SPSS教程 第四章 方差分析

合集下载

《SPSS数据分析教程》方差分析

《SPSS数据分析教程》方差分析

方差分析的术语



试验中的实验结果是需要分析的变量,称为响应变量, 或者因变量。方差分析的因变量必须为尺度类型的数 据(即连续数据)。 影响试验结果的因素即为影响响应变量的变量,称为 自变量或者因子。根据试验中这些因素的处理方式, 因素可以分为控制因素、随机因素和协变量。 因子的不同取值称为因子的不同水平。 控制因素一般要求为分类变量,而协变量要求为尺度 数据。


误差之间相互独立,并且也独立于模型中的其 他变量。一般好的试验设计都可以避免违反该 条件。 不同处理的误差为常数。 误差服从均值为0的正态分布。
举例

一家连锁零售商店对它们客户的购买习惯进行 了一项调查,它记录了客户性别,购买模式、 上一个月的购买金额等信息。该商店需要了解 在控制客户性别的条件下,是否客户购买的频 率和花费的金额有关系,以此来决定是否采取 相应的促销活动。
轮廓图
轮廓图为各个总体的均值的折线图,从中可以直观 的看出各个总体均值的趋势。
多因素方差分析

如果影响试验结果的因素有两个或者两个以上, 是否不同的处理对试验结果有显著性影响,不 同的因素是否有交互作用?可以应用SPSS的 一般线性模型(GLM)来完成多因素的方差 分析。
SPSS GLM过程假设条件
Bonferroni和Tamhane多重比较的结果是一致的。即培训2天和培训 3天没有显著的区别,而培训1天与另外两种培训都有显著区别。
同质子集
Tukey B两两比较输出的结果,它把在5%的显著性 水平下没有区别的总体放在同一列,作为同类子集。 这里,培训2天和培训3天没有显著区别,它们作为 一类。而培训1天单独作为1类。
协方差分析的数学模型

协方差分析的数学模型为

数据统计及SPSS应用-方差分析

数据统计及SPSS应用-方差分析
–提出H0假设 –选择检验统计量 –计算统计量的观测值和概率值 –根据给出的显著性水平做出决策
单因素方差分析--假设条件
• 单一因素影响试验结果,该因素各水平:I=1, 2,…K • 各水平下样本均值为: x1 , x 2 ,...x k • 方差为: 2 2 2 σ1 ,σ 2 ...σ k • 前提条件:样本正态分布,方差差异不显著 • H0假设:均值差异不显著,x = x = ... = x (i ≠ j ) • H1假设:至少有, x i ≠ x j • 方差分析的实质:相同方差下,正态分布样本的 K个水平下的观测值的均值差异的检验。
单因素方差分析--Contrast选项
• 先验对照检验
–使用T检验检验用户定义的样本组合的均值差 异 –系数之和应等于0 –显著性水平<0.05对比组差异显著 –如:μ1+μ 2= μ 3
单因素方差分析--Contrast选项
多因素方差分析--基本概念
• 当作用在一个过程的因素不只一个时,对不同因 素或因素的不同水平造成不同结果的研究将采用 多因素方差分析的研究方法。 • 研究多个因素的各个水平对试验结果的影响,以 及各因素相互作用对试验的影响。
组内数据与该组均值间的离差平方和反映数据抽样误差为随机误差各组均值与总均值间的离差平方和反映各样本组均值的差异为系统误差ssssss由于离差平方和的值与其项数k与n有关因此在方差分析中不能作为比较组间差异与组内差异的依据应当去掉项数影响求其均方来比较组间与组内差异
数据管理与分析
数据统计及SPSS应用
• 注意:
多因素方差分析--基本引用
• 【 分析 】 【一般线性模型】 【 单变量】
–因变量:实验结果 –固定因素:不同水平来线性地影响因变量的值 (一般是可认为控制的,如温度,品种)。 –随机因素:通过随机大量取值来影响过程变化 的因素(一般不可控,比如身高,体重)。 –协变量:与因变量相关,用来控制影响过程变 化的干扰因素。

SPSS操作—方差分析

SPSS操作—方差分析
• 实际工作中往往需要两两的组间均值比较。这就需要使用 One-way ANOVA进行单因素方差分析时使用选择项从而获 得更丰富的信息,使分析更深入。
例题进一步分析
析中剔除
实例-单因素方差分析各处理重复数不等的方差分析
用四种饲料喂养19头猪比较,四种饲料是否不同。
饲料 A 133.8 B 151.2 C 193.4 D 225.8
125.3
143.1 128.9 135.7
149.0
162.7 143.8 153.5
185.3
182.8 188.5 198.6
Post Hoc(均数的多重比较选项)
• 进行多重比较是对每两个组的均值进行如下比较:MEAN(i)MEAN(j)≥4.6625×RANGE×SQRT(1/N(i)+1/N(j));其中i、j分 别为组序号, MEAN(i)、MEAN(j)分别为第i、j组均值, N(i)、N(j) 分别为第i、j组中的观测数。各组均值的多重比较方法的算法 不同RANGE值也不同。
• Hochberg’s GT2(霍耶比GT2法):用正态最大系数进行多 重比较
• Gabriet(盖比理法):用正态标准系数进行配对比较,在单元 数较大时,这种方法较自由; • Waller-Duncan(瓦尔-邓肯法):用t统计量进行多重比较检验。
使用贝耶斯接近;
• Dunnett(邓尼特法):最小显著差数测验法,进行各组与对照 组的均值,默认的对照组是最后一组;选定此方法后,激活 下面的Control Catetory参数框,展开小菜单,选择对照组 • Tamhane‘s T2(塔海尼T2法):t检验进行配对比较; • Dunnett’s T3(邓尼特T3法):正态分布下的配对比较; • Games-Howell(盖门-霍威尔法):各组均值的配对比较,该方 法较灵活;

SPSS操作—方差分析精讲

SPSS操作—方差分析精讲

检验假设: H0:三个组的总体均数相同; H1:三个组的总体均数不全相同;
单因素方差分析
• 也称有一维方差分析,对二组以上的均值加以比较。 • 检验由单一因素影响的一个(或几个相互独立的) 分析变量由因素各水平分组的均值之间的差异是否 有统计意义。 • 并可以进行两两组间均值的比较,称作组间均值的 多重比较,还可以对该因素的若干水平分组中哪些 组均值不具有显著性差异进行分析,即一致性子集 检验。 • 步骤 Analyze→Compare means→ One-way ANOVA
方差相等时可选 择的比较方法
用t检验完成各组 均值的配对比较
与对照组的 配对比较
方差不等时可选 择的比较方法
• LSD(最小显著差异法):用 t检验完成各组均值间的配对 比较。 在变异和自由度的计算上利用了整个样本信息。对 多重比较误差率不进行调整;(此法最敏感)
• Polynomial(多项式比较):均值趋势的检验有5种多 项式:Linear线性、Quadratic二次、Cubic三次、 4th四次、5th五次多项式
• Coefficients:为多项式指定各组均值的系数。因素变量分为 几组,输入几个系数,多出的无意义。如果多项式中只包括第 一组与第四组的均值的系数,必须把第二个、第三个系数输入 为0值。如果只包括第一组与第二组的均值,则只需要输入前 两个系数,第三、四个系数可以不输入 。多项式的系数需要 由根据研究的需要输入。
• 如果进行先验对比检验,则应在Coefficients后依次输入系 数ci,并确保∑ci=0。应注意系数输入的顺序,它将分别与 控制变量的水平值相对应。 • 例如,当k=4时, 即有A、B、C、D 4个处理组,如果只将 B组和D组比较,则线性组合系数依次为0、-1、0、-1;如果 C组与其他3组的平均水平比较,则线性组合系数依次为-1、1、3、-1,余类推。线性组合系数要按照分类变量水平的顺 序依次填入Coefficients框中。

《SPSS数据分析教程》方差分析

《SPSS数据分析教程》方差分析

《SPSS数据分析教程》方差分析方差分析是一种常用的统计方法,用于比较三个或三个以上组之间的均值差异是否显著。

它用于探究不同组别的因素对所研究的因变量的影响是否具有统计显著性。

在SPSS数据分析教程中,方差分析是一个非常重要的分析方法。

本文将介绍方差分析的原理、SPSS中的操作步骤以及结果的解读。

方差分析的原理是基于三个或三个以上不同组别之间的方差之间的比较来判断均值之间的差异是否显著。

方差分析的核心思想是通过比较组内方差与组间方差的大小来判断均值的差异是否显著。

方差分析的原假设是所有组别的均值相等,而备择假设是至少存在一个组别的均值与其他组别的均值不相等。

在SPSS中进行方差分析的操作步骤如下:步骤1:打开SPSS软件,点击“变量视图”页面。

在第一栏输入不同组别的名称,例如“组别1”、“组别2”、“组别3”。

步骤2:在第二栏输入待分析的因变量名称,并设置其测量类型为“比例”。

步骤3:点击“数据视图”页面,输入各组别的数据。

确保每个组别的数据都在同一列中,并且分组的数据之间用“空格”或“逗号”隔开。

步骤4:点击菜单栏上的“分析,—比较手段,—单因素方差分析”。

步骤5:在方差分析的对话框中,将因变量移入因变量方框,将分组变量移入因子方框。

步骤6:点击“选项”按钮,出现选项对话框。

可以选择计算哪些统计量,如均值、标准差、总和平方和等。

步骤7:点击“确定”按钮,SPSS将得出方差分析的结果。

方差分析的结果包括了多个统计量,如SS(组间平方和)、SS(组内平方和)、MS(组内均方和)、MS(组间均方和)、F值和P值。

-SS(组间平方和)反映了组间差异的大小,SS(组内平方和)反映了组内差异的大小。

-MS(组间均方和)是SS(组间平方和)除以自由度(组间)得到的,反映了组间差异的平均大小。

-MS(组内均方和)是SS(组内平方和)除以自由度(组内)得到的,反映了组内差异的平均大小。

-F值是MS(组间均方和)除以MS(组内均方和)得到的,是判断组间差异是否显著的依据。

《SPSS的方差分析》课件

《SPSS的方差分析》课件
总结词
数据来源与格式
详细描述
介绍如何新建数据文件,以及如何导入不同格式的数据文件,如Excel、CSV等。同时说明数据的基本 格式和要求。
SPSS数据的基本操作与整理
总结词
数据清洗与整理技巧
VS
详细描述
介绍SPSS中常见的数据清洗和整理操作 ,如缺失值处理、异常值检测与处理、数 据排序与分组等。同时提供实际操作案例 和技巧。
03
对于非数值型数据或分类数据,需要进行 转换或处理,较为繁琐。
04
对于大规模数据集,计算量大,需要较长 时间才能得出结果。
方差分析的未来发展方向
结合机器学习算法
01
利用机器学习算法对方差分析进行优化,提高分析的效率和准
确性。
拓展到多因素分析
02
将方差分析拓展到多因素分析领域,对方差分析进行更深入的
06
总结与展望
方差分析的优缺点总结
01
优点
02
适用于多组数据的比较,能够快速准确地判断各组 之间的差异。
03
可用于不同类型的数据,如计数数据、计量数据等 ,具有广泛的适用性。
方差分析的优缺点总结
• 能够考虑多种影响因素,进行多因素分析 。
方差分析的优缺点总结
01
缺点
02
对数据的要求较高,需要满足一定的假设 条件,如正态分布、方差齐性等。
双因素方差分析
总结词
用于比较两个分类变量各自所划分的不同组 之间的总体均值是否存在显著差异。
详细描述
双因素方差分析是单因素方差分析的扩展, 用于比较两个分类变量各自所划分的不同组
之间的总体均值是否存在显著差异。在 SPSS中,可以通过“分析”菜单中的“一 般线性模型”选项进行双因素方差分析。

SPSS数据的参数检验和方差分析

SPSS数据的参数检验和方差分析

SPSS数据的参数检验和方差分析SPSS软件是一种用于统计和数据分析的工具,它可以进行各种参数检验和方差分析。

本文将重点介绍SPSS中的参数检验和方差分析,并提供一些建议和注意事项。

参数检验是一种统计方法,用于确定一个或多个总体参数的真实值。

在SPSS中,可以使用各种统计方法进行参数检验,例如t检验、方差分析(ANOVA)、卡方检验等。

t检验是用于比较两个样本均值是否显著不同的方法。

在SPSS中,可以通过选择“分析”->“比较均值”->“独立样本t检验”或“相关样本t检验”来执行t检验。

在进行t检验之前,需要确保数据符合正态分布和方差齐性的假设。

可以使用SPSS中的正态性检验和方差齐性检验来验证这些假设。

方差分析是用于比较三个或更多组之间差异的方法。

在SPSS中,可以通过选择“分析”->“方差”->“单因素方差分析”或“多因素方差分析”来执行方差分析。

在进行方差分析之前,同样需要检验正态性和方差齐性的假设。

在进行参数检验和方差分析时,还需确认是否使用方差分析的正确方法。

例如,如果有多个自变量,可能需要使用混合设计方差分析或多重方差分析等方法。

SPSS提供了多种不同的方差分析方法,可以根据具体研究设计选择适当的方法。

进行参数检验和方差分析时,还需要注意一些统计概念和报告结果的规范。

例如,结果中应包括样本均值、标准差、置信区间、显著性水平等信息。

此外,还应使用适当的图表和图形来展示数据和结果,以帮助读者更好地理解研究结果。

除了参数检验和方差分析,SPSS还可以进行其他类型的统计分析,例如相关分析、回归分析、因子分析等。

这些分析方法可以用来探索和描述数据之间的关系,以及预测和解释变量之间的关系。

在使用SPSS进行数据分析时,还需注意数据的质量和准确性。

确保数据输入正确、完整,处理缺失值和异常值等。

此外,也需要根据研究目的和问题选择合适的统计方法,并理解相关假设和前提条件。

总之,SPSS是一种功能强大的统计和数据分析工具,在参数检验和方差分析方面提供了丰富的方法和功能。

《SPSS数据分析教程》——方差分析

《SPSS数据分析教程》——方差分析

《SPSS数据分析教程》——方差分析方差分析(Analysis of Variance,缩写为ANOVA)是统计学中用来测量和分析两个或多个样本之间变量差异的统计方法。

方差分析检验的是不同实验条件下样品的均值是否存在显著性差异,以此来判断实验条件对样品响应是否有影响。

简而言之,方差分析能够判断不同处理条件下样本变量的总体均值是否有显著差异,以便检验实验条件是否有效。

方差分析实际上是将实验条件分成实验组和非实验组,然后对试验组与非实验组的结果进行比较,看看实验处理是否有显著的结果。

另一种情况是将不同的实验条件分成若干组,然后将不同组之间的结果进行比较,看看不同的实验条件是否有显著的差别。

SPSS采取一步法方差分析,在用户指定自变量和因变量后,可以自动给出方差分析的结果,包括方差分析表,均值表,均方差表,以及F检验的统计量和显著性水平等。

另外,它还可以提供多元变量分析(MVA)结果,包括每个变量的贡献率,方差膨胀因子,皮尔逊相关系数,单变量分析等。

为了使用SPSS进行方差分析,首先要指定变量和实验条件。

然后,点击菜单栏“分析”,选择“双因素方差分析”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
4.1.1 实验设计常用术语

单元内误差(within-cell error):指当几个 被试接受同样的实验条件时,他们之间所 出现的差异,其实质是被试间的个体差异, 它是一种随机误差。单元内误差使研究者 能估价实验中的实验误差,当只有一个被 试接受实验处理时,单元内误差是不存在 的。
7
4.1.1 实验设计常用术语
19
4.2.2 方差分析的基本思想


这样可以区分出一组数据中的两个变异源:一个 反映了实验处理的效应,叫做组间变异;另一个 反映了接受同样处理的被试之间的变异,叫做组 内变异或误差变异,F检验是计算组间变异与组内 变异的比率: F= MS组间/ MS组内 只有当组间变异足够大,明显不同于组内变异时 (即F值显著时),才说明实验处理效应是存在的。 如果组间变异与组内变异相比差不多,则说明处 理效应是不存在的,只不过是一种随机误差。
22
4.3 从t检验到一元方差分析再到多 元方差分析

t检验是对来自两个总体的样本平均值是否 存在显著差异的检验。当需要对来自多个 总体的样本平均数进行检验,t检验就显得 无能为力,于是,引进单因素方差分析的 方法进行,并发展到多因素方差分析。
23
4.3 从t检验到一元方差分析再到多 元方差分析
4
4.1.1 实验设计常用术语

简单效应(simple effects):一个因素的水 平在另一个因素的某个水平上的变异叫简 单效应。发现存在两次交互作用时,需要 进一步做简单效应检验,以说明因素之间 交互作用的实质。
5
4.1.1 实验设计常用术语


处理效应(treat effect):实验的总变异中, 由自变量引起的那部分变异,包括主效应、 简单效应、交互作用。 误差变异(error variance):不能由自变量 解释的变异。包括单元内误差、残差。
21
4.2.2 方差分析的基本思想
(2)方差相等,齐性、同质性。指当被试随 机分配给K个处理水平时,K个处理组被试 的观测值变异是同质的,即各个组的变异 是相等的。 (3)独立性。指实验中一个被试的观测值应 该独立于其他被试的观测值。当在一个实 验中,每个被试只被观察一次,并且被试 是随机分配给不同的实验条件时,独立性 假设就被满足了。
3
4.1.1 实验设计常用术语


处理(treatment )与处理水平的结合 (treatment combination):两者都是实验 中一个特定的、独特的实验条件。 主效应(main effects)与交互作用 (interaction):由一个因素的不同水平引 起的变异叫因素的主效应。当一个因素在 另一个因素的不同水平上变化趋势不一致 时,两个因素之间存在交互作用。



在实验设计和方差分析中,最重要和常用 的两个概念是平方和(sum of squares,SS) 和均方(MS)。 均方的计算公式是: MS=变异/df =SS/df 可见,均方是每个自由度(degree of freedom,df)的平均变异,这也是方差的基 本定义。
17
4.2.2 方差分析的基本思想
38
4.6.1 MANOVA的定义及数学模型


定义:因变量不止一个,且因变量之间又 不是相互独立时,进行的方差分析称为多 元方差分析。 General model:
基本原理仍然是通过检验两个或多个样本 之间差异是否显著,以对综合结论的做出 提供依据。
39

4.6.1 MANOVA的定义及数学模型
25

4.4 方差分析的种类



单因素一元方差分析,SPSS中需调用OneWay ANOVA命令进行。 两因素一元方差分析,SPSS中需调用 Univariate命令进行。 多因素一元方差分析,SPSS中需调用 Univariate命令进行。
26
4.4 方差分析的种类




单因素多元方差分析,SPSS中需调用 Multivariate命令进行。 两因素多元方差分析,SPSS中需调用 Multivariate命令进行。 多因素多元方差分析,SPSS中需调用 Multivariate命令进行。 重复测量方差分析,SPSS中需调用Repeated Measures命令进行。
40
4.6.2 MANOVA的假设
(1)多个因变量之间有足够相关。 做Bartlett球形检验,看因变量之间是否 独立,若独立,则球形检验不显著,表示 因变量之间不相关,没有必要做多元分析, 只做一元方差分析;若Sig=0.000,则表示有 足够相关,需要做多元方差分析。 (2)多因变量之间为多元正态分布。 这一假设很难满足,主要是考察残差图 看是否满足正态要求。看残差正态标绘图 (Normal Q-Q plot of Residuals)。

而当所研究的对象找不到最佳的测量方式 时,综合分析各方面的指标就成为必要, 因此,在一般对自变量进行方差分析的基 础上,又引进多个因变量进行多元方差分 析。
24
4.3 从t检验到一元方差分析再到多 元方差分析

元:即指因变量。多元方差分析主要是指 因变量多于两个或两个以上的研究情形。
多元方差分析实际上是多个因变量的方差 分析,但又不同于一元方差分析的简单加 权,因为,它是在同时考虑多个因变量差 异是否显著的情况下完成的。一元方差分 析显著,并不意味着多元方差分析显著, 反之也是如此。
20
4.2.2 方差分析的基本思想
方差分析的基本假设: (1)总体正态分布。指实验中的观测值应来 自正态分布的总体。人的许多心理特征与 行为是以正态分布或类似正态分布的形式 出现。一般来说,F分布对观测值的分布形 式不很敏感,一般不需要特别做正态分布 的检查。但当有些极端情况出现时,如分 布形式极端偏离,或根本不可能是正态分 布时,需要对观测值做适合的转换。


方差分析处理的是方差,方差是一组数据 的离散程度的测量。 方差(variance)与变异(variation)在有些 场合下是通用的,但不完全相同,方差仅 是表示变异的若干统计量之一,变异则是 一个更一般的概念。
在方差分析中,方差更常用的专用术语叫 均方(mean square,MS)。
16

4.2.2 方差分析的基本思想
11
4.2 方差分析及其基本思想

方差分析的基本特点 方差分析的基本思想
12
4.2.1 方差分析的基本特点

方差分析(analysis of variance,ANOVA) 是有英国统计学家费舍(Sir Ronald Fisher) 发展的,F检验就是以他的名字命名的。
13
4.2.1 方差分析的基本特点
14
4.2.1 方差分析的基本特点

方差分析的另一个不同于t检验的特点是, 它实质上把“平均数之间是否存在差异” 的检验转化为“变异是否存在”的检验。 方差分析的主要功能是分析因变量的总变 异中不同来源的变异,如实验处理带来的 变异、被试个体差异带来的变异、实验误 差带来的变异等等。
15
4.2.2 方差分析的基本思想
29
30
31
A主效应
B主效应
A×B交互作用
32
4.5.2 两因素随机区组实验设计
2×2两因素随机区组实验设计被试分配: A1B1 A1B2 A2B1 A2B2 C 1 S1 S7 S13 S19 S2 S8 S14 S20 C 2 S3 S9 S15 S21 S4 S10 S16 S22 C 3 S5 S11 S17 S23 S6 S12 S18 S24 数据输入的格式:列为自变量A,B,区组 变量C,因变量;行为被试
10
4.1.2 实验设计的种类

混合设计(mixed design):指在一个实验 设计中既有被试内自变量,又有被试间自 变量,它也是重复测量实验设计的一种形 式。对实验中的被试内自变量,每个被试 接受所有的自变量水平或自变量水平的结 合;对实验中的被试间自变量,每个被试 仅接受一个自变量水平或自变量水平的结 合的处理。
27
4.5 一元方差分析( Univariate )

两因素完全随机实验设计
两因素随机区组实验设计
28
4.5.1 两因素完全随机实验设计
2×2两因素完全随机实验设计被试分配: A1B1 A1B2 A2B1 A2B2 S1 S6 S11 S16 S2 S7 S12 S17 S3 S8 S13 S18 S4 S9 S14 S19 S5 S10 S15 S20 数据输入的格式:列为自变量A,B,因变 量;行为被试


接受不同实验处理的被试的分数围绕平均 数的变化在方差分析中是很重要的,它反 映了实验处理带来的变异,叫组间变异 (between-group variation)。 组间平方和SS组间,是几个组的平均数与总 平均数的离差的平方总和。 组间均方的计算公式是: MS组间=SS组间/df 组间自由度df=k-1
4 方差分析



实验设计 方差分析及其基本思想 从t检验到一元方差分析再到多元方差分析 方差分析的种类 一元方差分析 多元方差分析 重复测量方差分析 方差分析交互作用的简单效应检验
1
4.1 实验设计

实验设计常用术语 实验设计的种类
2
4.1.1 实验设计常用术语



因素与因素实验设计 因素(factor):研究者要研究的一个变量, 研究者通过操纵、改变它,来估价它对因 变量的影响,这个变量也叫自变量。 水平(level):变量的每个特定的值叫因素 的水平。 因素实验设计(factor experimental design):多于一个因素的实验设计。严格 意义上说,一个自变量的设计不应该叫因 素设计。
相关文档
最新文档