判别式法求函数值域
求函数值域的十种常用方法

•
7、最具挑战性的挑战莫过于提升自我 。。20 20年12 月下午 3时12 分20.12. 1215:1 2December 12, 2020
•
8、业余生活要有意义,不要越轨。20 20年12 月12日 星期六 3时12 分31秒1 5:12:31 12 December 2020
•
9、一个人即使已登上顶峰,也仍要自 强不息 。下午 3时12 分31秒 下午3时 12分15 :12:312 0.12.12
logo
求函数值域的十 种常用方法
一:定义域法
二:函数单调性法
三:反函数法
四:换元法
五:分离常数法
六:判别式法
七:三角换元法
九:数形结合法
十导数法:
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1220. 12.12Sa turday, Dec者明。胜人者有力 ,自胜 者强。 20.12.1 220.12. 1215:1 2:3115: 12:31D ecembe r 12, 2020
•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月12 日星期 六下午 3时12 分31秒1 5:12:31 20.12.1 2
•
2、阅读一切好书如同和过去最杰出的 人谈话 。15:1 2:3115: 12:3115 :1212/ 12/2020 3:12:31 PM
•
3、越是没有本领的就越加自命不凡。 20.12.1 215:12: 3115:1 2Dec-20 12-Dec-20
•
4、越是无能的人,越喜欢挑剔别人的 错儿。 15:12:3 115:12: 3115:1 2Saturday, December 12, 2020
函数值域求法(换元法,判别式法和万能K法)

四类换元法1、一般换元;2、双换元;2、三角换元; 4、整体换元。
一、一般换元例1、求函数1--=x x y 的值域。
二、三角换元两个重要公式 1cos sin 22=+x xx x 22cos 1tan 1=+(常出现在竞赛中) 例2、求函数22x x y -+=例3、(2011高中联赛)函数11)(2-+=x x x f 的值域为_____________三、双换元例4、求函数31++-=x x y 的值域例5、求函数x x y -+-=363的值域。
四、整体换元例6、求函数5)4)(3)(2)(1(+++++=x x x x y 的值域。
判别式法/万能K 法原理:方程有解:一、分式型的值域形如fex dx c bx ax y ++++=22(d a ,不同时为零)的二次分式函数,可转化成如0)()()(2=++y c x y B x y A 的形式,视为关于x 的一元二次方程,对y 使用判别式0≥∆,可得y 的取值范围。
例1、求函数12222++-=x x x y 的值域。
例2、求函数122+++=x x xx y 的值域例3、求函数xx x x y ++-=2222在)2,2(-上的值域/最大、最小值。
例4、若函数18log )(223+++=x n x mx x f 的定义域为R ,值域为]2,0[,求n m ,的值。
二、可化为分式型的值域 形如2222fyexy dx cy bxy ax M ++++=(d a ,不同时为零)的式子,分子分母同除2y 齐次化后得到f yx e y x d c y x b y x a M ++++=)()()()(22,令t y x =,则化为一元的二次型分式f et dt c bt at M ++++=22。
例5、设+∈R y x ,,则代数式y x y y x x 222+++的最大值为______________.例6、若对任意非零实数y x ,不等式xy x y x a 4)5(222+≤+恒成立,则a 的最大值为___________(两种方法)例7、若R y x ∈,,求561045),(22++-+-=y x y xy x y x f 最小值。
重难点2-1-函数值域的常见求法8大题型(原卷版)

重难2-1 函数值域的求法8大题型函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。
在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。
一、求函数值域的常见方法1、直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2、逐层法:求12(())n f f f x 型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3、配方法:配方法是二次型函数值域的基本方法,即形如“(0)x y ax bx c a =++≠”或“2[()]()(0)y a f x bf x c a =++≠”的函数均可用配方法求值域;4、换元法:利用换元法将函数转化为易求值域的函数,常用的换元有 (1)y cx d=+或cx d y ax b +=+的结构,可用cx d t +=”换元;(2)y ax b cx d =+±+,,,a b c d 均为常数,0,0a c ≠≠),可用“cx d t +=”换元;(3)22y bx a x =-型的函数,可用“cos ([0,])x a θθπ=∈”或“sin ([,])22x a ππθθ=∈-”换元;5、分离常数法:形如(0)ax by ac cx d+=≠+的函数,应用分离常数法求值域,即2()ax b a bc ady d cx d c c x c+-==+++,然后求值域;6、基本不等式法:形如(0)by ax ab x =+>的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a b +≥求函数的值域(或最值)时,应满足三个条件:①0,0a b >>;②a b+(或ab )为定值;③取等号的条件为a b =,三个条件缺一不可;7、函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)形如0)y ax b ac =+<的函数可用函数单调性求值域;(2)形如by ax x=+的函数,当0ab >时,若利用基本不等式等号不能成立时,可考虑利用对勾函数求解; 当0ab <时,by ax x=+在(,0)-∞和(0,)+∞上为单调函数,可直接利用单调性求解。
例析用判别式法求分式函数值域之困惑

百花园地新课程NEW CURRICULUM判别式法是求形如y =ax 2+bx+c dx 2+ex+f(a 2+d 2≠0)的分式型二次函数值域的常用方法。
但是很多学生在学习和运用判别式法的过程中,发现运用判别式法求值域时,有时候是对的,有时候又是错的,其中的原因究竟为何并不清楚,后来干脆不用判别式法而改用其他方法。
其实只要你掌握了判别式法的理论依据及易错点,一般来说,求形如y =ax 2+bx+c dx 2+ex+f(a 2+d 2≠0)的分式型二次函数值域还是比较方便的。
下面就本人对判别式法的一些理解,来分析一下为什么用判别式法有时是对的,有时候又是错的。
首先,让我们通过一道例题来看一下,判别式法求形如y =ax 2+bx+c dx 2+ex+f (a 2+d 2≠0)的分式型二次函数值域的一般步骤及其理论依据。
例1:求函数y =x 2+x -1x 2+x -6的值域。
解:由y =x 2+x -1x 2+x -6可得(y -1)x 2+(y -1)x -6y +1=0★10当y -1=0即y =1时,★式可化为-5=0显然不成立。
20当y -1≠0即y ≠1时,★式为关于x 的一元二次方程Δ=(y -1)2-4(y -1)(1-6y )≥0得y ≥1或y ≤15由10、20可得y ∈(-∞,15)∪(1,+∞)即所求函数的值域为y ∈(-∞,15)∪(1,+∞)。
例2:求函数y =2x 2-x +1x 2+2x -3的值域。
解:由y =2x 2-x +1x 2+2x -3可得(y -2)x 2+(2y +1)x -3y -1=0★10当y -2=0即y =2时,★式可化为5x -7=0得x =75因为函数y =2x 2-x +1x 2+2x -3的定义域为(-∞,-3)∪(-3,1)(1,+∞)而x =75∈(-∞,-3)∪(-3,1)(1,+∞)所以,y =2符合题意。
20当y -2≠0即y ≠2时,★式为关于x 的一元二次方程Δ=(2y +1)2+4(y -2)(3y+1)≥0得y ≥2+11√4或y ≤2-11√4由10、20可得y ≥2+11√4或y ≤2-11√4即所求函数的值域为(-∞,2-11√4]∪[2+11√4,+∞)注:由上述例1和例2可以看出,用判别式法求值域大致可分为四步:1.将分式形如y =ax 2+bx +c dx 2+ex+f (a 2+d 2≠0)的分式型二次函数转化为关于x 的整式方程(dy-a )x 2+(ye-b )x +yf -c =0★。
抽象函数求定义域 判别式法求值域万能模板

一.抽象函数的定义域类型及求法 1、已知 f ( x) 的定义域,求 f g ( x) 的定义域 其解法为:若 f ( x) 的定义域为 a x b ,则 f g ( x) 中 a g ( x) b 从中解得 x 得 取值范围即为 f g ( x) 的定义域。 例 10:已知函数 f ( x) 的定义域为 - 1,5,求 f ( x 5) 的定义域
例 20:求函数 y
x 1 的值域 2x x 1
2
2 若函数的定义域不是实数域 R ,但是分子与分母没有公因式(即不同时为 0),
直接应用 0 例 21:求函数 y
x 1 的值域 x x6
2
3 若函数的定义域不是实数域 R ,且分子与分母有公因式 x x0 ,则先约分,最
2、已知 f g ( x) 的定义域,求 f ( x) 的定义域 其解法为:若 f g ( x) 的定义域为 m x n ,则由 m x n 确定 g ( x) 的值域即为
f ( x) 的定义域。
例 11:已知函数 f ( x 2 2 x 2) 定义域为 0, 3 ,求函数 f ( x) 的定义域
3、已知 f g ( x) 的定义域,求 f h( x) 的定义域 其解法是:可先由 f g ( x) 定义域求得 f ( x) 的定义域,再由 f ( x) 的定义域求得
f h( x) 的定义域。 1 例 12:若函数 f ( x 1) 的定义域为 - ,2 ,求 f ( x 2 ) 的定义域 2
变式训练:求下列函[1,2], 求函数y f ( x 2 2)的定义域; (2) 已知函数 y f (cos x)的定义域为(0, ),求函数 y f ( x)的定义域; 2 (3) 已知函数 y f (2 x 1)的定义域为(0,1], 求函数y f (lg x)的定义域 .
用判别式法求函数值域的方法

用判别式法求函数值域的方法例1求函数y=1223222++--x x x x 的值域 解:∵2x 2+2x+1=2(x+21)2+21>0 ∴函数的定义域为R,将原函数等价变形为(2y-1)x 2+(2y+2)x+y+3=0,我认为在此后应加上:关于..x .的方程...(2..y .-.1.).x .2.+(2y+2)x+y+3=0..............有实数解....例2求函数y=63422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3∴函数的定义域为{x|x ∈R,x ≠2,x ≠-3}由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0我认为在此之后应加上:关于..x .的方程...(.y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少有一.........根不为...2.且不为...-.3.例1及例2也需要作此修正,本人认为,这些文字说明对于整个题目的解题过程起着统帅作用....,同时也暴露出作者的思维过程,不能略去。
思考之二:对于形如y=fex dx c bx ax ++++22中分子分母都有公因式的处理方法 中处理方法就是要验证△=0时对应的y 值,该文中就是这样的说明的:由于函数变形为方程时不就是等价转化,故在考虑判别式的同时,还需对△=0进行检验,若对应的自变量在函数的定义域内,则y 值在值域内,否则舍去。
但在文2中例2中第2小题并没有对△=0进行检验,得出正确结果,这就使读者很困惑,究竟什么情况要检验,什么情况不进行检验呢?我认为有关形如y=fex dx c bx ax ++++22中分子分母都有公因式的处理方法第一种可以按例2中约去公因式的方法,这已经不就是判别式法的范围之内,不在讨论之列,第二种处理方法仍然用判别式法,只不过在例1的解法基础上稍加改动即可,例3求函数求函数y=63422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3∴函数的定义域为{x|x ∈R,x ≠2,x ≠-3}由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0我认为在此之后应加上:关于..x .的方程...(.y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少有一.........根不为...2.且不为...-.3.(1)当y=1时,代入方程求得x= -3,而x ≠-3,因此y ≠1(2)当y ≠1时关于x 的方程(y-1)x 2+(y-4)x-6y-3=0为一元二次方程,可以验证x=-3为该方程的根,x=2不就是该方程的根,因此只有两个根都为-3时不满足题意,其余都符合题意,因此只需△≠0,即可得出即可得出y ≠52 由上可知:原函数的值域为{y|y ≠1, y ≠52} 上述作题步骤也适用于分子分母没有公因式的情况,例4 求函数y=32122--+-x x x x 的值域 解:由已知得x ≠-1且x ≠3,将原函数化为(y-1)x 2-(2y-1)x-3y-1=0由题意得关于x 的方程(y-1)x 2-(2y-1)x-3y-1=0有解且至少有一解不为3与-1(1)当y=1时,x= -4,∴y 可以取1(2)当y ≠1时,关于x 的方程(y-1)x 2-(2y-1)x-3y-1=0为一元二次方程,显然可以验证x=3与x= -1不就是该方程的解因此只需△≥0即可,以下过程略思考之三:该方法的适用范围不仅适用于分式形式,对于二次函数....同样适用, 如:求函数y=x 2-3x+5的值域解:由已知得关于x 的方程x 2-3x+5-y=0有实数解,因此△≥0即(-3)2-4(5-y)≥0∴y ≥411 ∴所求函数的值域为{y| y ≥411} 练习: 求函数322122+-+-=x x x x y 的值域。
高中数学:求函数值域的方法十三种(二)

高中数学:求函数值域的方法十三种(二)五、判别式法:把函数转化成关于x 的二次方程(,)0F x y =;通过方程有实数根,判别式0∆≥,从而求得原函数的值域,形如21112222a xb xc y a x b x c ++=++(1a 、2a 不同时为零)的函数的值域,常用此方法求解。
(解析式中含有分式和根式。
)【例1】求函数2211x x y x ++=+的值域。
【解析】原函数化为关于x 的一元二次方程,由于x 取一切实数,故有(1)当时,解得:(2)当y=1时,,而故函数的值域为【例2】求函数y x =+的值域。
【解析】两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y 的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
解法二:2(2)1(x 1)y x x x x =+-=+--]2,2[sin 1ππθθ-∈=-x )4sin(21cos sin 1πθθθ++=++=y 4344ππθπ≤+≤-14sin(22≤+≤-πθ原函数的值域为:【例3】已知函数222()1x ax b f x x ++=+的值域为[1,3],求,a b 的值。
【解析】2221x ax by x ++=+22(2)04(y 2)(y b)0y x ax y b a ⇒--+-=⇒∆=---≥2244(2b)y 8b a 0y -++-≤。
由于222()1x ax bf x x ++=+的值域为[1,3],故上式不等式的解集为{y|1≤y≤3}1221221328234y y b a b ab y y +=+=+⎧=±⎧⎪⇒⇒⎨⎨-===⎩⎪⎩【例4】求函数2212+++=x x x y 的值域。
用判别式法求函数值域的方法

用判别式法求函数值域的方法例1求函数y=1223222++--x x x x 的值域 解:∵2x 2+2x+1=2(x+21)2+21>0 ∴函数的定义域为R ,将原函数等价变形为(2y-1)x 2+(2y+2)x+y+3=0,我认为在此后应加上:关于..x .的方程(....2.y .-.1.).x .2.+(2y+2)x+y+3=0..............有实数解....例2求函数y=63422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3∴函数的定义域为{x|x ∈R ,x ≠2,x ≠-3}由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0我认为在此之后应加上:关于..x .的方程(....y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少.......有一根不为.....2.且不为...-.3.例1及例2也需要作此修正,本人认为,这些文字说明对于整个题目的解题过程起着统帅作用....,同时也暴露出作者的思维过程,不能略去。
思考之二:对于形如y=fex dx c bx ax ++++22中分子分母都有公因式的处理方法 中处理方法是要验证△=0时对应的y 值,该文中是这样的说明的:由于函数变形为方程时不是等价转化,故在考虑判别式的同时,还需对△=0进行检验,若对应的自变量在函数的定义域内,则y 值在值域内,否则舍去。
但在文2中例2中第2小题并没有对△=0进行检验,得出正确结果,这就使读者很困惑,究竟什么情况要检验,什么情况不进行检验呢?我认为有关形如y=fex dx c bx ax ++++22中分子分母都有公因式的处理方法第一种可以按例2中约去公因式的方法,这已经不是判别式法的范围之内,不在讨论之列,第二种处理方法仍然用判别式法,只不过在例1的解法基础上稍加改动即可,例3 求函数求函数y=63422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3∴函数的定义域为{x|x ∈R ,x ≠2,x ≠-3}由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0我认为在此之后应加上:关于..x .的方程(....y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少.......有一根不为.....2.且不为...-.3.(1)当y=1时,代入方程求得x= -3,而x ≠-3,因此y ≠1(2)当y ≠1时关于x 的方程(y-1)x 2+(y-4)x-6y-3=0为一元二次方程,可以验证x=-3为该方程的根,x=2不是该方程的根,因此只有两个根都为-3时不满足题意,其余都符合题意,因此只需△≠0,即可得出即可得出y ≠52 由上可知:原函数的值域为{y|y ≠1, y ≠52} 上述作题步骤也适用于分子分母没有公因式的情况,例4 求函数y=32122--+-x x x x 的值域 解:由已知得x ≠-1且x ≠3,将原函数化为(y-1)x 2-(2y-1)x-3y-1=0由题意得关于x 的方程(y-1)x 2-(2y-1)x-3y-1=0有解且至少有一解不为3和-1(1)当y=1时,x= -4,∴y 可以取1(2)当y ≠1时,关于x 的方程(y-1)x 2-(2y-1)x-3y-1=0为一元二次方程, 显然可以验证x=3和x= -1不是该方程的解因此只需△≥0即可,以下过程略思考之三:该方法的适用范围不仅适用于分式形式,对于二次函数....同样适用, 如:求函数y=x 2-3x+5的值域解:由已知得关于x 的方程x 2-3x+5-y=0有实数解,因此△≥0即(-3)2-4(5-y )≥0∴y ≥411 ∴所求函数的值域为{y| y ≥411} 练习: 求函数322122+-+-=x x x x y 的值域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判别式法求函数值域 [6]
把函数转化成关于x 的二次方程(,)0F x y =,通过方程有实根,判别式0∆≥,从而求得原函数的值域,这种方法叫做判别法。
形如
2111122222
(,0)a x b x c y a a a x b x c ++=++不同时为的函数常用此法。
此类问题分为两大类:一类为分子和分母没有公因式一般可使用判别式0∆≥解得,但要注意判别式∆中二次项系数为零和不为零两种情况;另一类为分子和分母中有公因式,约去因式回到上述方法解决。
但值得注意的是函数的定义域问题。
例1、求函数22y=3
x x +的值域。
分析:函数22y=3x x +形如2111122222
(,0)a x b x c y a a a x b x c ++=++不同时为,且定义域为全休实数,因此可用判别式法求解。
解:由22y=3
x x + 得 2320yx y x +-= 当y = 0 时, x = 0
当0y ≠时,由0∆≥ 得24120y -≥
∴33
y -≤≤
∴函数22y=3x x +的值域为|33y y ⎧⎪-≤≤⎨⎪⎪⎩
⎭。
例2、求函数22(1)(2)(1)
x y x x +=--的值域。
分析:察看函数22(1)(2)(1)x y x x +=
--可知,分子和分母存在公因式1x +,因为分母不为0,则有10x +≠,因此可以分子和分母同时约去公因式1x +。
从而原函数就等价为2(2)(1)
y x x =--,再用判别式法去解。
解:由22(1)(2)(1)x y x x +=--=2(2)(1)x x --=2232
x x -+ 得
23220yx yx y -+-= ∵当0y =时,-2 = 0 ,不成立 当0y ≠时,由0∆≥,得2(3)4(22)y y y ---=280y y +≥ ∴8y ≤-或0y ≥ 由于0y ≠ ∴函数22(1)(2)(1)x y x x +=--的值域为{}|80y y y ≤->或。