第4课时函数的表示形式

合集下载

函数的表示法教案

函数的表示法教案

1.2.2 函数的表示法一、教材分析:函数的表示法是“函数及其表示”这一节的主要内容之一.学习函数表示法,可以加深对函数概念的理解,领悟数形结合,化归等函数思想,函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念.二、学习目标:①了解函数的一些基本表示法(列表法、图象法、解析法);②会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想.三、教学重点:掌握函数的三种表示方法:解析法、图象法、列表法.四、教学难点:会根据不同的需要选择恰当方法表示函数.五、课时安排:2课时六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境语言是沟通人与人之间联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为生日快樂!英文为Happy Birthday!法文是Bon Anniversaire!德文是Alles Gute zum Geburtstag!西班牙文为Feliz CumpleaRos!印度尼西亚文是Selamat Ulang Tahun!荷兰文的生日快乐为Van Harte Gefeliciteerd metjeverj aardag!在俄语中则是С днемрождения!……问题1:我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么对于函数,又有什么不同的表示方法呢?这节课我们就来研究这个问题(板书课题).2、自主探索,尝试解决结合研究函数概念时生活中的三个例子,以及初中学过的函数的表示方法,老师根据同学们分组讨论(回答)情况,带领学生总结出函数的三种不同表示方法.并作讲解介绍:函数的三种表示方法:解析法: 用数学表达式表示两个变量之间的对应关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.如:1.2.1的实例(1);图象法: 图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间的对应关系的方法叫做图象法.如:1.2.1的实例(2);列表法: 列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的对应关系的方法叫做列表法.如:1.2.1的实例(3).问题2:分析对比三种不同表示方法的优缺点.现提出问题让学生思考,之后根据具体实例提示并和学生一起总结得出结论:解析法能够准确表达出两个变量之间的关系,简明扼要,给自变量求函数值;不足之处,比较抽象.图象法形象直观表示两个变量之间的关系,较好地反映了两个变量的变化趋势;不足之处,变量关系不够精确.列表法通过表格直接得出函数值,没有计算过程;不足之处,不能列出定义域为区间范围的所有函数值,仅能表示有限个.(二)、合作学习让学生合作做练习,教师巡视指导【例1】某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).解:这个函数的定义域是数集{1,2,3,4,5},用解析法可将函数y=f(x)表示为y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为用图象法可将函数y=f(x)表示为注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等;②解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;③图象法:根据实际情境来决定是否连线;④列表法:选取的自变量要有代表性,应能反映定义域的特征.【例2】下表是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表:请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势.解:把“成绩”y看成“测试序号”x的函数,用图象法表示函数y=f(x),如图所示.由图可看到,王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀.张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大.赵磊同学的数学学习成绩低于班级平均水平,但他的成绩呈上升趋势,表明他的数学成绩稳步提高.点评:本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样便于研究成绩的变化特点.【例3】画出函数y=|x|的图象.分析:学生思考函数图象的画法:①化简函数的解析式为基本初等函数;②利用变换法画出图象,根据绝对值的概念来化简解析式.解法一:由绝对值的概念,我们有y=⎩⎨⎧<≥0.x x,-0,x x,所以,函数y=|x|的图象如图所示.解法二:画函数y=x 的图象,将其位于x 轴下方的部分对称到x 轴上方,与函数y=x 的图象位于x 轴上方的部分合起来得函数y=|x|的图象如图1-2-2-10所示.归纳总结:带有绝对值问题的处理方法…………………………去掉绝对值符号. 例4.某市“招手即停”公共汽车的票价按下列规则制定: (1)乘坐汽车5千米以内(含5千米),票价2元;(2)5千米以上,每增加5千米,票价增加1元(不足5千米按5千米计算),如果某条线路的总里程为20千米,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象. 分析:学生讨论交流题目的条件,弄清题意.本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.由于里程在不同的范围内,票价有不同的计算方法,故此函数是分段函数.解:设里程为x 千米时,票价为y 元,根据题意得x ∈(0,20]. 由空调汽车票价制定的规定,可得到以下函数解析式:y=⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<≤<.2015,5,1510,4,105,3,50,2x x x x根据这个函数解析式,可画出函数图象,如上图所示. 归纳总结分段函数:① 研究分段函数的性质时,应根据“先分后合”的原则,尤其是在作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象. ② 分段函数是一个函数.③ 定义域是各段自变量求值的并集,写定义域时区间端点需不重不漏. ④ 值域是各段函数值的并集.⑤ 最大值是各段最大值的最大者,最小值是各段最小值的最小者,求最值时先分段求,再比较.⑥ 求分段函数的函数值时,关键是看自变量的取值属于哪一段,就用哪一段的解析式.⑷映射的概念①.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).②.先看几个例子,两个集合A 、B 的元素之间的一些对应关系: (ⅰ)开平方; (ⅱ)求正弦;(ⅲ)求平方;(ⅳ)乘以2.归纳引出映射概念:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.记作“f :A →B ” 说明:(1)这两个集合有先后顺序,A 到B 的映射与B 到A 的映射是截然不同的,其中f 表示具体的对应法则,可以用多种形式表述.(2)“都有唯一”是什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思. 例5.下列哪些对应是从集合A 到集合B 的映射?(1)A={|P P 是数轴上的点},B=R ,对应关系f :数轴上的点与它所代表的实数对应; (2)A={|P P 是平面直角坐标中的点},}{(,)|,,B x y x R y R =∈∈对应关系f :平面直角坐标系中的点与它的坐标对应;(3)A={三角形},B={|},x x 是圆对应关系f :每一个三角形都对应它的内切圆; (4)A={|x x 是新华中学的班级},}{|,B x x =是新华中学的学生对应关系f :每一个班级都对应班里的学生.解:⑴⑵⑶中的对应f: A→B是从集合A到集合B的一个映射,⑷中的对应f: A →B不是从集合A到集合B的一个映射.(三)、当堂检测1.教师引导学生对函数的三种表示法进行对比,并让学生归纳然后说出它们各自的的优缺点.2.如图为一分段函数的图象,则该函数的定义域为__________,值域为__________.解析:由图象可知,第一段的定义域为[-1,0),值域为[0,1);第二段的定义域为[0,2],值域为[-1,0].因此该分段函数的定义域为[-1,0)[0,2]=[-1,2],值域为[0,1)[-1,0]=[-1,1).答案:[-1,2] [-1,1)3.已知函数f(x)=2000x xx⎧>⎨≤⎩,,,,求f(2),f(-3)的值.解:∵2>0,∴f(2)=22=4.∵-3≤0,∴f(-3)=0.(四)、课堂小结请同学们回想一下,本节课我们学了哪些函数的表示方法?在具体的实际问题中如何恰当地选择?理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法.这节课学习的主要内容及要掌握的知识点:①分段函数的表示,求值等问题.②表示函数的三种方法,映射的概念.七.课外作业课本P24习题1.2 A组第7,8,9题.八、教学反思:。

2020年高考理科数学复习第4讲 函数及其表示

2020年高考理科数学复习第4讲 函数及其表示

第二章函数、导数及其应用第4讲函数及其表示考情分析考纲要求命题趋势一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有__唯一确定__的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的__定义域__,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的__值域__.2.函数的表示方法(1)用数学表达式表示两个变量之间的对应关系的方法叫做__解析法__.(2)用图象表示两个变量之间的对应关系的方法叫做__图象法__.(3)列出表格表示两个变量之间的对应关系的方法叫做__列表法__.3.函数的三要素(1)函数的三要素:__定义域__,对应关系,值域.(2)两个函数相等:如果两个函数的__定义域__相同,并且对应关系完全一致,则称这两个函数相等.4.分段函数若函数在定义域的不同子集上的__对应关系__不同,则这种形式的函数叫做分段函数,它是一类重要的函数.分段函数的定义域等于各段函数自变量取值的并集,分段函数的值域等于各段函数值的并集.5.映射的概念一般地,设A ,B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于A 中的任意一个元素x ,在集合B 中都有__唯一确定__的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.6.复合函数一般地,对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )和u =g (x )的复合函数,记作y =f (g (x )),其中y =f (u )叫做复合函数y =f (g (x ))的外层函数,u =g (x )叫做y =f (g (x ))的内层函数.1.思维辨析(在括号内打“√”或“×”). (1)函数是建立在其定义域到值域的映射.( √ )(2)若函数的定义域和值域相同,则这两个函数是相等函数.( × ) (3)函数f (x )=x 2-x 与g (t )=t 2-t 是同一函数.( √ ) (4)f (x )=x -3+2-x 是一个函数.( × ) 解析 (1)正确.函数是特殊的映射.(2)错误.如函数y =x 与y =x +1的定义域和值域都是R ,但它们的对应关系不同,不是相等函数.(3)正确.函数f (x )=x 2-x 与g (t )=t 2-t 的定义域和对应关系相同. (4)错误.因为定义域为空集. 2.给出下列四个对应:①A =R ,B =R ,对应关系f :x →y ,y =1x +1;②A =⎩⎨⎧⎭⎬⎫a ⎪⎪ 12a ∈N *,B =⎩⎨⎧⎭⎬⎫b ⎪⎪b =1n ,n ∈N *,对应关系f :a →b ,b =1a ; ③A ={x |x ≥0},B =R ,对应关系f :x →y ,y 2=x ,x ∈A ,y ∈B ;④A ={x |x 是平面α内的矩形},B ={y |y 是平面α内的圆},对应关系f :每一个矩形都对应它的外接圆.其中是从A 到B 的映射的为( B ) A .①③B .②④C .①④D .③④解析 对于①,当x =-1时,y 值不存在,所以①不是从A 到B 的映射;对于②,A ,B 是两个集合,分别用列举法表述为A ={2,4,6,…},B =⎩⎨⎧⎭⎬⎫1,12,13,14,…,由对应关系f :a →b ,b =1a 知,②是从A 到B 的映射;③不是从A 到B 的映射,如A 中元素1对应B 中两个元素±1;④是从A 到B 的映射.3.下列四组函数中,表示同一函数的是( A ) A .f (x )=|x |,g (x )=x 2 B .f (x )=lg x 2,g (x )=2lg xC .f (x )=x 2-1x -1,g (x )=x +1D .f (x )=x +1·x -1,g (x )=x 2-1解析 A 项中,g (x )=x 2=|x |,两个函数的定义域和对应法则相同,是同一函数;B 项中的两个函数的定义域不同,故不是同一函数;C 项中,f (x )=x 2-1x -1=x +1(x ≠1)与g (x )=x+1两个函数的定义域不同,故不是同一函数;D 项中,f (x )的定义域为[1,+∞),g (x )的定义域为(-∞,-1]∪[1,+∞),所以不是同一函数,故选A .4.已知函数f (x )=x -1.若f (a )=3,则实数a =__10__. 解析 因为f (a )=a -1=3,所以a -1=9,即a =10.5.设f (x )=⎩⎪⎨⎪⎧x ,x ∈(-∞,a ),x 2,x ∈[a ,+∞),若f (2)=4,则a 的取值范围为__(-∞,2]__.解析 因为f (2)=4,所以2∈[a ,+∞),所以a ≤2,则a 的取值范围为(-∞,2].一 求函数定义域的方法(1)求函数的定义域要从对函数的定义域的理解开始.函数的定义域是使函数解析式有意义的自变量的取值范围,认清楚自变量后,就要从使解析式有意义的角度入手了.一般来说,在高中范围内涉及的有:①开偶次方时被开方数为非负数;②分式的分母不为零;③零次幂的底数不为零;④对数的真数大于零;⑤指数、对数的底数大于零且不等于1;⑥实际问题还需要考虑使题目本身有意义;⑦若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合.(2)求复合函数的定义域一般有两种情况:①已知y =f (x )的定义域是A ,求y =f (g (x ))的定义域,可由g (x )∈A 求出x 的范围,即为y =f (g (x ))的定义域;②已知y =f (g (x ))的定义域是A ,求y =f (x )的定义域,可由x ∈A 求出g (x )的范围,即为y =f (x )的定义域.【例1】 (1)函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为__(0,2]__.(2)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为__[0,1)__.解析 (1)由⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0⇒⎩⎪⎨⎪⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2].(2)由⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,得0≤x <1,即定义域是[0,1).二 求函数解析式的方法函数解析式的常见求法(1)配凑法.已知f (h (x ))=g (x ),求f (x )的问题,往往把右边的g (x )整理成或配凑成只含h (x )的式子,然后用x 将h (x )代换.(2)待定系数法.已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法.已知f (h (x ))=g (x ),求f (x )时,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元.应用换元法时要注意新元的取值范围.(4)方程组法.已知f (x )满足某个等式,这个等式除f (x )是未知量外,还有其他未知量,如f ⎝⎛⎭⎫1x (或f (-x ))等,可根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x ).【例2】 (1)(2018·湖南衡阳六校联考)已知f ⎝⎛⎭⎫1+x x =x 2+1x 2+1x ,则f (x )=__x 2-x +1(x ≠1)__.(2)已知f (x )是二次函数,且f (0)=2,f (x +1)=f (x )+x +3,则f (x )=!!! 12x 2+52x +2 ###.(3)(2018·江西宜丰中学月考)若函数f (x )满足方程af (x )+f ⎝⎛⎭⎫1x =ax ,x ∈R 且x ≠0,a 为常数,且a ≠0,a ≠±1,则f (x )=!!! a (ax 2-1)(a 2-1)x###.解析 (1)f ⎝⎛⎭⎫1+x x =x 2+1x 2+1x =⎝⎛⎭⎫x +1x 2-x +1x +1, 令x +1x=t ≠1,得f (t )=t 2-t +1,即f (x )=x 2-x +1(x ≠1). (2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=c =2,得f (x )=ax 2+bx +2.则f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=2ax +a +b =x +3,所以2a =1,且a +b =3,解得a =12,b =52,故f (x )=12x 2+52x +2.(3)因为af (x )+f ⎝⎛⎭⎫1x =ax ,所以af ⎝⎛⎭⎫1x +f (x )=a x ,两方程联立解得f (x )=a (ax 2-1)(a 2-1)x. 三 分段函数分段函数两种题型的求解策略(1)根据分段函数的解析式求函数值.首先确定自变量的取值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值(或函数值的范围)求自变量的值(或范围).应根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围.注意:当分段函数的自变量范围不确定时,应分类讨论.【例3】 (1)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=__1__. (2)(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是!!! ⎝⎛⎭⎫-14,+∞ ###. 解析 (1)∵f (x )是周期为2的函数,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12+2=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. (2)由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x >-14.1.函数f (x )=lg (-x 2+x +2)x 的定义域为( A )A .(-1,0)∪(0,2)B .(-1,0)∪(0,+∞)C .(-∞,-1)∪(2,+∞)D .(-1,2)解析 ⎩⎪⎨⎪⎧-x 2+x +2>0,x ≠0⇒x ∈(-1,0)∪(0,2),故A 正确.2.对于任意x ∈R ,下列式子都存在函数f (x )的是( D ) A .f (sin 2x )=sin x B .f (sin 2x )=x 2+x C .f (x 2+1)=|x +1|D .f (x 2+2x )=|x +1|解析 对于A 项,令x =0,得f (0)=0;令x =π2,得f (0)=1,这与函数的定义不符,故A 项错.在B 项中,令x =0,得f (0)=0;令x =π2,得f (0)=π24+π2,与函数的定义不符,故B 项错.在C 项中,令x =1,得f (2)=2;令x =-1,得f (2)=0,与函数的定义不符,故C 项错.在D 项中,变形为f (|x +1|2-1)=|x +1|,令|x +1|2-1=t ,得t ≥-1,|x +1|=t +1,从而有f (t )=t +1,显然这个函数关系在定义域(-1,+∞)上是成立的,故选D .3.(2016·江苏卷)函数y =3-2x -x 2的定义域是__[-3,1]__.解析 若函数有意义,则3-2x -x 2≥0,即x 2+2x -3≤0,解得-3≤x ≤1.4.已知f (x )=⎩⎪⎨⎪⎧log 2(15-x ),x ≤0,f (x -2),x >0,则f (3)=__4__.解析 f (3)=f (1)=f (-1)=log 216=4.易错点1 不会求抽象函数的定义域错因分析:①定义域是自变量x 的取值范围;②对应法则f 下括号内式子的取值范围与f (x )中x 的取值范围一样.【例1】 (1)若函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为________; (2)若函数f (2x +1)的定义域为(-1,0),则函数f (3x -2)的定义域为________.解析 (1)由已知得-1<2x +1<0,即-1<x <-12,所以函数f (2x +1)的定义域为⎝⎛⎭⎫-1,-12.(2)由-1<x <0,得-1<2x +1<1, 于是-1<3x -2<1,13<x <1,函数f (3x -2)的定义域为⎝⎛⎭⎫13,1. 答案 (1)⎝⎛⎭⎫-1,-12 (2)⎝⎛⎭⎫13,1 【跟踪训练1】 已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为__[-1,2]__.解析 ∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3,3],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2].易错点2 不理解定义域,值域为R 的含义错因分析:不能透彻理解定义域是使函数有意义的所有x 的取值集合;值域是所有函数值的集合.因而解决问题时易出错.【例2】 已知函数f (x )=log 2⎣⎡⎦⎤ax 2+(a -1)x +14的值域为R ,求实数a 的取值范围. 解析 f (x )的值域为R ,即t =ax 2+(a -1)x +14能取得所有大于0的实数.①a =0时,t =-x +14能取得所有大于0的实数,满足题意;②a ≠0时必有⎩⎪⎨⎪⎧a >0,Δ≥0,即⎩⎪⎨⎪⎧a >0,(a -1)2-a ≥0, 解得a ≥3+52或0<a ≤3-52.综上,a 的取值范围为⎣⎢⎡⎦⎥⎤0,3-52∪⎣⎢⎡⎭⎪⎫3+52,+∞.【跟踪训练2】 已知函数f (x )=log 2⎣⎡⎦⎤ax 2+(a -1)x +14的定义域为R ,求实数a 的取值范围.解析 f (x )的定义域为R ,即对一切实数x ,t =ax 2+(a -1)x +14的值恒大于0.①a =0时,t =-x +14的值不恒大于0;②a ≠0时,必有⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,(a -1)2-a <0,解得3-52<a <3+52.综上,a 的取值范围为⎝⎛⎭⎪⎫3-52,3+52.课时达标 第4讲[解密考纲]本考点考查函数的概念、函数的三要素以及分段函数求值等.一般以选择题、填空题的形式呈现,排在考卷靠前位置,题目难度不大.一、选择题1.设集合P ={x |0≤x ≤4},M ={y |0≤y ≤2},则下列表示从P 到M 的映射的是( D ) A .f :x →y =23xB .f :x →y =x 2-x2x -2C .f :x →y =13(x -3)2D .f :x →y =x +5-1解析 对于A ,当x =4时,y =83∉M ;对于B ,当x =1时,x 2-x 2x -2无意义;对于C ,当x =0时,y =3∉M ;D 符合映射定义,故选D .2.已知f (x )=⎩⎪⎨⎪⎧cos πx ,x ≤1,f (x -1)+1,x >1,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值为( D ) A .12B .-12C .-1D .1解析 f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫13+1+f ⎝⎛⎭⎫-43= cos π3+1+cos ⎝⎛⎭⎫-43π=12+1-12=1. 3.函数y =ln(x 2-x )+4-2x 的定义域为( B ) A .(-∞,0)∪(1,+∞) B .(-∞,0)∪(1,2] C .(-∞,0)D .(-∞,2)解析 由已知得⎩⎪⎨⎪⎧ x 2-x >0,4-2x≥0⇔⎩⎪⎨⎪⎧x <0或x >1,x ≤2.即x ∈(-∞,0)∪(1,2],故选B .4.已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≤0,log 3x ,x >0,设a =log 123,则f (f (a ))=( A )A .12B .2C .3D .-2解析 ∵a =log 123<0,∴f (a )=3,∴f (f (a ))=f (3)=log 33=12.5.下列四组函数中,表示同一函数的是( C )A .y =x 2与y =3x 3 B .y =1与y =x 0 C .y =2x +1与y =2t +1D .y =x 与y =(x )2解析 A 项中两函数值域不同,B 项、D 项中两函数定义域不同,故选C .6.(2018·福建福州调研)设函数f :R →R 满足f (0)=1,且对任意x ,y ∈R 都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (2 017)=( D )A .0B .1C .2 017D .2 018解析 令x =y =0,则f (1)=f (0)f (0)-f (0)-0+2=1×1-1-0+2=2,令y =0,则f (1)=f (x )f (0)-f (0)-x +2,将f (0)=1,f (1)=2代入,可得f (x )=1+x ,所以f (2 017)=2 018,故选D .二、填空题7.(2018·安徽合肥模拟)若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为__[-1,0]__.解析 函数f (x )的定义域为R ,所以2x 2+2ax -a ≥1,即x 2+2ax -a ≥0恒成立,所以Δ=(2a )2+4a ≤0,解得-1≤a ≤0.8.(2018·江苏张家港模拟)已知f (x )=3x -2,则f (x )=__3x 2-2(x ≥0)__. 解析 令t =x ,则x =t 2(t ≥0),所以f (t )=3t 2-2(t ≥0),所以f (x )=3x 2-2(x ≥0).9.函数f (x )=⎩⎨⎧2x-1,x ≤0,x ,x >0,若f (a )>3,则a 的取值范围是__(9,+∞)__.解析 由已知得⎩⎪⎨⎪⎧ a ≤0,2a -1>3或⎩⎨⎧a >0,a >3,解得a >9.三、解答题10.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0且f (-2)=3,f (-1)=f (1).(1)求f (x )的解析式; (2)画出f (x )的图象.解析 (1)由f (-2)=3,f (-1)=f (1)得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)f (x )的图象如图.11.(2018·湖南怀化月考)已知f (x )=2x ,g (x )是一次函数,并且点(2,2)在函数f (g (x ))的图象上,点(2,5)在函数g (f (x ))的图象上,求g (x )的解析式.解析 设g (x )=ax +b ,a ≠0,则f (g (x ))=2ax +b ,g (f (x ))=a ·2x +b ,根据已知条件得⎩⎪⎨⎪⎧ 22a +b=2,4a +b =5,解得⎩⎪⎨⎪⎧a =2,b =-3,所以g (x )=2x -3. 12.(2018·重庆月考)已知函数f (x )=x 2+mx +n (m ,n ∈R ),f (0)=f (1),且方程x =f (x )有两个相等的实数根.(1)求函数f (x )的解析式;(2)当x ∈[0,3]时,求函数f (x )的值域. 解析 (1)∵f (x )=x 2+mx +n ,且f (0)=f (1), ∴n =1+m +n ,∴m =-1,∴f (x )=x 2-x +n . ∵方程x =f (x ),即方程x 2-2x +n =0有两个相等的实数根,∴(-2)2-4n =0, 得n =1,∴f (x )=x 2-x +1. (2)由(1)知f (x )=x 2-x +1.此函数的图象是开口向上,对称轴为x =12的抛物线,∴当x =12时,f (x )有最小值f ⎝⎛⎭⎫12. 而f ⎝⎛⎭⎫12=⎝⎛⎭⎫122-12+1=34, f (0)=1,f (3)=32-3+1=7,∴当x ∈[0,3]时,函数f (x )的值域是⎣⎡⎦⎤34,7.。

第四次课逻函数的表示方法和最大项最小项

第四次课逻函数的表示方法和最大项最小项

F ( A, B, C ) = M 0 ⋅ M 2 ⋅ M 4 ⋅ M 5 ⋅ M 7 = ( A + B + C )( A + B′ + C )( A′ + B + C )( A′ + B + C ′)( A′ + B′ + C ′)
标准或与型特点:1.式子为和项之积的形式; 2.逻辑函数不一定包含所有的最大 项, 但每一项必须为最大项
在输入变量任一取值下,有且仅有一个最大项的 值为0; 全体最大项之积为 0; 任何两个最大项之和为 1; 只有一个变量不同的两个最大项的乘积等于各相 同变量之和。
( A + B + C) • ( A ′ + B + C) = B + C
26
四、 逻辑函数的标准或与式型-最大项 之积标准型

Y ( A, B ) = M 1 ⋅ M 3 = ( A + B′)( A′ + B′)
Y = AC + B′C = ( AC + B′ )( AC + C ) = ( A + B′ )( B ′ + C )C = ( A + B′ + CC ′ )( B′ + C + AA′ )(C + AA′ ) = ( A + B′ + C )( A + B′ + C ′ )( B′ + C + A) • ( B′ + C + A′ )(C + A)(C + A′ ) = M 2 M 3 M 6 ( A + C + BB′ )( A′ + C + BB′ ) = M 2 M 3 M 6 ( A + C + B )( A + C + B′ )( A′ + C + B )( A′ + C + B ′ )

函数的表示法教案三篇

函数的表示法教案三篇

函数的表示法教案三篇函数的表示法教案一篇一、目的要求1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。

第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、函数及其图象这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。

另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。

通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

高一数学优秀课件《函数的表示法》

高一数学优秀课件《函数的表示法》

掌握用三种方法表示函数
【例4】某种笔记本的单价是5元,买x x 1,2,3,4,5个
笔记本需要y元。试用函数的三种表示法表示函数
解:这个函数的定义域是数集{1,2,3,4,5}
用解析法可将函数y=f(x)表示为 y 5x, x 1,2,3,4,5
用列表法可将函数表示为
笔记本数x 1 2 3 4 5
可以看出: 王伟同学的数学成绩始终高于平均水平,学习情况稳定 且成绩优秀。 张城同学的数学成绩不大稳定,总在班级平均水平上下 波动,且波动幅度较大; 赵磊同学的数学成绩低于班级平均水平,但他成绩在稳步 提高.
例8. 依法纳税是每个公民应尽的义务,个人取得的所得应依照 《中华人
民共和国个人所得税法》向国家缴纳个人所得税 (简称个税).2019年1月
(3)恩格尔系数 (列表法)
我们在初中已经接触过函数的三种表示法:解析法、列表法和图象法. 解析法,就是用数学表达式表示两个变量之间的对应关系,如3.1.1的问题1、2. 列表法,就是列出表格来表示两个变量之间的对应关系,如3.1.1的问题4. 图象法,就是用图象表示两个变量之间的对应关系,如3.1.1的问题3. 这三种方法是常用的函数表示法.
72
75
82
班级平均分 88.2 78.3 85.4 80.3 75.7 82.6
请你对这三人的学习情况进行分析. 思考2: 上述4个函数能用解析法表示吗?表格能否直观地分 析出三位同学成绩高低? 你能用图象法表示吗?
班级 平均
王伟
赵磊 张城
解:为了直观地反映每位同学和班级平均成绩的变化情况, 我们用图象法将表格中的4个函数表示出来,如图。
0.35t 85920, 6600000 t 960000,

第四课时15.2.1函数的表示方法导学案

第四课时15.2.1函数的表示方法导学案

第四课时15.2.1函数的表示方法学习目标1.总结函数三种表示方法.2.了解三种表示方法的优缺点.3.经历回顾思考,训练提高归纳总结能力.教学重点1.认清函数的不同表示方法,知道各自优缺点.2.能按具体情况选用适当方法.一复习引入Ⅰ自学7-10页完成下列问题:1、常见的三种函数的表达方式有、和.2、三种表示函数的方法各有什么优缺点?在遇到具体问题时,该如何选择适当的表示方法呢?完成下表在下列相应的表格中打“√”或“x”:表示方法全面性准确性直观性形象性列表法解析式法图象法例:一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度.t/时0 1 2 3 4 5 …y/米10 10.05 10.10 10.15 10.20 10.25 …1.由记录表推出这5小时中水位高度y(米)随时间t•(时)变化的函数解析式,并画出函数图象.2.据估计这种上涨的情况还会持续2小时,预测再过2小时水位高度将达到多少米?分析:记录表中已经通过6组数值反映了时间t与水位y之间的对应关系.•我们现在需要从这些数值找出这两个表量之间的一般联系规律,由它写出函数解析式来,再画出函数图象,进而预测水位.思考:1.函数自变量t的取值范围:0≤t≤7是如何确定的?2.2小时后的水位高是通过解析式求出的呢,还是从函数图象估算出的好?3.函数的三种表示方法之间是否可以转化?二、合作探究:1、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)有如下关系:x/kg 0 1 2 3 4 5 6y/cm 12 12.5 13 13.5 14 14.5 15(1)请写出弹簧总长y(cm)与所挂物体质量x(kg)之间的函数关系式.(2)当挂重10千克时弹簧的总长是多少?2、某商店售货时,在进价的基础上加一定利润,其数量x与售价y如下表表示.请你根据表中所提供的信息,列出售价y与数量x的函数关系式,并求出当数量为2.•5千克时的售时是多少元.数量x(千克)售价y(元)1 8+0.42 16+0.83 24+1.24 32+1.65 40+2.0……3、用列表法与解析式法表示n边形的内角和m是边数n的函数.4、用解析式与图象法表示等边三角形周长L是边长a的函数三、展示、质疑由组长确定本组展示组员,各组分别展示题,其他组质疑。

凤凰新学案 高中数学 苏教版 必修第一册 练习本第1章

! 001 " #!$%第1课时 集合的概念与表示(1) /123第2课时 集合的概念与表示(2) /123第3课时 子集、全集、补集 /123第4课时 交集、并集 /123章末复习 考点聚焦&素养提升 /123" #!&'()'*第1课时 命题、定理、定义 /123第2课时 充分条件、必要条件、充要条件(1) /123第3课时 充分条件、必要条件、充要条件(2) /123第4课时 全称量词命题与存在量词命题 /123第5课时 全称量词命题与存在量词命题的否定 /123章末复习 考点聚焦&素养提升 /123综合测试 第1,2章集合与常用逻辑用语(见测试卷)" #!+,-第1课时 不等式的基本性质 /123第2课时 基本不等式的证明(1) /123第3课时 基本不等式的证明(2) /123第4课时 基本不等式的应用(1) /123第5课时 基本不等式的应用(2) /123第6课时 基本不等式的应用(3) /123第7课时 从函数观点看一元二次方程 /123第8课时 从函数观点看一元二次不等式(1) /123第9课时 从函数观点看一元二次不等式(2) /123第10课时 从函数观点看一元二次不等式(3) /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第3章不等式(见测试卷)" #!./01/第1课时 指数(1) /123第2课时 指数(2) /123第3课时 对数(1) /123第4课时 对数(2) /123第5课时 对数(3) /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第4章指数与对数(见测试卷)" #!2/34056第1课时 函数的概念和图象(1) /123第2课时 函数的概念和图象(2) /123第3课时 函数的概念和图象(3) /123第4课时 函数的表示方法(1) /123第5课时 函数的表示方法(2) /123综合小练 函数的概念、图象及表示方法 /123第6课时 函数的单调性(1) /123第7课时 函数的单调性(2) /123第8课时 函数的奇偶性(1) /123第9课时 函数的奇偶性(2) /123综合小练 函数的单调性、奇偶性 /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第5章函数概念与性质(见测试卷)阶段测试 第1~5章(见测试卷)" #!72/8./2/81/2/第1课时 幂函数(1) /123第2课时 幂函数(2) /123第3课时 指数函数(1) /123第4课时 指数函数(2) /123第5课时 指数函数(3) /123第6课时 指数函数(4) /123综合小练 指数函数 /123第7课时 对数函数(1) /123第8课时 对数函数(2) /123第9课时 对数函数(3) /123综合小练 对数函数 /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第6章幂函数、指数函数、对数函数(见测试卷)" #!9:2/第1课时 任意角 /123第2课时 弧度制 /123第3课时 任意角的三角函数(1) /123第4课时 任意角的三角函数(2) /123第5课时 同角三角函数关系(1) /123第6课时 同角三角函数关系(2) /123第7课时 三角函数的诱导公式(1) /123第8课时 三角函数的诱导公式(2) /123综合小练 三角函数概念 /123第9课时 三角函数的周期性 /123第10课时 三角函数的图象与性质(1) /123第11课时 三角函数的图象与性质(2) /123第12课时 三角函数的图象与性质(3) /123第13课时 三角函数的图象与性质(4) /123第14课时 函数狔=犃sin(ω狓+φ)(1) /123第15课时 函数狔=犃sin(ω狓+φ)(2) /123综合小练 三角函数的图象和性质 /123第16课时 三角函数的应用 /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第7章三角函数(见测试卷)" #!2/;'第1课时 函数的零点(1) /123第2课时 函数的零点(2) /123第3课时 用二分法求方程的近似解 /123第4课时 几个函数模型的比较 /123第5课时 函数的实际应用(1) /123第6课时 函数的实际应用(2) /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第8章函数应用(见测试卷)阶段测试 第6~8章(见测试卷)阶段测试 第1~8章(见测试卷)002 !! 001 " <=!$%>?@ABCDE F1.下面给出的四类对象中构成集合的是( ) A.某班个子较高的同学B.中国长寿的人C.圆周率π的近似值D.倒数等于它本身的数2.(多选)下列判断中不正确的是( )A.π∈犙B.-5∈犣C.13∈犙D.-槡3 犚3.(多选)下列结论中错误的是( )A.{1,2,3,1}是由4个元素组成的集合B.集合{1}表示仅由一个“1”组成的集合C.犖中最小的数是1D.若-犪 犖,则犪∈犖4.由实数-狓,|狓|,狓槡2,狓组成的集合中含有元素的个数最多的是( )A.1B.2C.3D.45.已知集合犃中含有2,4,6这三个元素,若犪∈犃,且6-犪∈犃,则犪的值为( )A.2B.4C.6D.2或46.若1∈{狓|狓2+犪狓+犫+1=0},2∈{狓|狓2+犪狓-犫=0},则犪= ,犫= .7.集合犃中的元素由犪+犫槡2(犪∈犣,犫∈犣)组成,判断下列元素与集合犃的关系:(1)0; (2)1槡2-1; (3)1槡3-槡28.已知狓,狔都是非零实数,狕=狓|狓|+狔|狔|+狓狔|狓狔|可能的取值组成集合犃,则下列判断中正确的是( )A.3∈犃,-1 犃B.3∈犃,-1∈犃C.3 犃,-1∈犃D.3 犃,-1 犃9.集合{狓-1,狓2-1,2}中的狓不能取的值构成的集合是( )A.{1,3,槡3}B.{0,1,槡3,-槡3}C.{0,1,3,槡3}D.{0,1,3,槡3,-槡3}10.集合犃={狓|犪狓+1=0}中元素的个数为 .11.若-3∈{2狓-5,狓2-4狓,12},则狓的值为 .12.把可以表示成两个整数的平方之和的全体整数记作集合犕,试证明集合犕中的任意两个元素的乘积仍属于犕.13.设犛是满足下列两个条件的实数所构成的集合:①1∈犛;②若犪∈犛,则11-犪∈犛.请解答下列问题:(1)若2∈犛,则犛中必有另外两个数,求出这两个数;(2)自己设计一个数属于犛,然后求出犛中另外两个数;(3)从上面的解答过程中,你能得到什么结论?并大胆证明你发现的结论. 注:标 的题目供选做,下同.002 " <=!$%>?@ABCDE F1.下列集合的表示方法正确的是( )A.第二、四象限内的点集可表示为{(狓,狔)|狓狔≤0,狓∈犚,狔∈犚}B.不等式狓-1<4的解集为{狓<5}C.{全体整数}D.实数集可表示为犚2.(多选)下列说法中正确的是( )A.{1,2}{2,1}是两个不同的集合B.集合{(0,2)}有两个元素{}是有限集D.{狓∈犙|狓2+狓+2=0}是空集C.狓∈犣6狓∈犣3.下列集合中不同于另外三个集合的是( )A.{1}B.{狔∈犚|(狔-1)2=0}C.{狓=1}D.{狓|狓-1=0}4.(多选)下面各组集合中表示同一个集合的是( )A.犘={2,5},犙={5,2}B.犘={(2,5)},犙={(5,2)}C.犘={狓|狓=2犿+1,犿∈犣},犙={狓|狓=2犿-1,犿∈犣}D.犘={狓|狓=6犿,犿∈犣},犙={狓|狓=2犿且狓=3狀,犿∈犣,狀∈犣}5.(1)所有偶数组成的集合用描述法表示为 ;(2)平面直角坐标系内属于第三象限的点的集合用描述法表示为 ;(3)与3的倍数相差2的所有整数组成的集合用描述法表示为 .6.用列举法表示下列集合:(1){(狓,狔)|狓∈{0,1},狔∈{1,2}}= ;(2){狓|狓是数字和为5的两位数}= ;(3){(狓,狔)|2狓+5狔=20,狓∈犖,狔∈犖}= .7.已知集合犃={-1,3},犅={狓|狓2+犪狓+犫=0},且犃=犅,则犪犫= .8.已知集合犃={(狓,狔)|狓2+狔2≤3,狓∈犣,狔∈犣},则集合犃中元素的个数为( )A.9B.8C.5D.49.定义集合运算:犃 犅={狕|狕=狓狔(狓+狔),狓∈犃,狔∈犅}.若集合犃={0,1},犅={2,3},则集合犃 犅中所有元素之和为( )A.6B.12C.18D.36{},则集合犃= .(用列举法表示)10.已知集合犃=犪63-犪∈犖,犪∈犣 003 !。

2020版新教材高中数学第三章函数3.1.1.4分段函数课件新人教B版必修1

2
2.已知函数f(x)的图像如图所示,则f(x)的解析式是 ________.
【解析】因为f(x)的图像由两条线段组成,
所以结合函数图像和一次函数解析式的求法可得
f(x)=
x 1,1 x 0, x,0 x 1.
答案:f(x)=
x 1,x [1,0), x,x [0,1]
类型三 分段函数的综合问题
角度1 范围问题
【典例】已知f(x)=
1, x 0, 1, x 0,
则不等式x+(x+2)·f(x+2)
≤5的解集是世纪金榜导学号( )
A.[-2,1] C.[2, 3]
2
B.(-∞,-2] D. ( , 3 ]
2
【思维·引】 分x+2≥0,x+2&[-4,2] D.(-4,2]
【解析】选B.因为f(x)≥-1,
x 0,
所以
1 2
x
1
1,

x 0, (x 1)2
1,
所以-4≤x≤0或0<x≤2,即-4≤x≤2.
2.若f(x)=
x 7, x [1,1], 2x 6, x [1, 2],


1 4
(x-2)2-1,x

0.
x 1,-1 x 0,
答案:f(x)=


1 4
(x-2)2-1,x

0
【内化·悟】 已知分段函数的函数值求自变量的值时需要注意什么? 提示:分段求,求出的自变量的值要符合相应段的定 义域.
【类题·通】 1.分段函数求函数值的方法 (1)确定要求值的自变量属于哪一段区间. (2)代入该段的解析式求值,直到求出值为止.当出现 f(f(x0))的形式时,应从内到外依次求值.

沪科版八年级数学上册12.2 一次函数 第4课时 一次函数的应用

(1)A 地到 B 地的距离为 450 千米,普通列车到达 B 地所用时间为 7.5 小时;
(2)求特快列车与 A 地的距离 s 与 t 的函数关系式;
(3)在 A、B 两地之间有一座铁路桥,特快列车到铁 路桥后又行驶 0.5 小时与普通列车相遇,直接写出 A 地 与铁路桥之间的距离.
解:(2)s=-120t+450; (3)s=-120×(2.5-0.5)+450=210(米).
(2)填空:
若选择方式 A 最省钱,则月通话时间 x 的取值范围

0≤x<85 3

若选择方式 B 最省钱,则月通话时间 x 的取值范围

85<x<175 33

若选择方式 C 最省钱,则月通话时间 x 的取值范围

x>175 3

(3)小王、小张今年 5 月份通话费均为 80 元,但小王 比小张通话时间长,求小王该月的通话时间.
(3) 该 水 果 店 这 次 销 售 苹 果 盈 利 了 : 760 - 8×50 = 360(元),
答:该水果店这次销售苹果盈利了 360 元.
10. (安徽八上期中原创 B 卷)A 地和 B 地之间的铁路 交通设有特快列车和普通列车两种车次,某天一辆普通 列车从 A 地出发匀速驶向 B 地,同时另一辆特快列车从 B 地出发匀速驶向 A 地,两车与 A 地的距离 s(千米)与行 驶时间 t(时)的函数关系如图所示.
(1)请分别写出 y1,y2 与 x 之间的函数表达式. (2)小亮一年内在此游泳馆游泳的次数 x 在什么范围 时,选择方式一比方式二省钱. 解:(1)y1=30x+200,y2=40x; (2)由 y1<y2,得 30x+200<40x,解得 x>20. 当 x>20 时,选择方式一比方式二省钱.

函数的表示方法

函数的表示方法1.函数的表示方法:列表法,图象法,解析法;2.分段函数:在函数的定义域内,对于自变量的不同取值区间,有着不同的对应法则3.函数图象的一类基本变换①:将函数的图象关于y轴对称得到的新的图像就是的图像;②:将函数的图象关于x轴对称得到的新的图像就是的图像;③:将函数的图象在x轴下方的部分对称到x轴的上方,连同函数的图象在x轴上方的部分得到的新的图像就是的图像;④:将函数的图象在y轴左侧的部分去掉,函数的图象在y轴右侧的部分对称到y轴的左侧,连同函数的图象在y轴右侧的部分得到的新的图像就是的图像.4.函数值域的求法观察法:通过对解析式的简单变形和观察,利用熟知的基本函数的值域,求出函数的值域;配方法:若函数是二次函数形式,可通过配方后再结合二次函数的性质求值域,但要注意给定区间上的二次函数最值的求法;分离常数法:形如的函数值域为;反函数法:如求函数的值域,解出,,解得;判别式法:求f(x)=(a12+a22≠0)的值域时,常利用函数的定义域非空这一隐含的条件,将函数转化为方程,利用Δ≥0转化为关于函数值的不等式1.关于分段函数的叙述,正确的有( )分段函数的定义域是各段定义域的并集,值域是各段值域的并集;分段函数尽管在定义域不同的部分有不同的对应法则,但它们是一个函数;若分别是分段函数的两个不同对应法则的值域,那么A.1个 B.2个 C.3个 D.0个2.已知,则( ) A. B. C. D.3.函数的图象是( ) A.关于直线对称 B.关于直线对称C.关于直线对称 D.不是对称图形4.已知,则 5.函数y=的定义域为______________,值域为___________________6.函数的图像是( )7.已知,则8.函数的值域是1.B 2.A 3.B 4. 5.[-1,2],[0,] 6.A7. 8.函数的单调性1.增函数和减函数 对于函数的定义域I内某个区间上的任意两个自变量的值⑴若当<时,都有<,则说在这个区间上是增函数;⑵若当<时,都有 >,则说在这个区间上是减函数.2.单调性和单调区间 若函数在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间,此时也说函数是这一区间上的单调函数.3.证明函数单调性的一般步骤⑴设,是给定区间内的任意两个值,且<;⑵作差-,并将此差式变形(要注意变形的程度);⑶判断-的正负(要注意说理的充分性);⑷根据-的符号确定其增减性.4.复合函数单调性的判断对于函数和,如果在区间上是具有单调性,当时,,且在区间上也具有单调性,则复合函数在区间具有单调性的规律见下表:增↗减↘增↗减↘增↗减↘增↗减↘减↘增↗以上规律还可总结为: “同增异减”.1.下列命题正确的是()A.定义在上的函数,若存在,使得时有,那么在上为增函数B.定义在上的函数,若有无穷多对,使得时有,那么在上为增函数C.若在区间上为增函数,在区间上也为增函数,那么在上也一定为增函数D.若在区间上为增函数且,那么。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4课时 函数的表示形式
1.若1
()x f x x
-=,则方程(4)f x x =的根是 ( )
A .-2
B .2
C .12-
D .12
2.已知0,(0)()1,(0)23,(0)x f x x x x >⎧⎪
=-=⎨⎪-<⎩
,则{[
(
5)]}f f f
的值是( )
A .0
B .-1
C .5
D .-5
3.设集合M={x|0≤x ≤2},N={y|0≤y ≤2}, 下列给出的4 个图形中,能表示集合M 到 N 的函数关系的有( )
A
. 0个 B .1个 C .2个 D .3个
4.若1)f x =+则()f x = . 5.已知函数()1x
f x x
=
-,函数 ()(())g x f f x =,则()g x = .
6.函数2()|2|1,f x x x x R =+-+∈,)(x f 的 最小值为 . 7.已知f (x )是一次函数, 且f [f (x )]=4x -1, 求f (x )的解析式.
8.某客运公司定客票的方法是:如果行程不 超过100km ,票价是0.5元/km ,超过100km 部分按0.4元/km 定价,求客运票价y 元与行程公里数x km 之间的函数关系式.
高中数学复习作业·第二章
9.对于函数()f x ,若存在0x R ∈,使 00()f x x =成立,则称0x 为()f x 的不动点.若
函数3()x a
f x x b
+=
+图象上有两个关于原点对 称的不动点,求a 、b 满足的条件.
10.(选作) 已知函数2
()x f x ax b
=+(a ,b 为
常数)且方程f (x )-x +12=0有两个实根为x 1=3, x 2=4.
(1)求函数f (x )的解析式;
(2)设k>1,解关于x 的不等式:
(1)()2k x k
f x x
+-<
-.。

相关文档
最新文档