经典控制理论和现代控制理论的区别和联系

合集下载

现代控制理论(浓缩版)

现代控制理论(浓缩版)

现代控制理论(浓缩版)绪论1.经典控制理论与现代控制理论的比较。

经典控制理论也称为古典控制理论,多半是用来解决单输入-单输出的问题,所涉及的系统大多是线性定常系统,非线性系统中的相平面法也只含两个变量。

经典控制理论是以传递函数为基础、在频率域对单输入单输出控制系统进行分析和设计的理论。

它明显具有依靠手工进行分析和综合的特点,这个特点是与20世纪40~50年代生产发展的状况,以及电子计算机的发展水平尚处于初级阶段密切相关的。

在对精度要求不高的场合是完全可用的。

最大成果之一就是PID 控制规律的产生,PID 控制原理简单,易于实现,具有一定的自适应性与鲁棒性,对于无时间延时的单回路控制系统很有效,在工业过程控制中仍被广泛采用。

现代控制理论主要用来解决多输入多输出系统的问题,系统可以是线性或非线性的、定常或时变的。

确认了控制系统的状态方程描述法的实用性,是与状态方程有关的控制理论。

现代控制理论基于时域内的状态空间分析法,着重实现系统最优控制的研究。

从数学角度而言,是把系统描述为四个具有适当阶次的矩阵,从而将控制系统的一些问题转化为数学问题,尤其是线性代数问题。

而且,现代控制理论是以庞得亚金的极大值原理、别尔曼的动态规划和卡尔曼的滤波理论为其发展里程碑,揭示了一些极为深刻的理论结果。

面对现代控制理论的快速发展及成就,人们对这种理论应用于工业过程寄于乐期望。

但现代控制在工业实践中遇到的理论、经济和技术上的一些困难。

所以说,现代控制理论还存在许多问题,并不是“完整无缺”,这是事物存在矛盾的客观反应,并将推动现代控制理论向更深、更广方向发展。

如大系统理论和智能控制理论的出现,使控制理论发展到一个新阶段。

2.控制一个动态系统的几个基本步骤有四个基本步骤:建模,基于物理规律建立数学模型;系统辨识,基于输入输出实测数据建立数学模型;信号处理,用滤波、预报、状态估计等方法处理输出;综合控制输入,用各种控制规律综合输入。

经典控制理论和现代控制理论的区别和联系

经典控制理论和现代控制理论的区别和联系

1.典范统造表里战新颖统造表里的辨别战通联之阳早格格创做辨别:(1)钻研对付象圆里:典范统造系统普遍限造于单输进单输出,线性定常系统.庄重的道,理念的线性系统正在本质中本去没有存留.本质的物理系统,由于组成系统的非线性元件的存留,不妨道皆利害线性系统.然而是,正在系统非线性没有宽沉的情况时,某些条件下不妨近似成线性.所以,本质中很多的系统皆能用典范统造系统去钻研.所以,典范统造表里正在系统的分解钻研中收挥着巨大的效率.新颖统造表里相对付于典范统造表里,应用的范畴更广.新颖统造表里没有然而适用于单输进单输出系统,还不妨钻研多输进多输出系统;没有然而不妨分解线性系统,还不妨分解非线性系统;没有然而不妨分解定常系统,还不妨分解时变系统.(2)数教修模圆里:微分圆程(适用于连绝系统)战好分圆程(适用于失集系统)是形貌战分解统造系统的基础要收.然而,供解下阶战搀纯的微分战好分圆程较为烦琐,以至易以供出简直的系统表白式.所以,通过其余的数教模型去形貌系统.典范统造表里是频域的要收,主要以根轨迹法战频域分解法为主要的分解、安排工具.果此,典范统造表里是以传播函数(整初初状态下,输出与输进Laplace变更之比)为数教模型.传播函数适用于单输进单输出线性定常系统,能便当的处理那一类系统频次法或者瞬态赞同的分解战安排.然而对付于多旗号、非线性战时变系统,传播函数那种数教模型便无计可施了.传播函数只可反应系统的中部个性,即输进与输出的闭系,而没有克没有及反应系统里里的动向变更个性.新颖统造表里则主要状态空间为形貌系统的模型.状态空间模型是用一阶微分圆程组去形貌系统的要收,不妨反应出系统里里的独力变量的变更闭系,是对付系统的一种真足形貌.状态空间形貌法没有然而不妨形貌单输进单输出线性定常系统,还不妨形貌多输进多输出的非线性时变系统.其余状态空间分解法还不妨用预计机分解系统.(3)应用范畴圆里:由于典范统造表里死长的比较早,相对付而止表里比较老练,而且死爆收计中很多历程皆可近似瞅为线性定常系统,所以典范统造表里应用的比较广大.新颖统造表里是正在典范统造表里前提上死长而去的,对付于钻研搀纯系统较为便当.而且新颖统造表里不妨借帮预计机分解战安排系统,所以有其特殊的劣良性.通联:(1)虽然新颖统造表里的适用范畴更多,然而本去没有克没有及定性的道新颖统造表里更劣于典范统造表里.咱们要根据简直钻研对付象,采用符合的表里举止分解,那样才搞是分解的更烦琐,处事量较小(2)二种统造表里正在工业死产、环境呵护、航空航天等范畴收挥着巨大的效率.(3)二种表里有其各自的个性,所以正在对付系统举止分解与安排时,要根据系统的个性采用战是的表里.(4)所以死识二种表里,简直的问题简直分解,采用符合的表里钻研分歧的系统.随着社会的死长,二种表里对付科技的先进收挥着巨大的推动效率.正在试验中,二种表里也会得到死长战完备,而且促进新的表里的产死,智能统造表里便是个很佳的例子.2.典范统造表里战新颖统造表里所波及的真质典范统造表里:主要钻研系统的动向本能,正在时间战频域内去钻研系统的“宁静性、准确性、赶快性”.所谓宁静性是指系统正在搞扰旗号的效率下,偏偏离本去的仄稳位子,当搞扰与消之后,随着时间的推移,系统回复到本去仄稳状态的本收.准确性是指正在过分历程中断后输出量与给定的输进量的偏偏好.所谓赶快性是指当系统的输进量战给定的输进量之间爆收的偏偏好时,与消那种偏偏好的快缓程度.新颖统造表里:线性系统表里、最劣统造、随机系统表里战最劣预计、系统辨识、自符合统造、非线性系统表里、鲁棒性分解战鲁棒统造、分集参数统造、失集事变统造、智能统造.。

现代控制理论的论文

现代控制理论的论文

第一章经典控制理论和现代控制理论本学期学习了现代控制理论课程的主要内容,现代控制理论建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。

在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。

现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。

它所采用的方法和算法也更适合于在数字计算机上进行。

现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。

现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。

现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。

现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。

以下是经典控制理论和现代控制理论的比较:1、经典控制理论:(1)理论基础:Evens的根轨迹,Nyquist稳定判据。

(2)研究对象:线性定常SISO系统分析与设计。

(3)分析问题:稳、准、快(4)采用方法:是以频率域中传递函数为基础的外部描述方法。

(5)数学描述:高阶微分方程、传递函数、频率特性;方块图、信号流图、频率特性曲线。

(6)研究方法:时域法、根轨迹法、频率法。

2、现代控制理论:(1)理论基础:李雅普诺夫稳定性理论,Bellman动态规划,Понтрягин极值原理,Kalman 滤波。

(2)研究对象:MIMO系统分析与设计(复杂系统:多变量、时变、非线性)(3)分析问题:稳、准、快(4)设计(综合)问题:1)采用方法:是以时域中(状态变量)描述系统内部特征的状态空间方法为基础的内部描述方法。

2)数学描述:状态方程及输出方程、传递函数阵、频率特性;状态图、信号流图、频率特性曲线。

3)研究方法:状态空间法(时域法)、频率法。

现代控制理论的产生、发展、内容、研究方法和应用经典控制理论与现代控制理论的差异

现代控制理论的产生、发展、内容、研究方法和应用经典控制理论与现代控制理论的差异

现代控制理论的产生、发展、内容、研究方法和应用经典控制理论与现代控制理论的差异建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。

在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。

现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。

它所采用的方法和算法也更适合于在数字计算机上进行。

现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。

现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。

现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。

现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。

现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。

空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。

这类控制问题十分复杂,采用经典控制理论难以解决。

1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。

在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。

他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。

1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。

几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。

状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。

其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。

.何谓现代控制理论?与经典控制理论之间是什么样的关系或联络?在解决控制问题时各有什么不同的优缺点?

.何谓现代控制理论?与经典控制理论之间是什么样的关系或联络?在解决控制问题时各有什么不同的优缺点?

.何谓现代控制理论?与经典控制理论之间是什么样的关系或联络?在解决控制问题时各有什么不同的优缺点?.何谓现代控制理论?与经典控制理论之间是什么样的关系或联络?在解决控制问题时各有什么不同的优缺点?现代控制理论以状态空间描述(实质上是一阶微分或差分方程组)作为数学模型,利用计算机作为系统建模分析,设计乃至控制的手段,适应于多变数、非线性、时变系统。

状态空间方法属于时域方法,其核心是做优化技术。

经典控制理论分析和设计控制系统采用的方法是频率特性法和根轨迹法。

这两种方法用来分析和设计线性、定常单变数系统是很有效地。

但是,对于非线性系统,时变系统,多变数系统等,经典控制理论就显得无能为力了。

同时,随着生产过程自动化水平的提高,控制系统的任务越来越复杂,控制精度要求也越来越高,因此,建立在状态空间分析方法基础上的现代控制理论便迅速地发展起来。

经典控制理论与模糊控制理论的特点、区别及关系是什么?1)它是一种非线性控制方法,工作范围宽,适用范围广,特别适合非线性系统的控制。

(2)它不依赖于物件的数学模型,对无法建模或很难建模的复杂物件,也能利用人的经验知识来设计模糊控制器完成控制任务。

而传统的控制方法都要已知被控物件的数学模型,才能设计控制器。

(3)它具有内在的并行处理机制,表现出极强的鲁棒性,对被控物件的特性变化不敏感,模糊控制器的设计引数容易选择调整。

演算法简单,执行快,容易实现。

不需要很多的控制理论知识,容易普及推广。

正因为模糊控制具有以上显著的优点,很多国际著名的专家学者指出:“模糊控制是21世纪的控制技术”,将有非常广阔的发展前途和产品市场。

从经典控制理论发展到现代控制理论,实现了哪些转变主要的基础课程有:控制理论(包括经典控制理论和现代控制理论),电路和数位电路类比电路,控制电机等。

控制理论是讲述系统控制科学中具有新观念、新思想的理论研究成果及其在各个领域中,特别是高科技领域中的应用研究成果,但是在民用领域即实际生活中有很严重的脱节。

2 控制理论综述

2 控制理论综述

控制论之父—韦纳
1948年,美国科学家伊万斯(W. R. Evans)创立了根轨迹分
析法,为分析系统性能随系统参数变化的规律提供了有力 工具。 这段时间有多本关于经典控制的经典名著出版,包括 H. Bode的Network Analysis and Feedback Amplifier(1945),钱 学森的《工程控制论》(Engineering Cybernetics) (1954)。
他们的研究成果解决了空间技术中出现的复杂控制问 题,并开拓了控制理论中最优控制理论这一新的领域。
现代控制理论发展的主要标志性内容:
五十年代后期,贝尔曼(Bellman)等人提出了状态分 析法;并于1957年提出了寻求最优控制的动态规划方法。 1959年卡尔曼(Kalman)和布西创建了卡尔曼滤波 理论;1960年在控制系统的研究中成功地应用了状 态空间法,并提出了可控性和可观测性的新概念。 1961年庞特里亚金(俄国人)提出了极大值原理。
• ④极大验后估计——是使条件概率分布密度 达到极大的那个 x 值作为估值。需要知道条件概率分布密度。 • ⑤线性最小方差估计——为了进行最小方差估计和极大验后估计,需 要知道 p(x|z);为了进行极大似然估计,需要知道p(z|x) 。如果知道观 测值和被估值的一、二阶矩,在这种情况下,为了得到有用的结果, 必须对估计量的函数形式加以限制。通常限定所求的估计量是观测值 的线性函数,以估计误差阵达到最小作为最优估计的准则,按照这种 方式求得的最优估计值称为线性最小方差估计。 • ⑥维纳滤波——是线性最小方差估计的一种,适用于对有用信号和干 扰信号都是零均值的平稳随机过程的处理。设计维纳滤波器时必须知 道有用信号和干扰信号的自功率谱和互功率谱。 • ⑦卡尔曼滤波——也是一种线性最小方差估计,其算法是递推的。它 不仅适用于平稳随机过程,同样适用于非平稳随机过程。

现代控制理论试题与答案

现代控制理论试题与答案

现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+为任意非奇异阵(变换矩阵),空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φ(t)2.线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态x(t0),转移到指定的任一终端状态x(tf),称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.(2)T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为r*n维状态反馈系数阵或状态反馈增益阵2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵3.从输出到状态矢量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引入一个动态子系统来改善系统性能5.(1)状态反馈不改变受控系统的能控性(2)输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能(1)采用状态反馈对系统任意配置极点的充要条件是∑0完全能控(2)对完全能控的单输入-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件[1]∑0完全能控[2]动态补偿器的阶数为n-1(3)对系统用从输出到x 线性反馈实现闭环极点任意配置充要条件是完全能观7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输入-单输出系统,不能采用输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常工作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定(1)对系统采用状态反馈能镇定的充要条件是其不能控子系统渐近稳定(2)对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观子系统是输出反馈能镇定的,其余子系统是渐近稳定的(3)对系统采用输出到x 反馈实现镇定充要条件是其不能观子系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输入输出相互关联的多变量系统的实现每个输出仅受相应的一个输入所控制,每个输入也仅能控制相应的一个输出11.系统解耦方法:前馈补偿器解耦和状态反馈解耦12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u u y y 222++=+&&&&&&&,试求其状态空间最小实现。

经典控制理论和现代控制理论的区别和联系

经典控制理论和现代控制理论的区别和联系

1.经典控制理论与现代控制理论的区别与联系区别:(1)研究对象方面:经典控制系统一般局限于单输入单输出,线性定常系统。

严格的说,理想的线性系统在实际中并不存在。

实际的物理系统,由于组成系统的非线性元件的存在,可以说都就是非线性系统。

但就是,在系统非线性不严重的情况时,某些条件下可以近似成线性。

所以,实际中很多的系统都能用经典控制系统来研究。

所以,经典控制理论在系统的分析研究中发挥着巨大的作用。

现代控制理论相对于经典控制理论,应用的范围更广。

现代控制理论不仅适用于单输入单输出系统,还可以研究多输入多输出系统;不仅可以分析线性系统,还可以分析非线性系统; 不仅可以分析定常系统,还可以分析时变系统。

(2)数学建模方面:微分方程(适用于连续系统)与差分方程(适用于离散系统)就是描述与分析控制系统的基本方法。

然而,求解高阶与复杂的微分与差分方程较为繁琐,甚至难以求出具体的系统表达式。

所以,通过其它的数学模型来描述系统。

经典控制理论就是频域的方法,主要以根轨迹法与频域分析法为主要的分析、设计工具。

因此,经典控制理论就是以传递函数(零初始状态下,输出与输入Laplace变换之比)为数学模型。

传递函数适用于单输入单输出线性定常系统,能方便的处理这一类系统频率法或瞬态响应的分析与设计。

然而对于多信号、非线性与时变系统,传递函数这种数学模型就无能为力了。

传递函数只能反应系统的外部特性,即输入与输出的关系,而不能反应系统内部的动态变化特性。

现代控制理论则主要状态空间为描述系统的模型。

状态空间模型就是用一阶微分方程组来描述系统的方法,能够反应出系统内部的独立变量的变化关系,就是对系统的一种完全描述。

状态空间描述法不仅可以描述单输入单输出线性定常系统,还可以描述多输入多输出的非线性时变系统。

另外状态空间分析法还可以用计算机分析系统。

(3)应用领域方面:由于经典控制理论发展的比较早,相对而言理论比较成熟,并且生产生活中很多过程都可近似瞧为线性定常系统,所以经典控制理论应用的比较广泛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.经典控制理论和现代控制理论的区别和联系
区别:
(1)研究对象方面:经典控制系统一般局限于单输入单输出,线性定常系统。

严格的说,理想的线性系统在实际中并不存在。

实际的物理系统,由于组成系统的非线性元件的存在,可以说都是非线性系统。

但是,在系统非线性不严重的情况时,某些条件下可以近似成线性。

所以,实际中很多的系统都能用经典控制系统来研究。

所以,经典控制理论在系统的分析研究中发挥着巨大的作用。

现代控制理论相对于经典控制理论,应用的范围更广。

现代控制理论不仅适用于单输入单输出系统,还可以研究多输入多输出系统;不仅可以分析线性系统,还可以分析非线性系统;不仅可以分析定常系统,还可以分析时变系统。

(2)数学建模方面:微分方程(适用于连续系统)和差分方程(适用于离散系统)是描述和分析控制系统的基本方法。

然而,求解高阶和复杂的微分和差分方程较为繁琐,甚至难以求出具体的系统表达式。

所以,通过其它的数学模型来描述系统。

经典控制理论是频域的方法,主要以根轨迹法和频域分析法为主要的分析、设计工具。

因此,经典控制理论是以传递函数(零初始状态下,输出与输入Laplace变换之比)为数学模型。

传递函数适用于单输入单输出线性定常系统,能方便的处理这一类系统频率法或瞬态响应的分析和设计。

然而对于多信号、非线性和时变系统,传递函数这种数学模型就无能为力了。

传递函数只能反应系统的外部特性,即输入与输出的关系,而不能反应系统内部的动态变化特性。

现代控制理论则主要状态空间为描述系统的模型。

状态空间模型是用一阶微分方程组来描述系统的方法,能够反应出系统内部的独立变量的变化关系,是对系统的一种完全描述。

状态空间描述法不仅可以描述单输入单输出线性定常系统,还可以描述多输入多输出的非线性时变系统。

另外状态空间分析法还可以用计算机分析系统。

(3)应用领域方面:由于经典控制理论发展的比较早,相对而言理论比较成熟,并且生产生活中很多过程都可近似看为线性定常系统,所以经典控制理论应用的比较广泛。

现代控制理论是在经典控制理论基础上发展而来的,对于研究复杂系统较为方便。

并且现代控制理论可以借助计算机分析和设计系统,所以有其独特的优越性。

联系:(1)虽然现代控制理论的适用范围更多,但并不能定性的说现代控制理论更优于经典控制理论。

我们要根据具体研究对象,选择合适的理论进行分析,这样才能是分析的更简便,工作量较小
(2)两种控制理论在工业生产、环境保护、航空航天等领域发挥着巨大的作用。

(3)两种理论有其各自的特点,所以在对系统进行分析与设计时,要根据系统的特征选取
和是的理论。

(4)所以熟识两种理论,具体的问题具体分析,选取合适的理论研究不同的系统。

随着社会的发展,两种理论对科技的进步发挥着巨大的推动作用。

在实践中,两种理论也会得到发展和完善,并且促进新的理论的形成,智能控制理论就是个很好的例子。

2.经典控制理论和现代控制理论所涉及的内容
经典控制理论:主要研究系统的动态性能,在时间和频域内来研究系统的“稳定性、准确性、快速性”。

所谓稳定性是指系统在干扰信号的作用下,偏离原来的平衡位置,当干扰取消之后,随着时间的推移,系统恢复到原来平衡状态的能力。

准确性是指在过度过程结束后输出量与给定的输入量的偏差。

所谓快速性是指当系统的输入量和给定的输入量之间产生的偏差时,消除这种偏差的快慢程度。

现代控制理论:线性系统理论、最优控制、随机系统理论和最优估计、系统辨识、自适应控制、非线性系统理论、鲁棒性分析和鲁棒控制、分布参数控制、离散事件控制、智能控制。

本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。

相关文档
最新文档