2015年中国数学奥林匹克(CMO)试题及其解答(扫描版)
2015年世界少年奥林匹克数学竞赛九年级海选赛试题含答案

九年级 第1页 九年级 第2页2015年世界少年奥林匹克数学竞赛九年级海选赛试题含答案绝密★启用前世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛试题(2015年10月)选手须知:1、本卷共三部分,第一部分:填空题,共计50分;第二部分:计算题,共计12分;第三部分:解答题,共计58分。
2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。
3、比赛时不能使用计算工具。
4、比赛完毕时试卷和草稿纸将被收回。
九年级试题(A卷)(本试卷满分120分 ,考试时间90分钟 )一、填空题。
(每题5分,共计50分)1、两块三角形面板如图放置,等腰直角三角形板ABC 的斜边BC 与∠F=30°的直角三角板DEF 的直角边EF 重合,则∠a 的度数为 。
2、若a 、b 都为实数,且b = 20131-a + 2014a -1+ 2015 则a b= 。
3.设x 1,x 2是方程x 2 - x -2013 = 0 的两实数根,则x 13+2014x 22-2013= 。
4、已知三个实数x ,y ,z 中,x 与y 的平均数是127,y 与z 的和的31是78,x 与z 的和的41是52,则这三个数x ,y ,z 的平均数是 。
5、如图,矩形ABCD 中,已知AB=5,AD=12,P 是AD 上的动点,PE ⊥AC 与E ,PF ⊥BD 与F ,则PE+PF= 。
6、如图,在平面直角坐标系中,△ABC 是等腰直角三角形,∠ACB = Rt, CA ⊥x 轴,垂足为点A ,点B 在反比例函数y 1=x4(x>0)的图像上,反比例 函数y 2=x2(x>0)的图像经过点C ,交AB 于点D ,则点D 的坐标 。
7、若有理数x ,y ,z 满足2121=-+-+z y x (x+y+z )则(x-zy)2= 。
8、我国汉代数学家赵爽为了证明勾股定理,创制了一副"弦图",后人称其为"赵爽弦图"如图,也是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH,正方形MNKT 的面积,分别为S 1,S 2,S 3,若S 1+S 2+S 3 = 10 ,则S 2的值是 。
2015年全国高中数学联赛试卷解析汇报

2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。
分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q 满足条件BQ DP =,则PQ PA ⋅的最小值为 . 答案34. 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t P Q t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 .答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2s in s in =+b a ωω知,1s in s in ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解; (ii) ππππw w 22925≤<≤,此时2549≤≤w ; (iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w . 综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑.因此,()()285N P N Q -=.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。
2015年高中数学竞赛试题精选及答案

已知1111ABCD A BC D -是一个棱长为1的正方体,1O 是底面1111A B C D 的中心,M 是棱1BB 上的点,且:2:3S S =11△DBM△O B M ,则四面体1O ADM 的体积为748(江苏2007夏令营)在正方体1111D C B A ABCD -中,P 是侧面C C BB 11内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是抛物线 已知x 为锐角,则22cos sin33=+x x 是4π=x 的(充要条件)同信一寝室的四名女生,她们当中有一人在修指甲,一人在看书,一人在梳头发,另一人在听音乐。
①A 既不在修指甲,也不在看书;②B 既不在听音乐,也不在修指甲;③如果A 不在听音乐,那么C 不在修指甲;④D 既不在看书,也不在修指甲;⑤C 既不在看书,也不在听音乐。
若上面的命题都是真命题,问她们各在干什么?答:ABCD 分别在听音乐;看书;修指甲;梳头发 已知)1(3tan m +=α,且βαββα,,0t a n )t a n (t a n 3=++⋅m 为锐角,则βα+的值为3π=︒-︒︒-︒︒+)5tan 5(cot 10sin 20sin 220cos 12330cos =︒=函数d cx bx ax x x f ++++=234)(,若3)3(,2)2(,1)1(===f f f ,那么)4()0(f f +的值为(28 )在ABC ∆中,角A 、B 、C 所对的边分别为c b a ,,,且31cos =A 。
(1)求A CB 2cos 2sin2++的值;(2)若3=a ,求bc 的最大值。
(-1/9; 9/4) 若m 、{}22101010n x x aa a ∈=⨯+⨯+,其中{}1234567i a ∈,,,,,,,012i =,,,并且 636m n +=,则实数对(,)m n 表示平面上不同点的个数为( 90 )圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 2.斜三棱柱111ABC A B C -中,面11AAC C 是菱形,160ACC ∠=︒,侧面11ABB A ⊥11AAC C ,11A B AB AC ===.求证:(1)1AA ⊥1BC ;(2)求点1A 到平面ABC 的距离. 515满足20073+++=x x y 的正整数数对(x ,y )恰有两对设集合M={-2,0,1},N={1,2,3,4,5},映射f :M →N 使对任意的x ∈M ,都有)()(x xf x f x ++是奇数,则这样的映射f 的个数是(45)将一个三位数的三个数字顺序颠倒,将所得到的数与原数相加,若和中没有一个数字是偶数,则称这个数为“奇和数”。
2015年全国高中数学联赛试题答案

…………………20 分
包含 a1 的集合至少有
n− s −t 个.又由于 A1 ⊆ Ci ( i = 1, , t ) ,故 C1 , C2 , , Ct 都 k
n− s −t ,即在剩下的 n − s − t 个集合中, k
包含 a1 ,因此包含 a1 的集合个数至少为
n− s −t n − s + (k − 1)t n − s + t (利用 k ≥ 2 ) = +t ≥ k k k n . ……………40 分 ≥ (利用 t ≥ s ) k
n ≤ (n + 1) ∑ห้องสมุดไป่ตู้ai2 , i =1 所以①得证,从而本题得证.
…………………40 分
证法二:首先,由于问题中 a1 , a2 , , an 的对称性,可设 a1 ≥ a2 ≥ ≥ an .此 n 外,若将 a1 , a2 , , an 中的负数均改变符号,则问题中的不等式左边的 ∑ ai 不 i =1 减,而右边的 ∑ ai2 不变,并且这一手续不影响 ε i = ±1 的选取,因此我们可进一
2t u − 1 2u − 1 m 1 2αt ⋅ 1 2αt ⋅ 1 + 2u + + 2(t −1)u ) =+ =+ ( q q q
…………………10 分
n + 2 ∑ aj n = j +1 2
2
2
n 2 n n n 2 2 ≤ 2 ∑ ai + 2 n − ∑ a j (柯西不等式) …………30 分 2 i =1 2 = n j +1 2 n n 2 2 n + 1 n n n + 1 2 a j (利用 n − = = 2 ∑ ai + 2 ) ∑ 2 2 2 i =1 2 = n j +1 2 n n 2 2 2 ≤ n ∑ ai + (n + 1) ∑ a j (利用 [ x ] ≤ x ) n = i =1 j +1 2
2015高数竞赛解答

2 z 2 z ze2 x , x 2 y 2
2分
2 2 z x x f (e sin y ) e sin y f (e x sin y ) e x sin y , 2 x
f ( x t , y t ) f ( x, y) sin t
f x ( x, y) f y ( x, y)
.
2015 年高等数学竞赛试卷
第 2页
共 4页
二、解答题:11~16 题,共 60 分.
11. 求极限(本题共两小题,每小题 5 分,共 10 分)
(1) lim
2015 年高等数学竞赛试卷
第 1页
共 4页
2015 年高等数学竞赛试卷
考试时间:2015 年 5 月
一、填空题:1~10 题,每题 4 分,共 40 分.
10 1. 求极限 lim x x 0 x
10
.
1 (n 1)d = n2
1 1 d 2. 设 d 0 为常数,求极限 lim 2 2 n n n
解: xn
3分 2分
12. (本题 10 分) 设函数 f ( x) 连续, g ( x) f ( xt )dt ,且 lim
0
x 0
1
f ( x) k ,k 为常数,求(1) g ( x) ; x
(2) lim g ( x) .
x 0
解: (1)令 u xt , t
d/2
.
1 3. 设 f 具有二阶导数, f ( x) x 2 ,则 f ( f ( x)) 256 x 2 2
2015年CMO试题及其解答

交流知识 共享智慧
文武光华
L A
C T
Y R
F
B N
S K
P Q
X
D
E
三、给定整数n ≥ 5,求最小的整数m,使得存在两个由整数组成的集合A、B,同时满 足下列条件:
(1)|A| = n,|B| = m,且A ⊆ B; (2)对B中任意两个不同元素x、y,x + y ∈ B当且仅当x、y ∈ A。 解答:设A = a ,a , … ,a 。记C = a + a |1 ≤ i<j ≤ n 。则根据条件知A⋃C ⊆ B。 可以证明|C| ≥ 2n − 3。事实上,不妨设a <a < … <a ,则a + a <a + a <…< a + a <a + a < … <a + a ,故|C| ≥ 2n − 3。 因为|B| − |A| ≥ |C| − |A| ≥ 2n − 3 − n = n − 3 ≥ 2,故B中至少存在一个不为0的元素 不属于A,设为b。因为0 + b = b ∈ B,而b ∉ A,故0 ∉ B。进而知0 ∉ A。 下面我们证明A⋂C = Φ。若结论不成立,不妨设a = a + a ∈ A。此时A = a ,a , … ,a ,a + a 。 因为a + a ∈ B,(a + a ) + a = (a + a ) + a ∈ B,a ∈ A,故a + a ∈ A。同理 可知a + a 、a + a 、 … 、a + a 这n − 3个数均属于A,且都不为a 、a + a 。若这 n − 3个数均不等于a ,则 a + a ,a + a , … ,a + a = a ,a , … ,a ,从而 有 (a + a ) + (a + a ) + ⋯ + (a + a ) = a + a + ⋯ + a ⇒a =0 这与0 ∉ A矛盾。从而必存在某个a ,使得a + a = a ,即a = a − a 。 同理可知,a + a 、a + a 、 … 、a + a 这n − 3个数也均属于A。同上分析,必存 在某个a ,使得a + a = a ,即a = a − a 。 因为0 ∉ A,故a ≠ a ,从而知a + a = (a − a ) + (a − a ) = 0 ∈ B。然而这与0 ∉ B 矛盾。 综上所述,A⋂C = Φ,于是知|B| ≥ |A| + |C| = n + (2n − 3) = 3n − 3。 另一方面,取A = n + 1,n + 2, … ,2n ,C = 2n + 3,2n + 4, … ,4n − 1 ,令 B = A⋃C即满足条件。 综上所述,m的最小值为3n − 3。
2015年全国高中数学联赛试卷解析

2015 年全国高中数学联合竞赛参考答案及评分标准一试一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q =,则PQ PA ⋅的最小值为 . 答案34. 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 . 答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得 ππππππw l k w 22222≤+≤+≤. ① 当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解;(ii) ππππw w 22925≤<≤,此时2549≤≤w ;(iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w .综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑. 因此,()()285N P N Q -=.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。
中国数学奥林匹克(CMO)历届试题及解答(1986-2005)

0(i = 1, 2, . . . , n),则显然有a1 x1 + a2 x2 + · · · + an xn 0, ai −a1 > 0(i = 2, 3, . . . , n). ∴
√ sin ∠F AE FE AD 由正弦定理 sin AE 2 − AD2 = 5, ∠DAE = DE × AF .其中DE = √ √ F E = F D − DE = AF 2 − AD2 − DE = m2 − 122 − 5 > 0. ∴ m > 13, 且∠A为锐角等价于 ∠A为直角等价于 ∠A为钝角等价于 解得当13 < m < 当m = 当m >
∈ Z.
1 3 2n+1 (2n + 1)ϕ = (2l + 3 = 2t + 3 2 )π (l ∈ Z). ∴ (2n + 1)(2k + 6 ) = 2l + 2 , 6 2 , n = 6t + 4(t ∈ Z). 5(2n+1) 5 ) = 2l + 3 = 2t + 3 或(2n + 1)(2k + 6 2, 6 2 , 5|4t + 3, t ≡ 3 (mod 5)(t ∈ Z).
zk ∈A 2 , yk A,x2 k 4 2 1 √
1 4 ,即
2 x2 k + yk 2 x2 k + yk
√
2xk . yk |
zk ∈A zk ∈A