数据结构实验8实验报告
数据结构课程设计实验报告完整版

数据结构课程设计实验报告完整版【正文】一、实验目的本实验主要目的是通过实践,掌握数据结构的基本概念、常见数据结构的实现方式以及在实际应用中的应用场景和效果。
二、实验背景数据结构是计算机科学与技术领域中的一个重要概念,是研究数据的组织方式、存储方式、访问方式以及操作等方面的方法论。
在计算机科学领域,数据结构是实现算法和解决问题的基础,因此对数据结构的理解和应用具有重要意义。
三、实验内容本次数据结构课程设计实验主要分为以下几个部分:1. 实验环境的准备:包括选择合适的开发平台、安装必要的软件和工具。
2. 实验数据的收集和处理:通过合适的方式收集实验所需的数据,并对数据进行处理和整理。
3. 数据结构的选择和实现:根据实验需求,选择合适的数据结构,并进行相应的数据结构实现。
4. 数据结构的测试和优化:对所实现的数据结构进行测试,包括性能测试和功能测试,并根据测试结果对数据结构进行优化和改进。
5. 实验报告的撰写:根据实验过程和结果,撰写完整的实验报告,包括实验目的、实验背景、实验内容、实验结果和结论等。
四、实验过程1. 实验环境的准备本实验选择了Visual Studio作为开发平台,安装了相应版本的Visual Studio,并根据官方指引进行了相应的配置和设置。
2. 实验数据的收集和处理本实验选取了一份包含学生信息的数据集,包括学生姓名、学号、性别、年龄等信息。
通过编写Python脚本,成功提取了所需信息,并对数据进行了清洗和整理。
3. 数据结构的选择和实现根据实验需求,我们选择了链表作为数据结构的实现方式。
链表是一种常见的动态数据结构,能够高效地插入和删除元素,适用于频繁插入和删除的场景。
在实现链表时,我们定义了一个节点结构,包含数据域和指针域。
通过指针的方式将节点连接起来,形成一个链式结构。
同时,我们还实现了相关的操作函数,包括插入、删除、查找等操作。
4. 数据结构的测试和优化在完成链表的实现后,我们对其进行了性能测试和功能测试。
数据结构实验报告实验总结

数据结构实验报告实验总结本次数据结构实验主要涉及线性表、栈和队列的基本操作以及链表的应用。
通过实验,我对这些数据结构的特点、操作和应用有了更深入的了解。
下面对每一部分实验进行总结。
实验一:线性表的基本操作线性表是一种常见的数据结构,本实验要求实现线性表的基本操作,包括插入、删除、查找、遍历等。
在实验过程中,我对线性表的结构和实现方式有了更清晰的认识,掌握了用数组和链表两种方式实现线性表的方法。
实验二:栈的应用栈是一种后进先出(LIFO)的数据结构,本实验要求利用栈实现简单的括号匹配和后缀表达式计算。
通过实验,我了解到栈可以方便地实现对于括号的匹配和后缀表达式的计算,有效地解决了对应的问题。
实验三:队列的应用队列是一种先进先出(FIFO)的数据结构,本实验要求利用队列实现银行排队和迷宫求解。
通过实验,我对队列的应用有了更加深入的了解,了解到队列可以解决需要按顺序处理的问题,如排队和迷宫求解等。
实验四:链表的应用链表是一种常用的数据结构,本实验要求利用链表实现学生信息管理系统。
通过实验,我对链表的应用有了更深入的了解,了解到链表可以方便地实现对于数据的插入、删除和修改等操作,并且可以动态地调整链表的长度,适应不同的需求。
通过本次实验,我掌握了线性表、栈、队列和链表的基本操作,并了解了它们的特点和应用方式。
同时,通过实际编程的过程,我对于数据结构的实现方式和效果有了更直观的认识,也锻炼了自己的编程能力和解决问题的能力。
在实验过程中,我遇到了一些问题,如程序逻辑错误和内存泄漏等,但通过调试和修改,最终成功解决了这些问题,对自己的能力也有了更多的信心。
通过本次实验,我深刻体会到了理论与实践的结合的重要性,也对于数据结构这门课程有了更加深入的理解。
总之,本次数据结构实验给予了我很多有益的启发和收获,对于数据结构的概念、特点和应用有了更深入的理解。
在以后的学习中,我会继续加强对数据结构的学习和研究,不断提高自己的编程能力和解决问题的能力。
数据结构图的实验报告

数据结构图的实验报告数据结构图的实验报告引言:数据结构图是计算机科学中重要的概念之一。
它是一种用图形表示数据元素之间关系的数据结构,广泛应用于算法设计、程序开发和系统优化等领域。
本实验报告旨在介绍数据结构图的基本原理、实验过程和结果分析。
一、实验目的本次实验的主要目的是掌握数据结构图的基本概念和操作方法,以及通过实验验证其在解决实际问题中的有效性。
具体而言,我们将通过构建一个社交网络关系图,实现对用户关系的管理和分析。
二、实验方法1. 确定数据结构在本次实验中,我们选择了无向图作为数据结构图的基础。
无向图由顶点集和边集组成,每条边连接两个顶点,且没有方向性。
2. 数据输入为了模拟真实的社交网络,我们首先需要输入一组用户的基本信息,如姓名、年龄、性别等。
然后,根据用户之间的关系建立边,表示用户之间的交流和联系。
3. 数据操作基于构建好的数据结构图,我们可以进行多种操作,如添加用户、删除用户、查询用户关系等。
这些操作将通过图的遍历、搜索和排序等算法实现。
三、实验过程1. 数据输入我们首先创建一个空的无向图,并通过用户输入的方式逐步添加用户和用户关系。
例如,我们可以输入用户A和用户B的姓名、年龄和性别,并建立一条边连接这两个用户。
2. 数据操作在构建好数据结构图后,我们可以进行多种操作。
例如,我们可以通过深度优先搜索算法遍历整个图,查找与某个用户具有特定关系的用户。
我们也可以通过广度优先搜索算法计算某个用户的社交网络影响力,即与该用户直接或间接相连的其他用户数量。
3. 结果分析通过实验,我们可以观察到数据结构图在管理和分析用户关系方面的优势。
它能够快速地找到用户之间的关系,帮助我们了解用户的社交网络结构和影响力。
同时,数据结构图也为我们提供了一种可视化的方式来展示用户之间的关系,使得分析更加直观和易于理解。
四、实验结果通过实验,我们成功构建了一个社交网络关系图,并实现了多种数据操作。
我们可以根据用户的姓名、年龄和性别等信息进行查询,也可以根据用户之间的关系进行遍历和排序。
数据结构实验报告

《数据结构》实验报告姓名:学号:班级:学院:实验一单链表实验(一)实验目的1.理解线性表的链式存储结构。
2.熟练掌握动态链表结构及有关算法的设计。
3.根据具体问题的需要,设计出合理的表示数据的链表结构,并设计相关算法。
(二)实验任务编写算法实现下列问题的求解1.求链表中第i个结点的指针(函数),若不存在,则返回NULL。
2.在第i个结点前插入值为x的结点。
3.删除链表中第i个元素结点。
4.在一个递增有序的链表L中插入一个值为x的元素,并保持其递增有序特性。
5.将单链表L中的奇数项和偶数项结点分解开,并分别连成一个带头结点的单链表,然后再将这两个新链表同时输出在屏幕上,并保留原链表的显示结果,以便对照求解结果。
6.求两个递增有序链表L1和L2中的公共元素,并以同样方式连接成链表L3。
(三)主要仪器设备PC机,Windows操作平台,Visual C++(四)实验分析顺序表操作:定义一个顺序表类,该类包括顺序表的存储空间、存储容量和长度,以及构造、插入、删除、遍历等操作的方法(五)源程序头文件文件名:linklist.h#include<iostream>using namespace std;struct node{int data;node *next;};class list{public:list();int length()const{return count; //求链表长度}~list();void create(); //链表构建,以0为结束标志void output(); //链表输出int get_element(const int i)const; //按序号取元素node *locate(const int x) const; //搜索对应元素int insert(const int i,const int x); //插入对应元素int delete_element(const int i); //删除对应元素node *get_head(){return head; //读取头指针}void insert2(const int x);friend void SplitList(list L1, list&L2, list &L3);friend void get_public(list L1, list L2, list &L3);private:int count;node *head;};list::list(){head=new node;head->next=NULL;count=0;}void list::create() //链表构建,以0为结束标志{int x;cout<<"请输入当前链表,以0为结束符。
数据结构实验报告八皇后问题

2007级数据结构实验报告实验名称:实验二——栈和队列学生姓名:班级:班内序号:学号:日期:2008年11月18日1.实验要求通过选择下面五个题目之一进行实现,掌握如下内容:➢进一步掌握指针、模板类、异常处理的使用➢掌握栈的操作的实现方法➢掌握队列的操作的实现方法➢学习使用栈解决实际问题的能力➢学习使用队列解决实际问题的能力利用栈结构实现八皇后问题。
八皇后问题19世纪著名的数学家高斯于1850年提出的。
他的问题是:在8*8的棋盘上放置8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列、同一斜线上。
请设计算法打印所有可能的摆放方法。
提示:1、可以使用递归或非递归两种方法实现2、实现一个关键算法:判断任意两个皇后是否在同一行、同一列和同一斜线上2. 程序分析2.1 存储结构采用栈存储,其结构图如下:2.2 关键算法分析函数原型: bool check(int i);2.2.1.1.1自然语言:检测至第i行所摆放的第i个皇后是否和之前的i-1个皇后发生冲突。
如是,则返回0;反之,则当前布局合法,返回1。
判断两个皇后是否相互攻击的准则是:若两个皇后处于同一行,或处于同一列,或处于同一斜线,就能相互攻击。
基于如上准则,函数check( )的工作原理是:考虑到数组的每个元素分别代表不同行的皇后,即每行只放置了一个皇后,所以不必考虑“同处一行相互攻击”的情形;对于同处一列,则语句:if(queen[s]==queen[t])就能判断出不同行的两个棋子是否同处一列;对于处于同一斜线的这种情况,首先,我们看出国际象棋的棋盘是一个八行八列的正方形。
因此我们可将棋盘想象为数学上的笛卡尔平面坐标系,两颗棋子想象为平面上的两个点,就很容易发现,为保证两颗棋子不处于同一斜线,只要过这两个点的直线斜率不为1或-1,就能达到要求。
由此可使用下列语句:if( abs(t-s) == abs(queen[s]-queen[t]) )其中t和s分别代表不同行的两个皇后,即数组queen[8]里不同下标的两个元素。
数据结构实训实验报告

一、实验背景数据结构是计算机科学中一个重要的基础学科,它研究如何有效地组织和存储数据,并实现对数据的检索、插入、删除等操作。
为了更好地理解数据结构的概念和原理,我们进行了一次数据结构实训实验,通过实际操作来加深对数据结构的认识。
二、实验目的1. 掌握常见数据结构(如线性表、栈、队列、树、图等)的定义、特点及操作方法。
2. 熟练运用数据结构解决实际问题,提高算法设计能力。
3. 培养团队合作精神,提高实验报告撰写能力。
三、实验内容本次实验主要包括以下内容:1. 线性表(1)实现线性表的顺序存储和链式存储。
(2)实现线性表的插入、删除、查找等操作。
2. 栈与队列(1)实现栈的顺序存储和链式存储。
(2)实现栈的入栈、出栈、判断栈空等操作。
(3)实现队列的顺序存储和链式存储。
(4)实现队列的入队、出队、判断队空等操作。
3. 树与图(1)实现二叉树的顺序存储和链式存储。
(2)实现二叉树的遍历、查找、插入、删除等操作。
(3)实现图的邻接矩阵和邻接表存储。
(4)实现图的深度优先遍历和广度优先遍历。
4. 算法设计与应用(1)实现冒泡排序、选择排序、插入排序等基本排序算法。
(2)实现二分查找算法。
(3)设计并实现一个简单的学生成绩管理系统。
四、实验步骤1. 熟悉实验要求,明确实验目的和内容。
2. 编写代码实现实验内容,对每个数据结构进行测试。
3. 对实验结果进行分析,总结实验过程中的问题和经验。
4. 撰写实验报告,包括实验目的、内容、步骤、结果分析等。
五、实验结果与分析1. 线性表(1)顺序存储的线性表实现简单,但插入和删除操作效率较低。
(2)链式存储的线性表插入和删除操作效率较高,但存储空间占用较大。
2. 栈与队列(1)栈和队列的顺序存储和链式存储实现简单,但顺序存储空间利用率较低。
(2)栈和队列的入栈、出队、判断空等操作实现简单,但需要考虑数据结构的边界条件。
3. 树与图(1)二叉树和图的存储结构实现复杂,但能够有效地表示和处理数据。
数据结构实验报告

数据结构实验报告一、实验目的数据结构是计算机科学中重要的基础课程,通过本次实验,旨在深入理解和掌握常见数据结构的基本概念、操作方法以及在实际问题中的应用。
具体目的包括:1、熟练掌握线性表(如顺序表、链表)的基本操作,如插入、删除、查找等。
2、理解栈和队列的特性,并能够实现其基本操作。
3、掌握树(二叉树、二叉搜索树)的遍历算法和基本操作。
4、学会使用图的数据结构,并实现图的遍历和相关算法。
二、实验环境本次实验使用的编程环境为具体编程环境名称,编程语言为具体编程语言名称。
三、实验内容及步骤(一)线性表的实现与操作1、顺序表的实现定义顺序表的数据结构,包括数组和表的长度等。
实现顺序表的初始化、插入、删除和查找操作。
2、链表的实现定义链表的节点结构,包含数据域和指针域。
实现链表的创建、插入、删除和查找操作。
(二)栈和队列的实现1、栈的实现使用数组或链表实现栈的数据结构。
实现栈的入栈、出栈和栈顶元素获取操作。
2、队列的实现采用循环队列的方式实现队列的数据结构。
完成队列的入队、出队和队头队尾元素获取操作。
(三)树的实现与遍历1、二叉树的创建以递归或迭代的方式创建二叉树。
2、二叉树的遍历实现前序遍历、中序遍历和后序遍历算法。
3、二叉搜索树的操作实现二叉搜索树的插入、删除和查找操作。
(四)图的实现与遍历1、图的表示使用邻接矩阵或邻接表来表示图的数据结构。
2、图的遍历实现深度优先遍历和广度优先遍历算法。
四、实验结果与分析(一)线性表1、顺序表插入操作在表尾进行时效率较高,在表头或中间位置插入时需要移动大量元素,时间复杂度较高。
删除操作同理,在表尾删除效率高,在表头或中间删除需要移动元素。
2、链表插入和删除操作只需修改指针,时间复杂度较低,但查找操作需要遍历链表,效率相对较低。
(二)栈和队列1、栈栈的特点是先进后出,适用于函数调用、表达式求值等场景。
入栈和出栈操作的时间复杂度均为 O(1)。
2、队列队列的特点是先进先出,常用于排队、任务调度等场景。
数据结构实验八快速排序实验报告

数据结构实验八快速排序实验报告一、实验目的1.掌握快速排序算法的原理。
2. 掌握在不同情况下快速排序的时间复杂度。
二、实验原理快速排序是一种基于交换的排序方式。
它是由图灵奖得主 Tony Hoare 发明的。
快速排序的原理是:对一个未排序的数组,先找一个轴点,将比轴点小的数放到它的左边,比轴点大的数放到它的右边,再对左右两部分递归地进行快速排序,完成整个数组的排序。
优缺点:快速排序是一种分治思想的算法,因此,在分治思想比较适合的场景中,它具有较高的效率。
它是一个“不稳定”的排序算法,它的工作原理是在大数组中选取一个基准值,然后将数组分成两部分。
具体过程如下:首先,选择一个基准值(pivot),一般是选取数组的中间位置。
然后把数组的所有值,按照大小关系,分成两部分,小于基准值的放左边,大于等于基准值的放右边。
继续对左右两个数组递归进行上述步骤,直到数组只剩一个元素为止。
三、实验步骤1.编写快速排序代码:void quicksort(int *a,int left,int right) {int i,j,t,temp;if(left>right)return;temp=a[left];i=left;j=right;while(i!=j) {// 顺序要先从右往左移while(a[j]>=temp&&i<j)j--;while(a[i]<=temp&&i<j)i++;if(i<j) {t=a[i];a[i]=a[j];a[j]=t;}}a[left]=a[i];a[i]=temp;quicksort(a,left,i-1);quicksort(a,i+1,right);}2.使用 rand() 函数产生整型随机数并量化生成的随机数序列,运用快速排序算法对序列进行排序。
四、实验结果实验结果显示,快速排序能够有效地快速地排序整型序列。
在随机产生的数值序列中,快速排序迅速地将数值排序,明显快于冒泡排序等其他排序算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
暨南大学本科实验报告专用纸课程名称数据结构实验成绩评定实验项目名称习题6.37 6.38 6.39 指导教师孙世良实验项目编号实验8 实验项目类型实验地点实验楼三楼机房学生姓名林炜哲学号2013053005学院电气信息学院系专业软件工程实验时间年月日午~月日午温度℃湿度(一)实验目的熟悉和理解二叉树的结构特性;熟悉二叉树的各种存储结构的特点及适用范围;掌握遍历二叉树的各种操作及其实现方式。
理解二叉树线索化的实质是建立结点与其在相应序列中的前去或后继之间的直接联系,熟练掌握二叉树的线索化的过程以及在中序线索化树上找给定结点的前驱和后继的方法。
(二)实验内容和要求6.37试利用栈的基本操作写出先序遍历的非递归形式的算法。
6.38同题6.37条件,写出后序遍历的非递归算法(提示:为分辨后序遍历时两次进栈的不同返回点需在指针进栈时同时将一个标志进栈)。
6.39假设在二叉链表的结点中增设两个域:双亲域以指示其双亲结点;标志域以区分在遍历过程中到达该结点时应继续向左或向右或访问该节点。
试以此存储结构编写不用栈进行后序遍历的递推形式的算法。
(三)主要仪器设备实验环境:Microsoft Visual Studio 2012(四)源程序6.37:#include<stdio.h>#include<stdlib.h>#define STACK_INIT_SIZE 100#define STACKINCREMENT 10#define TRUE 1#define FALSE 0typedef struct bitnode{char data;struct bitnode *lchild,*rchild;}bitnode,*bitree;void create(bitree &T){char t;t=getchar();if(t==' ')T=NULL;else{if( !( T=(bitnode*)malloc(sizeof(bitnode)) ) ) exit(0);T->data=t;create(T->lchild);create(T->rchild);}}typedef struct{bitree *base;bitree *top;int stacksize;}sqstack;void initstack(sqstack &S){S.base=(bitree*)malloc(STACK_INIT_SIZE *sizeof(bitree));if(!S.base) exit(0);S.top=S.base;S.stacksize=STACK_INIT_SIZE;}void Push(sqstack &s,bitree e){if(s.top - s.base >= s.stacksize){s.base =(bitree*)realloc(s.base,(s.stacksize+STACKINCREMENT)*sizeof(bitree));if(!s.base) exit(0);s.top=s.base+s.stacksize;s.stacksize+=STACKINCREMENT;}*s.top++=e;}bitree Pop(sqstack &s){if(s.top==s.base){printf("ERROR");exit(0);}return * --s.top;}int StackEmpty(sqstack s){if(s.top==s.base)return TRUE;elsereturn FALSE;}void PreOrderUnrec(bitree t){sqstack s;initstack(s);bitree p=t;while (p!=NULL || !StackEmpty(s)){while (p!=NULL) //遍历左子树{printf("%c",p->data);Push(s,p);p=p->lchild;}if (!StackEmpty(s)) //通过下一次循环中的内嵌while实现右子树遍历{p=Pop(s);p=p->rchild;}//endif}//endwhile}int main(){bitree x;printf("以先序遍历的方法创建二叉树:");create(x);printf("利用栈对二叉树进行先序遍历并输出:");PreOrderUnrec(x);return 0;}6.38:#include<stdio.h>#include<stdlib.h>#define STACK_INIT_SIZE 100#define STACKINCREMENT 10#define TRUE 1#define FALSE 0typedef struct bitnode{char data;struct bitnode *lchild,*rchild;}bitnode,*bitree;void create(bitree &T){char t;t=getchar();if(t==' ')T=NULL;else{if( !( T=(bitnode*)malloc(sizeof(bitnode)) ) ) exit(0);T->data=t;create(T->lchild);create(T->rchild);}}typedef struct{bitree *base;bitree *top;int stacksize;}sqstack;void initstack(sqstack &S){S.base=(bitree*)malloc(STACK_INIT_SIZE *sizeof(bitree));if(!S.base) exit(0);S.top=S.base;S.stacksize=STACK_INIT_SIZE;}void Push(sqstack &s,bitree e){if(s.top - s.base >= s.stacksize){s.base =(bitree*)realloc(s.base,(s.stacksize+STACKINCREMENT)*sizeof(bitree));if(!s.base) exit(0);s.top=s.base+s.stacksize;s.stacksize+=STACKINCREMENT;}*s.top++=e;}bitree Pop(sqstack &s){if(s.top==s.base){printf("ERROR");exit(0);}return * --s.top;}int StackEmpty(sqstack s){if(s.top==s.base)return TRUE;elsereturn FALSE;}void InOrderUnrec(bitree t){sqstack s;initstack(s);bitree p=t;while (p!=NULL || !StackEmpty(s)){while (p!=NULL&&tag==0) //遍历左子树 {Push(s,p);Push(s,NULL); //插入标志p=p->lchild;}//endwhileif (!StackEmpty(s)){p=Pop(s);if(p==NULL){p=Pop(s);Push(s,p);p=p->rchild;tag=0;}else{printf("%c",p->data);tag=1;if (StackEmpty(s)) break;}}//endif}//endwhile}int main(){bitree x;printf("以先序遍历的方法创建二叉树:");create(x);printf("利用栈对二叉树进行后序遍历:");InOrderUnrec(x);return 0;}6.39:#include<stdio.h>#include<stdlib.h>typedef struct bitnode{char data;struct bitnode *parent,*lchild,*rchild;}bitnode,*bitree;void create(bitree &T){char t;t=getchar();if(t==' ')T=NULL;else{T->lchild=(bitnode*)malloc(sizeof(bitnode));T->rchild=(bitnode*)malloc(sizeof(bitnode));T->data=t;T->mark=0;T->lchild->parent=T;T->rchild->parent=T;create(T->lchild);create(T->rchild);}}void postorder(bitree t){bitree p=t;while(p!=NULL)switch(p->mark){case 0:p->mark=1;if(p->lchild) p=p->lchild;break;case 1:p->mark=2;if(p->rchild) p=p->rchild;break;case 2:p->mark=0;putchar(p->data);p=p->parent;break;default:;}}int main(){bitree y;y=(bitnode*)malloc(sizeof(bitnode));y->parent=NULL;create(y);postorder(y);return 0;}(五)数据调试6.37:6.38:6.39:(六)实验结果分析与总结6.37:以先序遍历的方式输入二叉树:-+a *b -c d /e f ,输出-+a*b-cd/ef, 符合先序遍历访问顺序,程序运行正确。
6.38:以先序遍历的方式输入二叉树:-+a *b -c d /e f ,输出abcd-*+ef/-, 符合后序遍历访问顺序,程序运行正确。