6852 Distributed AlgorithmsSpring, 2008
分布式系统 入门书

分布式系统入门书
- 《分布式系统原理与范型》(Distributed Systems: Principles and Paradigms):这本书涵盖了分布式系统的基本原理、设计和实现,是一本很好的入门书籍。
- 《大规模分布式系统设计》(Designing Data-Intensive Applications):这本书由Martin Kleppmann编写,介绍了构建可靠、高效和可扩展的分布式系统所需的各种技术。
- 《分布式系统概念与设计》(Distributed Systems: Concepts and Design):这是一本比较全面的分布式系统书籍,介绍了分布式系统的各个方面,包括通信、安全、一致性、故障处理等。
- 《分布式算法》(Distributed Algorithms):这是一本比较深入的分布式系统书籍,介绍了分布式算法的各种问题和解决方法。
这些书籍可以帮助你了解分布式系统的基础知识,并逐步深入到更复杂的主题。
如果你对某个特定的主题感兴趣,也可以根据相关的书籍进行更深入的学习。
Analyzing the Scalability of Algorithms

Analyzing the Scalability ofAlgorithmsAlgorithms are essential tools used in various fields such as computer science, data analysis, and machine learning. The scalability of algorithms refers to their ability to handle increasing amounts of data or growing computational demands efficiently without compromising performance. In this article, we will delve into the concept of scalability of algorithms and discuss various factors that influence it.One of the key factors that affect the scalability of algorithms is the input size. As the amount of data increases, the algorithm should be able to process it within a reasonable time frame. The efficiency of an algorithm can be measured in terms of its time complexity, which describes how the running time of the algorithm grows with the size of the input. Algorithms with a lower time complexity are more scalable as they can handle larger inputs without a significant increase in processing time.Another important factor to consider is the space complexity of an algorithm. Space complexity refers to the amount of memory or storage space required by the algorithm to solve a problem. As the input size grows, the algorithm should not consume an excessive amount of memory, as this can lead to performance degradation or even failure to complete the computation. Algorithms with lower space complexity are more scalable as they can operate efficiently even with limited memory resources.Moreover, the structure and design of an algorithm can greatly impact its scalability. Algorithms that are well-structured and modularized are easier to scale as they can be optimized or parallelized to improve performance. Additionally, the choice of data structures and algorithms used within the main algorithm can influence its scalability. For example, utilizing efficient data structures such as arrays or hash tables can improve the scalability of the algorithm by reducing the time and space required for processing.Furthermore, the scalability of algorithms can also be affected by external factors such as hardware limitations or network constraints. Algorithms that are designed towork in a distributed system or parallel computing environment are more scalable as they can distribute the workload across multiple processing units. However, algorithms that rely on a single processor or have high communication overhead may not scale well when faced with increasing computational demands.In conclusion, analyzing the scalability of algorithms is crucial for ensuring optimal performance in handling large datasets or complex computational tasks. Understanding the factors that influence scalability, such as time complexity, space complexity, algorithm structure, and external constraints, can help developers and researchers design and implement scalable algorithms. By considering these factors and optimizing the algorithm accordingly, we can improve efficiency, reduce resource consumption, and achieve better performance in various applications.。
多变量遗传算法python

多变量遗传算法python
多变量遗传算法(MGA)是一种优化算法,它结合了遗传算法和多变量优化的特点,用于解决多变量的优化问题。
在Python中,可以使用各种库和工具来实现多变量遗传算法的模型和求解过程。
首先,我们可以使用Python中的遗传算法库,如DEAP (Distributed Evolutionary Algorithms in Python)或Pyevolve来实现多变量遗传算法。
这些库提供了丰富的遗传算法工具和函数,可以帮助我们快速构建和求解多变量遗传算法模型。
其次,针对多变量优化问题,我们需要定义适当的变量编码方式,交叉和变异操作,以及适应度函数的计算方法。
在MGA中,通常会采用二进制、实数或其他编码方式来表示多个变量,并根据实际问题选择合适的交叉和变异操作。
另外,对于多变量遗传算法的求解过程,我们需要考虑种群大小、迭代次数、选择策略等参数的设置,以及如何有效地评估和改进种群的适应度。
在Python中,我们可以利用numpy、scipy等数值计算库来进行种群操作和适应度函数的计算。
除此之外,还可以使用Python中的可视化工具,如matplotlib、seaborn等库来对多变量遗传算法的求解过程和结果进行可视化分析,以便更直观地理解算法的性能和收敛情况。
总之,通过Python中丰富的库和工具,我们可以相对容易地实现和求解多变量遗传算法,从而解决复杂的多变量优化问题。
希望以上信息能够帮助你全面了解多变量遗传算法在Python中的应用。
运筹算法 分布式 加速方法

运筹算法分布式加速方法英文回答:Distributed Optimization Algorithms: Acceleration Methods.Distributed optimization algorithms are used to solve large-scale optimization problems that are distributed across multiple computing nodes. These algorithms can be used to solve a wide variety of problems, includingtraining machine learning models, optimizing supply chains, and scheduling tasks in a distributed system.One of the main challenges in distributed optimization is the communication overhead. Each time the nodes in the system need to share information, they must send messages over the network. This can be a significant bottleneck, especially for large-scale problems.Acceleration methods are a class of algorithms that canbe used to reduce the communication overhead in distributed optimization. These methods work by approximating the optimal solution to the optimization problem using a series of local updates. Each node in the system only needs to share information with its neighbors, and the updates can be computed in parallel.There are a number of different acceleration methods that can be used for distributed optimization. Some of the most popular methods include:Gossip averaging: This method is based on the idea of spreading information through a network by randomly exchanging messages between nodes.Conjugate gradient: This method is a classical optimization algorithm that can be used to solve a variety of problems, including distributed optimization.Nesterov's accelerated gradient: This method is a variant of the conjugate gradient method that can be used to accelerate convergence.The choice of which acceleration method to use will depend on the specific problem being solved and theavailable resources.中文回答:分布式优化算法,加速方法。
多智能体系统的分布式算法

多智能体系统的分布式算法(Distributed Algorithms for Multi-Agent Systems)多智能体系统是指由多个智能体组成的系统,智能体之间具有一定的互动和协作能力。
多智能体系统的设计和实现涉及到许多领域,其中一个重要的方向是分布式算法。
本文将介绍,包括基本概念、算法分类和应用案例。
1. 基本概念是一种通过智能体之间的协作,实现系统全局目标的一类算法。
在分布式算法中,每个智能体只能访问部分信息,没有全局信息的全局视图。
因此,分布式算法需要设计协议和机制,使得智能体之间能够协调和合作,达到系统的全局目标。
常见的分布式算法包括同步算法和异步算法。
同步算法是指智能体之间按照固定的时间步进行通信和计算;异步算法是指不同智能体之间的通信和计算时间不一定相同。
此外,常见的分布式算法还包括基于消息传递和共享内存的算法。
基于消息传递的算法是指智能体之间通过消息交换实现通信和合作;基于共享内存的算法是指智能体之间通过共享内存实现通信和合作。
2. 算法分类常见的分布式算法包括分布式图算法、分布式优化算法和分布式控制算法。
分布式图算法是指通过图模型来表示分布式系统,智能体之间的交互和协作通过图算法来实现。
其中,常见的图算法包括最短路径算法、连通性算法和拓扑排序算法等。
分布式优化算法是指通过优化问题来设计分布式算法。
其中,常见的优化问题包括最小生成树、最大流和最优策略等。
分布式控制算法是指通过控制理论和算法,设计和实现多智能体系统的控制和协作。
其中,常见的控制算法包括状态反馈控制、事件触发控制和模型预测控制等。
3. 应用案例在许多应用领域具有广泛的应用价值。
其中,一些典型的应用案例包括:(1)无人机编队控制。
无人机编队控制是指通过多个无人机之间的协作和控制,实现无人机编队的稳定运动和协同决策。
其中,分布式控制算法和机器学习算法是实现无人机编队控制的关键算法。
(2)智能交通系统。
智能交通系统是指通过智能交通管理、智能车辆控制和智能路网管理等手段,提高交通系统的效率和安全性。
FLP不可能原理

FLP不可能原理1. FLP impossibility背景FLP Impossibility(FLP不可能性)是分布式领域中⼀个⾮常著名的结果,该结果在专业领域被称为“定理”,其地位之⾼可见⼀斑。
该定理的论⽂是由Fischer, Lynch and Patterson三位作者于1985年发表,之后该论⽂毫⽆疑问得获得了Dijkstra奖。
顺便要提⼀句的是,Lynch是⼀位⾮常著名的分布式领域的⼥性科学家,研究遍布分布式的⽅⽅⾯⾯,对分布式领域有着极其卓越的贡献,其著有<<Distributed Algorithms>>⼀书,书中有⾮常严谨⽽简洁的逻辑讨论了许许多多的分布式算法。
FLP给出了⼀个令⼈吃惊的结论:在异步通信场景,即使只有⼀个进程失败,也没有任何算法能保证⾮失败进程达到⼀致性!因为同步通信中的⼀致性被证明是可以达到的,因此在之前⼀直有⼈尝试各种算法解决以异步环境的⼀致性问题,有个FLP的结果,这样的尝试终于有了答案。
FLP证明最难理解的是没有⼀个直观的sample,所有提到FLP的资料中也基本都回避了sample的要求。
究其原因,sample难以设计,除⾮你先设计⼏种⼀致性算法,并⽤FLP说明这些算法都是错误的。
2. 系统模型任何分布式算法或定理,都尤其对系统场景的假设,这称为系统模型。
FLP基于下⾯⼏点假设:异步通信与同步通信的最⼤区别是没有时钟、不能时间同步、不能使⽤超时、不能探测失败、消息可任意延迟、消息可乱序通信健壮只要进程⾮失败,消息虽会被⽆限延迟,但最终会被送达;并且消息仅会被送达⼀次(⽆重复)fail-stop模型进程失败如同宕机,不再处理任何消息。
相对Byzantine模型,不会产⽣错误消息失败进程数量最多⼀个进程失败在现实中,我们都使⽤TCP协议(保证了消息健壮、不重复、不乱序),每个节点都有NTP时钟同步(可以使⽤超时),纯的异步场景相对⽐较少。
计算机应用技术专业本科直博研究生培养方案(081203)

计算机应用技术专业本科直博研究生培养方案(081203)(信息科学技术学院)一、培养目标(一)较好地掌握马克思主义、毛泽东思想和中国特色社会主义理论体系,深入贯彻科学发展观,热爱祖国,遵纪守法,品德良好,学风严谨,身心健康,具有较强的事业心和献身精神,积极为社会主义现代化建设事业服务。
(二)在本门学科上掌握坚实宽广的基础理论和系统深入的专门知识,同时要掌握一定的相关学科知识,具有独立从事科学研究工作的能力,在科学或专门技术上做出创造性的成果。
(三)熟练掌握一门外语,能阅读本专业外文文献,具有运用外文写作和进行国际学术交流的能力。
二、培养方式与学习年限(一)培养方式本科直博研究生进入博士阶段的学习后,一方面进行必要的课程学习,夯实专业基础,拓展学术视野;另一方面开始着手科学研究。
对本科直博研究生的课程要重新设置,充分体现学科特色和培养需求;课程时间一般为一至二年。
以资格考核的结果作为能否进入下一阶段的依据。
通过资格考试的本科直博研究生进入科学研究和撰写博士学位论文阶段,学习年限一般为三到四年;未通过资格考试的可按照同专业硕士研究生的培养要求进行培养,时间一般为二到三年。
本科直博研究生,在科研能力、学位论文等方面的要求,均应高于同专业四年制博士研究生要求。
(二)学习年限本科直博研究生学习年限一般为五年至六年。
若在五年内不能完成预定的学业,可适当延长学习年限,但一般不超过六年。
三、主要研究方向1.计算机网络与通信2.网络与嵌入式系统3.普适计算与情景感知计算4.大数据分析与知识处理5.分布计算与云计算技术6.模式识别与机器学习7.模式识别与机器智能四、学分要求和课程设置(一)学分要求本科直博研究生课程包括学位公共课、学位基础课、学位专业课。
学位公共课包括政治理论、外国语等公共必修课程和公共选修课程,至少修读8学分(注:公共选修课指研究方法类课程。
如不选修则应以学位专业课相应学分抵充);学位基础课为学位必修课程,至少选修3门,不少于8学分;学位专业课包括以学科群为单位开设的专业必修课程和指向研究方向的专业选修课程,至少选修8门,不少于17学分。
遗传算法和粒子群算法结合代码python

遗传算法和粒子群算法结合代码python遗传算法和粒子群算法是两种非常实用的优化算法,在实际应用中具有广泛的适用性。
在本篇文章中,我们将介绍如何将遗传算法和粒子群算法结合起来,以实现更加高效和准确的优化过程。
具体来说,我们将以python语言为基础,编写代码来实现这种结合。
1. 遗传算法遗传算法是一种类似于进化过程的优化算法,它通过模拟生物进化过程来实现优化。
基本思路是将问题的可行解按照一定的方式编码成染色体序列,然后通过交叉、变异等操作产生新的染色体,按照适应度进行筛选,最终得出最优解。
在python中,我们可以使用遗传算法库DEAP(Distributed Evolutionary Algorithms in Python)快速地实现遗传算法。
以下是一段使用DEAP库实现遗传算法的代码:```import randomfrom deap import base, creator, tools# 定义一个求最小值的适应度函数def eval_func(individual):return sum(individual),# 创建遗传算法工具箱creator.create("FitnessMin", base.Fitness, weights=(-1.0,))creator.create("Individual", list, fitness=creator.FitnessMin)toolbox = base.Toolbox()# 注册染色体初始化函数(0或1)toolbox.register("attr_bool", random.randint, 0, 1)# 定义遗传算法实现函数def ga_algorithm():pop = toolbox.population(n=50)CXPB, MUTPB, NGEN = 0.5, 0.2, 50# 迭代遗传算法for gen in range(NGEN):# 交叉offspring = tools.cxBlend(pop, alpha=0.1)# 变异for mutant in offspring:if random.random() < MUTPB:toolbox.mutate(mutant)del mutant.fitness.values# 评估适应度fits = toolbox.map(toolbox.evaluate, offspring)for fit, ind in zip(fits, offspring):ind.fitness.values = fit# 选择pop = toolbox.select(offspring + pop, k=len(pop))gen_count += 1# 输出每代最小适应度和均值fits = [ind.fitness.values[0] for ind in pop]print("第 %d 代:最小适应度 %f, 平均适应度 %f" % (gen_count, min(fits), sum(fits) / len(pop)))# 返回最优解best_ind = tools.selBest(pop, 1)[0]print("最优解:", best_ind)```上述代码中,我们首先定义了一个求最小值的适应度函数,然后使用DEAP库创建了遗传算法工具箱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• (Mutual exclusion)
– No two processes are in the critical region, in any state in .
• (Progress)
– If in some state of , someone is in T and no one is in C, then sometime thereafter, someone C. – If in some state of , someone is in E, then sometime thereafter, someone R.
• To simplify, avoids internal process actions---combines these with sends, receives, or register access steps. • Sometimes considers message losses (“loss” steps). • Many models, must specify which in each case. • Defines executions:
• [ Dolev book, 00 ] summarizes main ideas of the field.
Today…
• Basic ideas, from [ Dolev, Chapter 2 ] • Rest of the book describes:
– – – – – – – Many more self-stabilizing algorithms. General techniques for designing them. Converting non-SS algorithms to SS algorithms. Transformations between models, preserving SS. SS in presence of ongoing failures. Efficient SS. Etc.
6.852: Distributed Algorithms Spring, 2008
Class 24
Today’s plan
• Self-stabilization • Self-stabilizing algorithms:
– Breadth-first spanning tree – Mutual exclusion
• Composing self-stabilizing algorithms • Making non-self-stabilizing algorithms selfstabilizing • Reading:
– [ Dolev, Chapter 2 ]
Self-stabilization
• A useful fault-tolerance property for distributed algorithms. • Algorithm can start in any state---arbitrarily corrupted. • From there, if it runs normally (usually, without any further failures), it eventually gravitates back to correct behavior. • [ Dijkstra 73: Self-stabilizing systems in spite of distributed control ]
• Q: Require that L be “suffix-closed”?
Self-stabilization: Definition
• A global state of algorithm A is safe with respect to legal set L, provided that every fair execution fragment of A that starts with s is in L. • Algorithm A is self-stabilizing with respect to legal set L if every fair execution fragment of A contains a state s that is safe with respect to L.
• Example: Self-stabilizing mutual exclusion algorithm A
Weaker definition of SS?
• Sometimes, [Dolev] appears to be using a slightly weaker definition of self-stabilization. • Instead of:
– Algorithm A is self-stabilizing for legal set L if every fair execution fragment of A contains a state s that is safe with respect to L.
• Uses:
– Algorithm A is self-stabilizing for legal set L if every fair execution fragment has a suffix in L.
– Dijkstra’s most important contribution to distributed computing theory. – [ Lamport talk, PODC 83 ] Reintroduced the paper, explained its importance, popularized it. – Became (still is) a major research direction. – Won PODC Influential Paper award, in 2002, died 2 weeks later; award renamed the Dijkstra Prize.
• Same argument for shared-memory algorithms.
SS Algorithm 1: Breadth-first spanning tree
• Shared-memory model • Connected, undirected graph G = (V,E), where V = { 1,2,…,n }. • Processes P1,…,Pn, where P1 is a designated root process. • Some knowledge is permanent:
– Like ours, but needn’t start in initial state. – Same as our “execution fragments”.
• Fair executions: Described informally, but our task-based definition is fine.
– rij written by Pi, read by Pj.
– rij.parent = 1 if j is i’s parent, 0 otherwise. – rij.dist = distance from root to i in the BFS tree = smallest number of hops on any path from 1 to i in G. – Moreover, the values in the registers should remain constant from some point onward.
• Bypassing the safe state requirement. • Q: Equivalent definition? Seems not, in general. • We’ll generally assume the stronger, “safe state” definition.
Legal execution fragments
• Given a distributed algorithm A, define a set L of “legal” execution fragments of A. • L can include both safety and liveness conditions. • Example: Mutual exclusion
Self-stabilization
• Considers:
– Message-passing models, FIFO reliable channels – Shared-memory models, read/write registers – Asynchronous, synchronous models
– Implies that the suffix of starting with s is in L. – Also implies that any other fair execution fragment starting with s is in L. – If L is suffix-closed, implies that every suffix of starting from s or a later state is in L. – Start A in any state, possibly with > 1 process in the critical region. – Eventually A reaches a state after which any fair execution fragment is legal: satisfies mutual exclusion + progress.