第七课时《二次函数的解析式》课件 新人教版

合集下载

《高三数学二次函数》课件

《高三数学二次函数》课件

3 二次函数的单调性
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
4 二次函数的极值
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 0)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递减,求$a$的取值范围。
提高习题2
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 1)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递增,求$a$的取值范围。
04
下一步学习计划
01
深入学习其他类型的函数,如 三角函数、指数函数等,进一 步拓展数学知识面。
02
加强数学练习,通过大量的习பைடு நூலகம்题训练提高自己的解题能力和 数学思维能力。
03
学习数学中的其他重要概念和 定理,如导数、积分等,为后 续的学习打下坚实的基础。
04
参加数学竞赛或课外活动,与 其他同学一起探讨数学问题, 共同进步。
基础习题2
已知二次函数$f(x) = ax^2 + bx + c$在$x = 2$处取得最小值,求$a$的取值范围。
基础习题3

九年级数学上册第二十二章二次函数专题7运用顶点坐标与对称轴求二次函数的解析式课件新版新人教版

九年级数学上册第二十二章二次函数专题7运用顶点坐标与对称轴求二次函数的解析式课件新版新人教版
第二十二章 二次函数
专题7 运用顶点坐标与对称轴求二 次函数的解析式
武汉专版·九年级上册
一、已知顶点坐标或对称轴 1.经过原点的抛物线的解析式可以是y=ax2+bx(a≠0),对于这样的抛物线: (1)当顶点坐标为(1,1)时,a=_-__1_; (2)当顶点坐标为(m,m)(m≠0)时,a与m之间的关系式是_a_=_-_1m________.
21.有编号为A1,A2,…A10的10个 零件, 测量其 直径( 单位:cm), 得到下 面数据 : 编号
直径 (ⅱ)求这2个零件直径相等的概率.
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
1.51
1.49
1.49
谢谢
感谢阅读下载!祝生活愉快
25
25 2
6.二次函数y=ax2-4ax+c(a≠0)的最大值为1,且过点(-2,-15).求抛物线的解
Hale Waihona Puke 一.1-5 CCBAA 6-8ABC 二.1.The government decided to begin a campaign to wipe out the Bird Flu which/that had killed tens of people. 2.The parents are worried about the safety of their 12-year-old son who/that has been missing for 3 days. 3.Have you got the e-mail which/that she sent to you yesterday. 4.The boy whom/who police are searching for has come back. 5.I lost a bag in which there was something important last night.

《二次函数》PPT优秀课件

《二次函数》PPT优秀课件


• 3.观察上述函数函数关系有哪些共同之处? 。
归纳总结
• 一般地,形如y=ax2+bx+c(a,b,c为常数且a≠0)的函数,叫 做二次函数。其中x是自变量,a叫做二次项系数,b叫做一次项 系数,c叫做常数项.
• 注意:判断二次函数注意自变量最高次数为2,且二次项系数不为0
03 例题练习
例题
练习
• 1.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率
都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=

• 2.多边形的对角线条数d与边数n之间的关系式为

;当d=35时,多边形的边数n=

,自变量n的取值范围是 且
练习
3.已知两个变量x,y之间的关系为y=(m-2)xm2-2+x-1,若x,y之间是二次函数关系, 求m的值.
4.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a为10米)围成的中间隔有一道 篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米. (1)求S与x的函数关系式; (2)如果要围成面积为45平方米的花圃,AB的长为多少米?
04 作业布置
作业布置
1.下列函数是二次函数的是( )
A.y=2x+1
二次函数
01
教学目标
目录
02 03
知识点框架
例题练习
04
作业布置
01
教学目标
掌握二次函数的定义并能根据实际问题列出二次函数解析式
02 知识点框架
二、新课讲授
• 1.设一个正方形的边长为x,则该正方形的面积y=

• 2.用一根长为40的铁丝围成一个半径为的扇形,求扇形的面积与它的半径之

人教版九年级上册数学课件:二次函数的应用

人教版九年级上册数学课件:二次函数的应用

a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y=ax2+bx+c (1)a确定抛物线的开口方向:
y
•(0,c)
0
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
(小)值,这个最大(小)值是多少?
(6)x为何值时,y<0?x为何值时,y>0?
解:(6)
y
由图象可知
当-3 < x < 1时,y < 0 当x< -3或x>1时,y > 0
•(-3,0) • • (-1,-2)
•(1,0) x
0
•(0,-3–) 2
人教版九年级上册数学课件:二次函 数的应 用
人教版九年级上册数学课件:二次函 数的应 用
(6)x为何值时,y<0?x为何值时,y>0?
解 :(4)由对称性可知
y
MA=MB=√22+22=2√2
• • AB=|x1-x2|=4
A(-3,0) D B(1,0) x
∴ ΔMAB的周长=2MA+AB
0
=2 √2×2+4=4 √2+4 Δ=M—12 A×B4面×积2==4—12AB×MD
3
• •C(0,-2–) • M(-1,-2)
人教版九年级上册数学课件:二次函 数的应 用

《二次函数》PPT课件 人教版九年级数学

《二次函数》PPT课件 人教版九年级数学
解得m=0或m=1,又∵m﹣1≠0即m≠1, ∴当m=0时,这个函数是一次函数; (2)根据二次函数的定义, 得:m2﹣m≠0,解得m1≠0,m2≠1, ∴当m1≠0,m2≠1时,这个函数是二次函数.
课堂检测
基础巩固题
1 .下列函数中,(x是自变量),是二次函数的为( C )
A. y=ax2+bx+c
探究新知
问题3 某工厂一种产品现在的年产量是20件,计划今后两年
增加产量.如果每年都比上一年的产量增加x倍,那么 两年后这种产品的产量y将随计划所定的x的值而确 定,y与x之间的关系应怎样表示? 这种产品的原产量是20件, 一年后的产量是 20(1+x) 件, 再经过一年后的产量是 20(1+x)2 件,即两年后的产量为
素养目标
2. 能根据实际问题中的数量关系列出二次函数 解析式,并能指出二次函数的项及各项系数.
1.掌握二次函数的定义,并能判断所给函数 是否是二次函数.
探究新知
知识点 1 二次函数的概念
问题1 正方体的六个面是全等的正方形(如下图),设正方
形的棱长为x,表面积为y,显然对于x的每一个值, y都 有一个对应值,即y是x的函数,它们的具体关系可以表 示为 y=6x2①.
二次函数的判别: ①含未知数的代数式为整式; ②未知数最高次数为2; ③二次项系数不为0.
探究新知
问题2 多边形的对角线总条数d与边数n有什么关系?
如果多边形有n条边,那么它有 n 个顶点,从一个顶 点出发,可以作 (n-3) 条对角线.
多边形的对角线总数
即d=
1 2
n2-
3 2
n②.
d=
1 2
n(n-3).
M

《二次函数》优质PPT课件(共65页ppt)

《二次函数》优质PPT课件(共65页ppt)

抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14

y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500

人教版九年级数学上册二次函数的图像与性质课件

人教版九年级数学上册二次函数的图像与性质课件

解析式(a≠0)
穷人的孩子一早般当家式。
y=ax2+bx+c
让自己的内心藏着一条巨龙,既是一种苦刑,也是一种乐趣。
器大者声必闳,志高者意必远。
沧海可填山可移,男儿志气当如斯。
丈夫清万里,谁能扫一室。
丈夫四海志顶,点万里式犹比邻。
y=a(x-h)2+k
母鸡的理想不过是一把糠。
心志要坚,意趣要乐。
海纳百川有容乃大壁立千仞无欲则刚
C.当x<-1时,y 随x的增大而增大
D.当x=0时, 有最小值是3
ห้องสมุดไป่ตู้
【练习2】若 A(-4,y1),B(-1,y2) ,C(2,y3) 为二次函数 y=-(x+2)2+3 的图象上的三点,则 y1,y2 ,y3 的关系是( ). A.y1<y2<y3 B. y3<y1<y2 C. y3<y2<y1 D. y2<y1<y3
【a<0】 x<-b/2a,即在对称轴的左侧,y随x的增大而增大 x>-b/2a,即在对称轴的右侧,y随x的增大而减小
图像与性质
y x=h
二次函数
一般式 [y=ax2+bx+c,(a≠0)]
x O a>0
y O
x
x=h
a<0
二次函数
图像与性质 一般式
【例题】点 (a,5)在 y=x2+5x-1的图象上,则a为(
ax2 a<0
图像与性质
y x=h
x O a>0
y O
x
x=h a<0
二次函数
顶点式 [y=a(x-h)2+k,(a≠0]

用待定系数法求二次函数解析式PPT课件

用待定系数法求二次函数解析式PPT课件
人教版 九年级上
第22章 二次函数
22.1 二次函数的图象和性质 *第7课时 用待定系数法求二次函数
解析式
提示:点击 进入习题
1 一般式 2 见习题 3 见习题 4 顶点式 5 见习题
6 见习题 7 交点式 8 见习题 9 见习题
答案显示
1.已知函数图象上的三个点的坐标求函数解析式时,设出 二次函数的__一__般__式__,即y=ax2+bx+c(a≠0),然后将三 个点的坐标分别代入解析式,求出待定的系数a,b,c即 可.
2.(2020·陕西)如图,抛物线y=x2+bx+c经过点(3,12)和 (-2,-3),与两坐标轴的交点分别为A,B,C,它的对 称轴为直线l.
(1)求该抛物线的解析式. 解:将点(3,12)和(-2,-3)的坐标代入抛物线的解析式, 得1-2=3=9+4-3b2+b+c,c,解得bc==-2,3. 故抛物线的解析式为 y=x2+2x-3.
解:如图所示.该曲线 是一条抛物线.
(4)设直线y=m(m>-2)与抛物线及(3)中的点P′所在曲线都有
两个交点,交点从左到右依次为A1,A2,A3,A4,请根 据图象直接写出线段A1A2,A3A4之间的数量关系: __A_3_A_4_-__A_1_A_2_=__1____.
4.若已知顶点坐标或对称轴或函数的最值,用待定系数法 求解析式时,一般设___顶__点__式_____,即y=a(x-h)2+k.
课堂导练
11.(2020·吉林)如图是人们常用的插线板。可以用_试__电__笔___ 来判断插孔接的是火线还是零线;当把三线插头插入三 孔插座中时,用电器的金属外壳就会与___大__地___相连, 以防止触电事故的发生。
8.(2020·攀枝花)如图,开口向下的抛物线与x轴交于点A(-1, 0),B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物 线上的一点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人 梯顶端椅子B处,其身体(看成一点)的路线是抛物线 3 2 y=- x +3x+1 的一部分,如图。 5 (1)求演员弹跳离地面的最大高度; (2)已知人梯高BC=3.4米,在一次表演中,人梯到起 跳点A的水平距离是4米,问这次表演是否成功?请说明 理由。
C
5 · · · · ·
· · ·o B· · x -3 –2 –1 1 2 · ·
A
· -3 ·
-4
式或交点式求解。
1、已知抛物线y=ax2+bx+c经过A, B,C三点,当时,其图象如图所 示。求抛物线的解析式,写出顶点 坐标。
y 2 A 4 -3 B 5 C x
如图,在直角坐标系中,以点 A( 3,0) 为圆心,以 2 3 为半径的圆与x轴相交于点B、C,与y轴相交于点D、 E. 1 2 若抛物线 y x bx c 经过C、B两点,求抛 3 物线的解析式,并判断点D是否在该抛物线上. y E B D OA C x
交点式: y a( x x
1
)(x x2 )
·
例3 已知抛物线与x轴的两个交 点为A(-3,0)、B(1,0),又经过 点C(2,5),求其解析式。
· ·
充分利用条件 合理选用的两个交点B、C间的距离 为4,求其解析式。 分析:先求出B、C两点 的坐标,然后选用顶点
B B
A A
C C
26、1、5用待定系数法求二次函 数的解析式
y
y ax bx c
2
一般式 顶点式 交点式
o
x
一般式:
例1、求经过有三点A(-2,-3), B(1,0),C(2,5)的二次函 数的解析式.
顶点式: y
a( x h) k
2
例2 、已知抛物线的顶点为
D(-1,-4),又经过点C(2,5), 求其解析式。
相关文档
最新文档