列,并且数列中偶项位置全部为黑色珠子,因此得出2002除以2得1001,即前2002个中有1001个是黑色的。

4、2213-=8 2235-=16 2257-=24 ……用含有N 的代数式表示规律 解:被减数是不包含1的奇数的平方,减数是包括1的奇数的平方,差是8的倍数,奇数项第n 个项为2n-1,而被减数正是比减数多2,则被减数为2n-1+2,得2n+1,则用含有n 的代数式表示为:()()221212--+n n =8n 。

写出两个连续自然数的平方差为888的等式解:通过上述代数式得出,平方差为888即8n=8X111,得出n=111,代入公式:(222+1)2-(222-1)2=888五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差六、数字推理基本类型按数字之间的关系,可将数字推理题分为以下几种类型:1.和差关系。

又分为等差、移动求和或差两种。

(1)等差关系。

12,20,30,42,( 56 )127,112,97,82,( 67 )3,4,7,12,( 19 ),28(2)移动求和或差。

从第三项起,每一项都是前两项之和或差。

1,2,3,5,( 8 ),13A.9B.11C.8D.7选C。

1 +2=3,2+ 3=5,3+ 5=8,5+ 8=130,1,1,2,4,7,13,( 24)A.22B.23C.24D.25选C。

注意此题为前三项之和等于下一项。

一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。

5,3,2,1,1,(0 )A.-3B.-2C.0D.2选C。

前两项相减得到第三项。

2.乘除关系。

又分为等比、移动求积或商两种(1)等比,从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。

8,12,18,27,(40.5)后项与前项之比为1.5。

6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,3(2)移动求积或商关系。

从第三项起,每一项都是前两项之积或商。

2,5,10,50,(500)100,50,2,25,(2/25)3,4,6,12,36,(216) 从第三项起,第三项为前两项之积除以21,7,8,57,(457)第三项为前两项之积加 13.平方关系1,4,9,16,25,(36),49 为位置数的平方。

66,83,102,123,(146) ,看数很大,其实是不难的,66可以看作64+2,83可以看作81+2,102可以看作100+2,123可以看作121+2,以此类推,可以看出是8,9,10,11,12的平方加24.立方关系1,8,27,(81),125 位置数的立方。

3,10,29,(83),127 位置数的立方加 20,1,2,9,(730) 后项为前项的立方加15.分数数列。

关键是把分子和分母看作两个不同的数列,有的还需进行简单的通分,则可得出答案21 34 49 516 625 (736)分子为等比即位置数的平方,分母为等差数列,则第n 项代数式为:21+n n 2/3 1/2 2/5 1/3 (1/4) 将1/2化为2/4,1/3化为2/6,可得到如下数列:2/3, 2/4, 2/5, 2/6, 2/7, 2/8 …….可知下一个为2/9,如果求第n 项代数式即:22+n ,分解后得:21+-n n 6.、质数数列2,3,5,(7),11 质数数列4,6,10,14,22,(26) 每项除以2得到质数数列20,22,25,30,37,(48) 后项与前项相减得质数数列。

7.、双重数列。

又分为三种:(1)每两项为一组,如1,3,3,9,5,15,7,(21) 第一与第二,第三与第四等每两项后项与前项之比为32,5,7,10,9,12,10,(13)每两项中后项减前项之差为31/7,14,1/21,42,1/36,72,1/52,(104 )两项为一组,每组的后项等于前项倒数*2(2)两个数列相隔,其中一个数列可能无任何规律,但只要把握有规律变化的数列就可得出结果。

相关文档
最新文档