硝酸盐氮 紫外分光光度法
紫外光度法硝酸盐氮曲线

紫外光度法硝酸盐氮曲线【原创版】目录一、紫外分光光度法测定水中硝酸盐氮的原理二、紫外分光光度法测定水中硝酸盐氮的实验步骤三、紫外分光光度法测定水中硝酸盐氮的干扰因素及解决方法四、紫外分光光度法在测定水中硝酸盐氮的应用优势与局限性正文一、紫外分光光度法测定水中硝酸盐氮的原理紫外分光光度法是一种常用的测定水中硝酸盐氮的方法,其原理主要是通过紫外光度计测量水样在特定波长下的吸光度,从而推算出硝酸盐氮的含量。
在该方法中,通常选用两个波长进行测量,一是 220nm 波长,另一个是 275nm 波长。
这是因为在 220nm 波长下,硝酸根离子和水样中的有机物都会产生吸收,而 275nm 波长下,只有硝酸根离子会产生吸收,因此通过两个波长的测量可以消除有机物的干扰,从而更准确地测定硝酸盐氮的含量。
二、紫外分光光度法测定水中硝酸盐氮的实验步骤1.首先,需要对水样进行预处理,以去除其中的有机物和其它干扰物质。
2.然后,将预处理后的水样放入紫外光度计中,测量其在 220nm 和275nm 波长下的吸光度。
3.最后,通过计算吸光度的差值,可以得出水样中硝酸盐氮的含量。
三、紫外分光光度法测定水中硝酸盐氮的干扰因素及解决方法在紫外分光光度法测定水中硝酸盐氮的过程中,可能会受到一些干扰因素的影响,例如水中的悬浮物、有机物、氨氮和亚硝酸盐氮等。
为了消除这些干扰,可以采取以下措施:1.对水样进行预处理,如过滤、加热等,以去除悬浮物和有机物。
2.在测定前,加入一些试剂,如过硫酸钾,可以将水中的氨氮、亚硝酸盐氮和有机氮化合物氧化为硝酸盐,从而消除它们的干扰。
3.在测定过程中,选用合适的波长,以避免其它物质的吸光度对测定结果的影响。
四、紫外分光光度法在测定水中硝酸盐氮的应用优势与局限性紫外分光光度法在测定水中硝酸盐氮方面具有以下优势:1.操作简单,仪器设备成本较低,便于推广应用。
2.测量速度快,结果准确,可以满足实时监测的需求。
3.可以同时测定多个样品,便于进行批量分析。
水质硝酸盐氮的测定紫外分光光度法

标题:水质硝酸盐氮的测定:紫外分光光度法摘要:随着环境保护意识的提高,对水质的监测和评估变得越来越重要。
硝酸盐氮是水质中常见的一种污染物,其准确、快速的测定对于保护水环境具有重要意义。
本文将探讨硝酸盐氮的测定方法之一——紫外分光光度法,介绍其原理、操作步骤和优缺点,并结合个人观点进行深入分析。
一、硝酸盐氮的测定方法硝酸盐氮是水体中的一种重要营养盐,但过量的硝酸盐氮会导致水体富营养化甚至造成水质污染。
对水中硝酸盐氮的测定十分重要。
目前常用的测定方法包括化学法、光谱法、电化学法等,其中光谱法又分为紫外分光光度法、原子吸收光谱法等。
二、紫外分光光度法的原理紫外分光光度法是一种常用的分析方法,其原理是利用物质对紫外光的吸收来测定其浓度。
硝酸盐离子在特定波长范围内吸收紫外光,根据其吸光度与浓度之间的线性关系,可以通过测定吸光度来计算硝酸盐氮的浓度。
三、操作步骤1. 样品处理:将水样处理成适合紫外分光光度法测定的状态,通常包括滤过、稀释等步骤。
2. 仪器准备:对紫外分光光度计进行预热、波长选择和基准校准等操作。
3. 测定过程:按照标准操作步骤,将处理好的样品注入光度计进行测定,并记录吸光度值。
4. 结果计算:根据吸光度值和标准曲线,计算出硝酸盐氮的浓度。
四、紫外分光光度法的优缺点优点:1. 灵敏度高:紫外分光光度法对硝酸盐氮的测定具有较高的灵敏度,可以测定较低浓度的样品。
2. 操作简便:相比于其他分析方法,紫外分光光度法的操作相对简便快捷。
3. 成本较低:仪器设备和试剂成本相对较低,适合在实验室中常规使用。
缺点:1. 干扰物影响大:部分有机物、其他离子等会对硝酸盐氮的测定结果产生干扰,需要进行干扰校正。
2. 波长选择困难:在某些情况下,样品中的其他物质吸收的波长会与硝酸盐氮重叠,需要进行波长的选择和优化。
五、个人观点和理解紫外分光光度法作为一种常用的分析方法,在水质硝酸盐氮测定中具有一定的优势。
然而,要充分发挥其优势,还需要结合实际情况,对样品进行充分的前处理,以及对干扰物进行合理的处理和校正。
硝酸盐氮的测定(紫外分光光度法)

xx行业标准硝酸盐氮的测定(紫外分光光度法)SL84—1994Determination of nitrogen (nitrate)(Ultraviolet spectrophtometric method)水利部1995/05/01批准1995/05/01实施1总则1.1主题内容本标准规定了用紫外分光光度法测定水中的硝酸盐氮。
1.2适用范围本方法适用于清洁地面水和未受明显污染的地下水中硝酸盐氮的测定,其最低检出浓度为0.08mg/L,测量上限为4mg/L硝酸盐氮。
1.3干扰及消除溶解的有机物、表面活性剂、亚硝酸盐、六价铬、溴化物、碳酸氢盐和碳酸盐等干扰测定,需进行适当的预处理。
本法采用絮凝共沉淀和大孔中性吸附树脂进行处理,以去除水样中大部分常见有机物、浊度和Fe3+、Cr6+对测定的干扰。
2方法原理利用硝酸根离子在220nm波长处的吸收而定量测定硝酸盐氮。
溶解的有机物在220nm处和275nm处均有吸收,而硝酸根离子在275nm处没有吸收。
因此,在275nm处作另一次测量,以校正硝酸盐氮值。
3仪器3.1紫外分光光度计。
3.2离子交换柱(Ǿ1.4cm,装树脂高5~8cm)。
3.3常用实验设备。
4试剂4.1氢氧化铝悬浮液:溶解125g硫酸铝钾[KAl(SO4)2·12H2O]或硫酸铝铵[NH4Al(SO4)12H2O]于1000mL水中,加热至60℃。
2·然后边搅拌边缓缓加入55mL浓氨水。
放置约1h后,移至一个大瓶中,用倾泻法反复洗涤沉淀物,直到该溶液不含铵离子为止。
最后加300mL纯水成悬浮液。
使用前振荡均匀。
4.2硫酸锌溶液:10%(m/V)。
4.3氢氧化钠溶液:C(NaOH)=5mol/L。
4.4大孔型中性树脂:CAD/40或XAD/2型及类似型号树脂。
4.5甲醇。
4.6盐酸溶液:C(HCl)=1mol/L(盐酸系优级纯)。
4.7氨基磺酸(H2NSO3H)溶液:0.8%(m/V),避光保存于冰箱中。
硝酸盐氮的测定(紫外分光光度法)

中华人民共和国行业标准硝酸盐氮的测定(紫外分光光度法)SL84—1994Determination of nitrogen (nitrate)(Ultraviolet spectrophtometric method)水利部1995/05/01批准1995/05/01实施1 总则1.1主题内容本标准规定了用紫外分光光度法测定水中的硝酸盐氮。
1.2 适用范围本方法适用于清洁地面水和未受明显污染的地下水中硝酸盐氮的测定,其最低检出浓度为0.08mg/L,测量上限为4mg/L硝酸盐氮。
1.3干扰及消除溶解的有机物、表面活性剂、亚硝酸盐、六价铬、溴化物、碳酸氢盐和碳酸盐等干扰测定,需进行适当的预处理。
本法采用絮凝共沉淀和大孔中性吸附树脂进行处理,以去除水样中大部分常见有机物、浊度和Fe3+、Cr6+对测定的干扰。
2 方法原理利用硝酸根离子在220nm波长处的吸收而定量测定硝酸盐氮。
溶解的有机物在220nm处和275nm处均有吸收,而硝酸根离子在275nm处没有吸收。
因此,在275nm处作另一次测量,以校正硝酸盐氮值。
3仪器3.1紫外分光光度计。
3.2离子交换柱(Ǿ1.4cm,装树脂高5~8cm)。
3.3常用实验设备。
4 试剂4.1氢氧化铝悬浮液:溶解125g硫酸铝钾[KAl(SO4)2·12H2O]或硫酸铝铵[NH4Al(SO4)2·12H2O]于1000mL水中,加热至60℃。
然后边搅拌边缓缓加入55mL浓氨水。
放置约1h后,移至一个大瓶中,用倾泻法反复洗涤沉淀物,直到该溶液不含铵离子为止。
最后加300mL纯水成悬浮液。
使用前振荡均匀。
4.2硫酸锌溶液:10%(m/V)。
4.3氢氧化钠溶液:C(NaOH)=5mol/L。
4.4大孔型中性树脂:CAD/40或XAD/2型及类似型号树脂。
4.5甲醇。
4.6盐酸溶液:C(HCl)=1mol/L(盐酸系优级纯)。
4.7氨基磺酸(H2NSO3H)溶液:0.8%(m/V),避光保存于冰箱中。
硝酸盐氮(HJ_T346-2007)

1 分析方法紫外分光光度法2 方法依据HJ/T346-2007《水质硝酸盐氮的测定紫外分光光度法》3 适用范围本标准适用于地表水、地下水中硝酸盐氮的测定。
4方法检测范围方法最低检出质量浓度为0.08mg/l,测定下限为0.32 mg/l ,测定上限为4 mg/l。
5 原理利用硝酸根离子在220nm波长处的吸收而定量测定硝酸盐氮。
溶解的有机物在220nm处也会有吸收,而硝酸根离子在2785nm处没有吸收. 因此,在275nm处作另一次测量,以校正硝酸盐氮值。
6 试剂和材料本标准所用试剂除另有注明外,均为符合国家标准的分析纯化学试剂;实验用水为新制备的去离子水。
6.1 盐酸:c(HCl)=1mol/L。
6.2硝酸盐氮标准贮备液:称取0.722g经105~110℃干燥2h的优级纯硝酸钾(KNO3)溶于水,移入1000ml容量瓶中,稀释至标线,加2ml三氯甲烷作保存剂,混匀,至少可稳定6个月。
该标准贮备液每毫升含0.100mg硝酸盐氮(100mg/L)。
6.30.8%氨基磺酸溶液:避光保存于冰箱中。
6.4硝酸盐氮标准使用液:将100mg/L的硝酸盐氮标准贮备液稀释十倍,浓度为10mg/L。
7 仪器7.1紫外分光光度计。
7.2 分光光度计,10mm 比色皿。
8采样采集样品应置于采样瓶中注满,立即用盐酸酸化至pH<1保存。
9 分析步骤9.1取50ml以上水样置于烧杯中,用经去离子水煮过三次的0.45mm微孔滤膜抽滤,取出50ml抽滤出的水样至于50ml比色管中。
9.2 加1.0ml盐酸溶液( 6.1 ), 0.1ml氨基磺酸溶液( 6.3 )于比色管中,当亚硝酸盐氮低于0.1mg/L时,可不加氨基磺酸溶液( 6.3 )。
9.3 用光程长10mm石英比色皿,在 220nm和275nm波长处,以的新鲜去离子水50ml加1ml 盐酸溶液(6.1 )为参比,测量吸光度。
9.4校准曲线的绘制:于 5个50ml比色管中分别加入 0.50 、 1.00 、 2.00 、 3.00 、 4.00 ml硝酸盐氮标准贮备液( 6.4 ),用新鲜去离子水稀释至标线,其质量浓度分别为0.5 、 1.00 、2.00 、3.00 、4.00 mg/ L硝酸盐氮。
水质 硝酸盐氮紫外分光光度法

水质硝酸盐氮紫外分光光度法摘要:一、硝酸盐氮的概述二、紫外分光光度法的原理三、水质硝酸盐氮紫外分光光度法的检测步骤四、水质硝酸盐氮紫外分光光度法的实用性五、结论正文:一、硝酸盐氮的概述硝酸盐氮(NO3-N)是水体中的一种重要氮化合物,主要由有机物分解、土壤中硝酸盐淋溶和工业废水排放等因素导致。
硝酸盐氮在水体中含量过高,会对水生生物和人类健康产生危害。
因此,对水质中硝酸盐氮的检测具有重要意义。
二、紫外分光光度法的原理紫外分光光度法是一种基于硝酸盐氮与紫外光吸收关系的分析方法。
硝酸盐氮在紫外光区域有一定的吸收特性,通过测量水样在特定波长下的吸光度,可以推算出硝酸盐氮的浓度。
三、水质硝酸盐氮紫外分光光度法的检测步骤1.样品处理:首先对水样进行过滤、蒸馏等预处理,以消除杂质对检测结果的影响。
2.标准曲线制备:制备一系列不同浓度硝酸盐氮的标准溶液,并用紫外分光光度计测定其吸光度,绘制标准曲线。
3.样品测定:将处理后的水样与硝酸盐氮显色剂反应,生成显色产物。
然后用紫外分光光度计测定水样在特定波长下的吸光度。
4.结果计算:根据测得的吸光度和标准曲线,计算出水样中硝酸盐氮的浓度。
四、水质硝酸盐氮紫外分光光度法的实用性水质硝酸盐氮紫外分光光度法具有以下优点:1.灵敏度高:紫外分光光度法能检测到较低浓度的硝酸盐氮,有利于发现水体中潜在的污染问题。
2.准确度高:该方法受其他水体成分的干扰较小,测定结果较为准确。
3.分析速度快:紫外分光光度法操作简便、分析速度快,有利于提高检测效率。
4.成本低:与其他分析方法相比,紫外分光光度法仪器设备简单,降低了检测成本。
五、结论水质硝酸盐氮紫外分光光度法作为一种实用的水质检测方法,具有较高的准确度和灵敏度,操作简便,成本低。
硝酸盐氮指标的监测规程——紫外分光光度法

硝酸盐氮(3NO N --)指标的监测规程——紫外分光光度法1.目的为了规范化验人员在污水处理厂中的监测方法和操作程序,提高水质监测数据的准确性,特制定本规程。
2.适用范围本监测规程适用于东莞市中堂溢源水务有限公司。
3.方法原理利用硝酸银离子在220nm 波长处的吸收而定量测定硝酸盐氮。
溶解的有机物在220nm 处也会有吸收,而硝酸银离子在275nm 处没有吸收。
因此,在275nm 处作另一测量,以校正硝酸盐氮值。
4.方法的适用范围本法适用于清洁地表水和未受明显污染的地下水中硝酸盐氮的测定,其最低检出浓度为0.08mg/L ,测量上限为4mg/L 硝酸盐氮。
5.仪器紫外分光光度计;离子交换柱(φ1.4cm ,装树脂高5~8cm )。
6.试剂①氢氧化铝悬浮液:水和废水监测分析方法第四版:亚硝酸盐氮方法(二)试剂7②10%硫酸锌溶液。
③5mol/L氢氧化钠溶液:称取100g氢氧化钠溶解并定容至500mL容量瓶中。
④大孔径中性树脂:CAD-40或XAD-2型及类似性能的树脂。
⑤甲醇。
⑥1mol/L盐酸(优级纯):吸取8.33mL浓盐酸定容至100mL容量瓶中。
⑦硝酸盐标准贮备液:每毫升含0.100mg硝酸盐氮。
参见本节方法(一)试剂③。
⑧0.8%氨基磺酸溶液:避光保存于冰箱中。
7.步骤(1)吸附柱的制备新的树脂先用200mL水分2次洗涤,用甲醇浸泡过夜,弃去甲醇,再用40mL甲醇分2次洗涤,然后用新鲜去离子水洗到柱中流出液滴落于烧杯中无乳白色为止。
树脂装入柱中时,树脂间绝不允许存在气泡。
(1)水样的测定①量取200mL水样置于锥形瓶或烧杯中,加入2mL硫酸锌溶液,在搅拌下滴加氢氧化铝悬浮液,调至PH7。
或将200mL 水样调至PH7后,加4mL氢氧化铝悬浮液。
待絮凝胶团下沉后,或经离心分离,吸取100mL上清液分2次洗涤吸附树脂柱,以每秒1~2滴的流速流出(注意各个样品间流速保持一致)。
弃去。
再继续使水样上清液通过柱子,收集50mL 于比色管中,备测定用。
紫外分光光度法测定水中硝酸盐氮探讨

离 子 色 谱 在 水 环 境 监 测 中 常 见 问 题 及 处 理 方 法
赵 青峰 李 申莹
美 国戴 安公 司是 世界 上 第一 台 离子色谱 仪的制造 者 , 也是全球 最著 名的离子色 潜仪制造商 。 该公司旗下 型号 Di o n e x I C S 一 9 0 A的 离 子 色谱 仪 ( 简称 I C S 一 9 0 A) 主要 由流动 相 、 高压
要表现 为在厌 氧菌 的作 用下 可还原为 用离子色谱法对其进行 了验证 ,结果 水 做参 比测得 0 . 5 m g / I 硝 酸盐氮溶 液 吸
亚硝 酸盐 , 亚硝酸盐为致癌物质 , 亚 硝 表 明通过校正系数校正可获得 更准确 收 曲线 见罔 l
酸盐还可与 人体 中血红蛋 白结合 , 使 可靠的结果 。
联 川 可实 现 自动 化操 作 , 大 大解 放 劳 动
0. 0 60 0. 0 5 0
. .
\ ; | | {
、
.
.
波长/ n m
图1 0 . 5 mg / L硝酸 盐氮 溶液 吸收 曲线
力, 但设备 昂贵 , 普及起来有一定难度。
l 太 1 天 然地 表水 中 : 扰 物 质 较少 , 无 需 复
液相色谱技术 . 其从 1 9 7 5年由 H . s m a l l
等人提 出到沿用 至今 ,已有近 4 0年 的历 史。 该 技 术 的最 大 的 优 点 就 是 能 同时 、 准确 、 快 速地检测 多种阴离 子 , 因 此 在 水 环 境 监 测 中 得 到 了 广 泛 的
应用。
光度法 、 锌—镉还原分光光度法和紫外 收 , 干扰 测定 , 一般
可 见 分光 光度 法 。 紫夕 1 " 2 J J b 光度 法 所需 情 况 下 天 然 地 表 水
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HZHJSZ00138 水质硝酸盐氮的测定 紫外分光光度法
HZ-HJ-SZ-0138
水质紫外分光光度法(试行)
1 范围
本法适用于清洁地面水和未受明显污染的地下水中硝酸盐氮的测定
测量上限为4mg/L硝酸盐氮
表面活性剂六价铬碳酸氢盐和碳酸盐等干扰测定本法采用絮凝共沉淀和大孔中性吸附树脂进行处理
浊度和Fe3Cr6
2 原理
利用硝酸根离子在220nm波长处的吸收而定量测定硝酸盐氮
而硝酸根离子在275nm处没有吸收在275nm处作另一次测量
3 试剂
3.1 氢氧化铝悬浮液12H2O] 或硫酸铝铵[NH4Al(SO4)2¼ÓÈÈÖÁ60在不断搅拌下
放置约1h后用一次蒸馏水反复洗涤沉淀
直至洗涤液中不含亚硝酸盐为止把上清液尽量全部倾出最后加入100mL水
3.2 硫酸锌溶液
3.3 5mol/L氢氧化钠溶液
3.5 甲醇
3.7 硝酸盐标准贮备液将0.7218g经105~110
ÒÆÈë1000mL容量瓶混匀
至少可稳定6个月
避光保存于冰箱中
4.2 离子交换柱(直径1.4cm
5 试样制备
样品采集后均经0.45ìm微孔滤膜过滤必要时
保存在4ÔÚ24h内进行测定
用甲醇浸泡过夜再用40mL甲醇分两次洗涤流出液滴落于烧杯中无乳白色为止树脂间绝不允许存在气泡
加入2mL硫酸锌溶液
调至pH7¼Ó4mL氢氧化铝悬浮液
或经离心分离以1~2滴/s的流速流出(注意各个样品间流速保持一致)ÆúÈ¥
收集50mL于比色管中树脂用150mL水分三次洗涤
树脂吸附容量较大使用多次后
在220²âµÃµÄÎü¹â¶ÈÓ¦½üÓÚÁãÐèÒÔ¼×´¼ÔÙÉú
0.1mL氨基磺酸溶液于比色管中(如亚硝酸盐氮低于0.1mg/L时
用光程长10mm石英比色皿以经过树脂吸附的新鲜去离子水50mL加1mL盐酸溶液为参比
6.3 校准曲线的绘制
于6个200m]溶量瓶中分别加入0.50 2.00 4.00mL硝酸盐氮标准贮备液
其浓度分别为0.25 1.00 2.00mg/L硝酸盐氮
测量吸光度
A220220nm波长测得吸光度
求得吸光度的校正值(A校)以后即为水样测定结果 (mg/L)Ôò½á¹ûÓ¦³ËÒÔÏ¡ÊͱÈ
ʵÑéÊÒÄÚÏà¶Ô±ê׼ƫ²îΪ2.0%相对误差为1.1%
(1) 为了解水中受污染程度和变化情况如无扫描装置时
280nm5nm测量吸光度水样与近似浓度的标准溶液分布曲线应类似
参考吸光度比值(A275 / A220越小越好
水样经上述方法适用情况检验后可不经预处理加盐酸和氨基磺酸溶液后如经絮凝后水样亦达到上述要求省略树脂吸附操作
而硝酸盐含量较高时
(3) 大孔中性吸附树脂对环状对低碳链
(4) 当水样存在六价铬时并放置0.5h以上再取上清液供测定用
水和废水监测分析方法水和废水监测分析方法
中国环境科学出版社1997。