函数的表示法 第二课时
《函数的概念及其表示》函数的概念与性质PPT(第二课时函数的表示法)

范文下载:/fanwen/
试卷下载:/shiti/
教案下载:/jiaoan/
PPT论坛:
PPT课件:/kejian/
语文课件:/kejian/yuw en/ 数学课件:/kejian/shuxue/
科学课件:/kejian/kexue/ 物理课件:/kejian/wul i/
化学课件:/kejian/huaxue/ 生物课件:/kejian/she ngwu/
地理课件:/kejian/dili/
PPT下载:/xiazai/
PPT教程: /powerpoint/
资料下载:/ziliao/
范文下载:/fanwen/
试卷下载:/shiti/
教案下载:/jiaoan/
科学课件:/kejian/kexue/ 物理课件:/kejian/wul i/
化学课件:/kejian/huaxue/ 生物课件:/kejian/she ngwu/
地理课件:/kejian/dili/
PPT下载:/xiazai/
PPT教程: /powerpoint/
资料下载:/ziliao/
范文下载:/fanwen/
试卷下载:/shiti/
教案下载:/jiaoan/
PPT下载:/xiazai/
PPT教程: /powerpoint/
资料下载:/ziliao/
范文下载:/fanwen/
试卷下载:/shiti/
教案下载:/jiaoan/
PPT论坛:
PPT课件:/kejian/
语文课件:/kejian/yuw en/ 数学课件:/kejian/shuxue/
英语课件:/kejian/ying yu/ 美术课件:/kejian/me ishu/
2.1 函数和它的表示法 第2课时

(2)计划购买50元的乒乓球,则所购的总数y (个) 计划购买50元的乒乓球,则所购的总数y 50元的乒乓球 与单价x 的关系. 与单价x (元)的关系. 解析:两个变量x,y 解析:两个变量x,y 50
y = x
y是x的函数
(3)一个铜球在0 ℃的体积为1000cm3,加热后温度每 的体积为1000cm 一个铜球在0 ℃的体积为 增加1℃,体积增加0.051cm t℃时球的体积为 时球的体积为Vcm 增加1℃,体积增加0.051cm3,t℃时球的体积为Vcm3 . 1℃ 解析:两个变量x,y 解析:两个变量x,y V=0.051t+1000 y是x的函数
信件质量m/克 信件质量m/克 m/ 邮资y/元 邮资y/元 y/ 0<m≤20 0.80 20< 20<m≤40 1.20 40< 40<m≤60 1.60
解析:两个变量m,y 解析:两个变量m,y y是m的函数
【规律方法】函数问题一定要采用数形结合的方法对问 规律方法】 题进行分析说明,灵活运用三种函数的表示方式, 题进行分析说明,灵活运用三种函数的表示方式,并注 意它们的区别与联系. 意它们的区别与联系
根据图象填表: 根据图象填表:
t/分 t/分 h/米 h/米
0 3
1 11
2 37
3 45
4 37
5 11
…… ……
做一做
瓶子或罐头盒等圆柱形的物体,常常如图摆放 瓶子或罐头盒等圆柱形的物体,常常如图摆放.
1.随着层数的增加,物体的总数是如何变化的? 1.随着层数的增加,物体的总数是如何变化的? 随着层数的增加 2.请填写下表: 2.请填写下表: 请填写下表 层数n 层数n 物体总数y 物体总数y 1 1 2 3 3 6 4 10 5 15 … … n
人教A版必修一数学课件:1.2.2函数的表示法(第2课时分段函数及映射)

研修班
3
x+2,x≤-1 2 已知函数 f(x)=x ,-1<x<2 ,求 f(f(f(-3))) 2x,x≥2 【思路点拨】 由题目可获取以下主要信息: ①函数 f(x)是分段函数; ②本例是求值问题. 解答本题需确定 f(f(-3))的范围,为此又需 确定 f(-3)的范围,然后根据所在定义域代入相 应解析式逐步求解.
2018/12/1 研修班 8
对含有绝对值的函数,要作出其图象,首先应根据绝对值
的意义去掉绝对值符号,将函数转化为分段函数,然后分段作 出函数图象.由于分段函数在定义域的不同区间内解析式不一
样,因此画图时要特别注意区间端点处对应点的实虚之分.
2.写出下列函数的解析式并作出函数图象: (1)设函数y=f(x),当x<0时,f(x)=0;当x≥0时,f(x)=2; (2)设函数y=f(x),当x≤-1时,f(x)=x+1;当-1<x<1时,f(x)
2018/12/1
研修班
2
1.分段函数是一个函数还是几个函数?其定义域、值域各
是什么? 【提示】 分段函数是一个函数而非几个函数,其定义域是
各段定义域的并集,值域是各段值域的并集.
2.函数是映射吗? 【提示】 对比函数定义与映射定义可知,函数是特殊的映
射,是从非空数集到非空数集的映射.
2018/12/1
2018/12/1
研修班
4
【解析】 ∵-3≤-1,∴f(-3)=-3+2=-1 ∴f(f(-3))=f(-1)=1,
∵-1<1<2,
∴f(f(f(-3)))=f(1)=1.
(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相
应的解析式求得. (2)像本题中含有多层“f”的问题,要按照“由里到外”的顺序,层层
第2课时 函数关系的表示法——列表法、解析法

第2课时函数关系的表示法——列表法、解析法【知识与技能】了解函数的表示方法:列表法、解析法,领会它们的联系和区别,进一步理解掌握确定函数关系式,会确定自变量取值范围.【过程与方法】学会用不同方法表示函数,会应用综合的思维、思想分析问题.【情感与态度】培养变化与对应的思想方法,体会函数模型的建构在实际生活中的应用价值.【教学重点】重点是进一步掌握确定函数关系的方法以及确定自变量的取值范围.【教学难点】难点是确定函数关系.一、提出问题,创设情境我们来回顾一下上节课所研究的每个问题中是否各有两个变化,同一问题中的变量之间有什么联系?也就是说当其中一个变量确定一个值时,另一个变量是否随之确定一个值呢?这将是我们这节研究的内容.活动一在计算器上按照下面的程序进行操作.下表中的x与y是输入的5个数与相应的计算结果:所按的第三、四两个键是哪两个键?y是x的函数吗?如果是,写出它的表达式(用含有x的式子表示y).让学生思考后回答(或小组讨论)【教学说明】学生通过思考问题,为掌握新知识函数的表示方法:列表法做铺垫.活动二用10 cm长的绳子围成矩形,设矩形的长度为x cm,面积为Scm2.怎样用含有x的式子表示S?【教学说明】引导学生通过合理、正确的思维方法探索出变化规律.二、导入新课上述活动一、活动二反应了两个变量间的函数关系,函数关系式的表示方法主要有三种方法:列表法、解析法、图象法.在用表达式表示函数时,要考虑自变量的取值必须使函数的表达式有意义.例1求下列函数中自变量x的取值范围;(1)y=2x+4; (2)y=-2x2; (3)1; 3.2y y xx==--【分析】在(1)(2)中,x取任何实数时,2x+4与-2x2都有意义;在(3)中,当x=2时,12x-没有意义;在(4)中,当x<3时,x-3没有意义.【解】(1)x为全体实数.(2)x为全体实数.(3)x≠2.(4)x≥3.注意:在确定函数中自变量的取值范围时,如果遇到实际问题,还必须使实际问题有意义.如函数S=πR2中自变量R可取全体实数,如果指明这个式子是表示圆面积S与圆半径R 的关系,那么自变量R的取值范围是R>0.例2当x=3时,求下列函数的函数值:(1)y=2x+4; (2)y=-2x2; (3)1; 3.2y y xx==--【解】(1)当x=3时,y=2x+4=2×3+4=10. (2)当x=3时,y=-2x2=-2×32=-18.(3)当x=3时,y=12x-=1.(4)当x=3时,y=3x-=0.例3一个游泳池内有水300 m3,现打开排水管以每时25 m3排出量排水.(1)写出游泳池内剩余水量Q (m3)与排水时间t(h)间的函数关系式;(2)写出自变量t的取值范围;(3)开始排水后的第5 h末,游泳池中还有多少水?(4)当游泳池中还剩150 m3水时,已经排水多少时间?【解】(1)排水后的剩水量Q 是排水时间t的函数,有Q=-25t+300(2)由于池中共有300 m3水,每时排25 m3,全部排完只需300÷25=12(h),故自变量t的取值范围是0≤t≤12.(3)当t=5,代入上式得Q=-5×25+300=175(m3),即第5h末池中还有水175 m3.(4)当Q=150时,由150=-25t+300,得t=6,即已经排水6 h.三、运用新知,深化理解1.(广西来宾中考)函数y=3x-中,自变量x的取值范围是()A.x≠3B.x≥3C.x>3D.x≤32.(四川遂宁中考)在函数y=11x-中,自变量x的取值范围是()A.x>1B.x<1C.x≠1D.x=13.函数y=21xx+-中,自变量x的取值范围是.4.如图,根据流程图中的程序,当输出数值y=5时,输入数值x是()5.水箱内原有水200升,7点30分打开水龙头,以2升/分的速度放水,设经t分钟时,水箱内存水y升.(1)求y关于t的函数关系式和自变量的取值范围;(2)7:55时,水箱内还有多少水?(3)几点几分水箱内的水恰好放完?【参考答案】1.B 2.C 3.x≥-2且x≠1 4.C5.解:(1)∵水箱内存有的水=原有水-放掉的水,∴y=200-2t,∵y≥0,∴200-2t≥0,解得:t≤100,∴0≤t≤100,所以y关于t的函数关系式为:y=200-2t(0≤t≤100);(2)∵7:55-7:30=25(分钟),∴当t=25时,y=200-2t=200-50=150(升),∴7:55时,水箱内还有水150升;(3)当y=0时,200-2t=0,解得:t=100分钟=1小时40分钟,7:30+1小时40分钟=9点10分,答:故9点10分水箱内的水恰好放完.四、师生互动,课堂小结学会了确立函数关系式、自变量取值范围的方法,会求函数值,提高了用函数解决实际问题的能力.1.课本第26页练习1、2、3、5.2.完成练习册中相应的作业.通过本节课学习让学生了解函数的表示方法:列表法、解析法,并领会它们的联系和区别,进一步理解掌握确定函数关系式,会确定自变量取值范围.学会用不同方法表示函数,会应用综合的思维、思想分析问题,培养变化与对应的思想方法,体会函数模型的构建在实际生活中的应用价值.。
人教A版必修一1.2.2.2函数的表示法

x 2, x 0, 因此y= 5 x 2,0 x 1, x 2, x 1.
依上述解析式作出图象,如图.
由图象可以看出:所求值域为
规律方法:对含有绝对值的函数,要作出其图象,首先应根据绝对值 的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数 图象.由于分段函数在定义域的不同区间内解析式不一样,因此画图时 要特别注意区间端点处对应点的实虚之分. 变式训练2-1:已知函数f(x)=1+ (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 解:(1)当0≤x≤2时,f(x)=1+ 当-2<x<0时,f(x)=1+
类型一:分段函数及其应用
思路点拨:由题目可获取以下主要信息: ①函数f(x)是分段函数; ②本例是求值问题. 解答本题需确定f(f(-3))的范围,为此又需确定 f(-3)的范围,然后根据所在定义域代入相应解析式逐步求解.
解:∵-3<0,∴f(-3)=0, ∴f(f(-3))=f(0)=π , 又π >0,∴f(f(f(-3)))=f(π )=π +1, 即f(f(f(-3)))=π +1.
(4)是映射,因为A中每一个元素在 符合映射定义.
作用下对应的元素构成的集合
规律方法:(1)给定两集合A,B及对应关系f,判断是否是从集合A到集合B的映 射,主要利用映射的定义.用通俗的语言讲:A→B的对应有“多对一”、“一对 一”、“一对多”,前两种对应是A到B的映射,而最后一种不是A到B的映射. (2)理解映射这个概念,应注意以下几点: ①集合A到B的映射,A、B必须是非空集合(可以是数集,也可以是其他集合); ②对应关系有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一 般是不同的; ③与A中元素对应的元素构成的集合是集合B的子集. 变式训练3-1:如图中各图表示的对应构成映射的个数是( )
高中数学必修一 函数的表示方法(第二课时)教案

1.2.2 函数的表示方法(第二课时)教学目标:1.进一步理解函数的概念;2.使学生掌握分段函数及其简单应用。
教学重点:分段函数的理解教学难点:分段函数的图象及简单应用教学方法:自学法和尝试指导法教学过程:(Ⅰ)引入问题1.函数有几种常用的表示方法?它们分别是哪几种?2.如何作出函数y x =的图象?(II )讲授新课例1.作出函数y x =的图象和1y x =-的图象,并分别求出函数的值域。
注:分段函数的定义域和值域分别是各段函数的定义域和值域的并集。
例2.国内投寄信函(外埠),假设每封信函不超过20g 时付邮资80分;超过20g 不超过40g 时付邮资160分;依次类推,每封xg(100x 0≤<)的信函付邮资为:()(](](](]⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈∈∈∈=)100,80x (400)80,60x (320)80,60x (240)40,20x (160)20,0x (80y , 画出这个函数的图象。
说明:表示函数的式子也可以不止一个(如例1与例2),对于这类分几个式子表示的函数称为分段函数。
注意它是一个函数,不要把它误认为是“几个函数”。
例3.(教材24P 例6)例4.作出下列各函数的图象:(1)1(01)()(1)x f x x x x ⎧<<⎪=⎨⎪≥⎩; (2)222(0)()2(0)x x x f x x x x ⎧+≥=⎨--<⎩ 对第(2)小题的函数,试根据a 的取值讨论方程()f x a =的根的个数问题。
练习:1.在函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩中,若()3f x =,则x 的值为 。
2.已知1(0)()(0)0(0)x x f x x x π+>⎧⎪==⎨⎪<⎩,则{[(1)]}f f f -= 。
作业:课本P 28习题1.2第10、11、12、13题。
1.2.2 函数的表示方法(第三课时)教学目标:1.使学生了解映射的概念、表示方法;2.使学生了解象、原象的概念;3.使学生通过简单的对应图示了解一一映射的概念;4.使学生认识到事物间是有联系的,对应、映射是一种联系方式。
3.1.2函数表示法(第二课时)教学设计

3.1.2函数的表示法(第2课时)(人教A版普通高中教科书数学必修第一册第三章)深圳市坪山高级中学钟南林一、教学目标1.明确函数的三种表示方法.2.在实际情境中,会根据不同的需要选择恰当的方法表示函数.3.通过具体实例,了解简单的分段函数,并能简单应用.二、教学重难点1.函数的三种表示方法,分段函数的概念.2.如何根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.三、教学过程1.复习导入1.1函数三种表示方法定义及优缺点1.2分段函数的定义及特点(1)分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的对应关系的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.【设计意图】在上节课的基础上进一步掌握比较函数三种不同表示方法的优缺点,为本节课在具体情境中选取何种函数的表示方法作铺垫,同时对分段函数的特点进一步深化,为在具体实例中应用分段函数做好准备。
2.探究典例例1 下表是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表问题1:上表反映了几个函数关系?这些函数的自变量是什么?定义域是什么?【预设的答案】4个;测试序号;{1,2,3,4,5,6}【设计意图】让学生体会列表法不单单是表示一个函数,让学生体会列表法表示多个函数,进一步理解函数的定义.问题2:上述4个函数能用解析法表示吗?能用图象法表示吗?【预设的答案】用解析法并不能很好的表示出对应的解析式,可以类似例题4用图像法表示。
【设计意图】在问题1的基础上继续追问,让学生进一步深化函数三种表示方法的优缺点.问题3:若分析、比较每位同学的成绩变化情况,用哪种表示法为宜?【预设的答案】表格上并不能很好的看出每位同学的成绩变化情况,用图像法较好【设计意图】让学生体会用表格区分三位同学的成绩变化并不直观,引导学生用图像法分别表示出三个同学的成绩和班级平均分对应的函数图像,让学生体会在实际需要中选择恰当的方法表示函数是需要给予关注的.问题4:试根据图象对这三位同学在高一学年度的数学学习情况做一个分析?【预设的答案】王伟同学的数学成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大;赵磊同学的数学成绩低于班级平均水平,但他的成绩呈上升趋势,表明他的数学成绩在稳步提升.【活动预设】让学生动手将每个同学的成绩与测试序号之间的函数关系分别用图像(均为6个离散的点)表示出来,学生分组讨论,能从图像上得出哪些结论,每组派代表进行发言,.【设计意图】让学生动手做出每位同学成绩对应的散点图,让学生进一步理解函数定义域与值域的对应关系,并体会如何能更好的表示出每位同学成绩变化情况。
3.1 3.1.1 第二课时 函数的表示方法

“课下双层级演练过关”见“课时跟踪检测(十七)” (单击进入电子文档)
谢谢 观 看
THANK YOU FOR WATCHING
在用三种方法表示函数时要注意: (1)解析法必须注明函数的定义域; (2)列表法必须罗列出所有的自变量与函数值的对应关系; (3)图像法必须清楚函数图像是“点”还是“线”.
[对点练清]
1.某学生离家去学校,一开始跑步前进,跑累了再走余下的路
程.下列图中纵轴表示离校的距离,横轴表示出发后的时
间,则较符合该学生走法的是
故 x=1 可能与函数 y=f(x)没有交点,故函数 f(x)的图像与直线
x=1 至多有一个交点.
答案:C
2.若一次函数的图像经过点 A(1,6)和 B(2,8),则该函数的图像
还可能经过的点的坐标为
()
A.12,5
B.14,4
C.(-1,3)
D.(-2,1)
解析:设一次函数的解析式为 y=kx+b(k≠0),由该函数的
2.画出下列函数的图像: (1)y=x+1(x≤0); (2)y=x2-2x(x>1 或 x<-1).
解:(1)y=x+1(x≤0)表示一条射线,图像如图①. (2)y=x2-2x=(x-1)2-1(x>1 或 x<-1)是抛物线 y=x2-2x 去掉-1≤x≤1 之间的部分后剩余曲线.如图②.
题型三 函数解析式的求法 [学透用活]
(2)设 f(x)=ax2+bx+c(a≠0). ∵f(0)=1,∴c=1. 又∵f(x+1)-f(x)=2x+2, ∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x+2, 整理,得 2ax+(a+b)=2x+2. 由恒等式的性质知,上式中对应项的系数相等, ∴a2+a=b=2,2, 解得ba==11,, ∴f(x)=x2+x+1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 作业:P25
3
f
3 32 13 - =1+- = .所以 4 2 2
f
1 13 f = . 4 2
(2)若 x≥0,由 x+1=2,得 x=1; 1 1 1 若 x<0,由 =2,得 x=± ,由于 >0,舍 x= |x| 2 2 1 1 ,所以 x=- . 2 2 1 故 x=1 或- . 2
误区解密
因忽视分段函数自变量的范围而出错
x2-1 f(x)= 2x+1
【例 4】 已知函数 若 f(x)=3,求 x 的值.
x≥0 , x<0
错解:由x2-1=3得x=±2; 由2x+1=3,得x=1,故x的值为2,-2或1. 错因分析:本题是一个分段函数问题,在解决 此类问题时,要紧扣“分段”的特征,即函数在定义 域的不同部分,有不同的对应关系,它不是几个函 数,而是一个函数,求值时不能忽视x的取值范围.
-x-x 当-2<x<0 时,f(x)=1+ =1-x, 2
1 ∴f(x)= 1-x
0≤x≤2 . -2<x<0
(2)函数f(x)的图象如图所示.
(3)由(2)知,f(x)在(-2,2]上的值域为[1,3).
点评:1.对含有绝对值的函数,要作出其图象, 首先应根据绝对值的意义脱去绝对值符号,将函数 转化为分段函数,然后分段作出函数图象. 2.由于分段函数在定义域的不同区间内解析式 不一样,因此画图时要特别注意区间端点处对应点 的实虚之分.
要点阐释
1.分段函数 (1)有些函数在它的定义域中,对于自变量x的 不同取值区间,对应关系也不同,这样的函数通常 称为分段函数,分段函数是一个函数,而不是几个 函数,其解析式是由几个不同的式子构成的,它们 合为一个整体表示一个函数. (2)画分段函数的图象时,一定要考虑区间端点 是否包含在内,若端点包含在内,则用实点“·”表示, 若端点不包含在内,则用虚点 “。” 表示.
②A中的不同元素允许对应B中的相同元素,即 映射允许“多对一”“一对一”,但不允许“一对多”. ③B中的元素允许A中无元素与之对应.
典例剖析
题型一 分段函数的图象
|x|-x 【例 1】 已知函数 f(x)=1+ (-2<x≤2). 2
(1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. x-x 解:(1)当 0≤x≤2 时,f(x)=1+ =1; 2
答案:A
3.函数
2x, y= -4,
x>0 的定义域为________. x<0
2x, y= -4,
解析: 因为在解析式
x>0 中自 x<0
变量 x 的取值范围是 x<0 或 x>0, 所以函数的定义 域为(-∞,0)∪(0,+∞).
答案:(-∞,0)∪(0,+∞)
4.已知A=R,B=[1,+∞),对应关系f: x→x2+1,则A中元素1对应于B中的元素________, A中元素-1对应于B中的元素________,A中的元素 ________对应于B中元素1. 解析:x=1时,x2+1=12+1=2;x=-1时, x2+1=(-1)2+1=2;x2+1=1时,解得x=0. 答案:2 2 0
【例 2】 (1)已知函数 则 f(f(1))=________; (2)函数 ________.
-1≤x≤1 , 1<x<5
x+2,x≤-1 f(x)= 2 x ,-1<x<2
中,若 f(x)=3,则 x=
解析:(1)因为 1∈[-1,1],所以 f(1)=3×1=3. 又 3∈(1,5),所以 f(3)=32-4×3+6=3.即 f(f(1))=3. (2)若 x≤-1,由 x+2=3,得 x=1>-1,舍去; 若-1<x<2,由 x2=3,得 x=± 3,由于- 3<- 1,舍去 x=- 3,故 x= 3.
正解:当x≥0时,由x2-1=3,得x=2 或x=-2(舍去);当x<0时,由2x+1=3,得x =1 (舍去),故x=2. 纠错心得:对于分段函数分为几部分应 看成一个整体才有意义,它的定义域应是各 部分x范围的并集,求某个自变量的函数值, 容易不看自变量的范围直接代入解析式而求 错解.
课堂总结
1 (1)A=R, B={0,1}, 对应关系 f: x→y= 0
x≥0 ; x<0
1 (2)A=Z,B=Q,对应关系 f:x→y=x;
(3)设A={矩形},B={实数},对应关系f:矩形 和它的面积对应. 解:(1)对于集合A中任意一个非负数在集合B中 都有唯一元素1与之对应,对于A中任意一个负数在 集合B中都有唯一元素0与之对应,所以这个对应是 映射. (2)集合A中的元素0在集合B中没有元素与之对 应,故不是映射. (3)对于每一个矩形,它的面积是唯一确定的, 所以f是从集合A到集合B的映射.
预习测评
1.已知集合A={a,b};B={0,1},则下列对 应不是从A到B的映射的是 ( )
解析:A、B、D均满足映射定义,C不满 足集合A中任一元素在集合B中有唯一元素与之 对应,且集合A中元素b在集合B中无唯一元素 与之对应. 答案:C
x-1 2. 已知 f(x)=0 x+1 值是
2.映射的概念 设A、B是两个非空的集合,如果按某一个确定 的对应关系f,使对于集合A中的任意一个元素x,在 都有唯一 集合B中_________确定的元素y与之对应,那么就称 一个映射 对应f:A→B为从集合A到集合B的_________ .
自主探究
函数与映射的主要联系和区别是什么? 答:函数是一个特殊的映射,函数是非空数集 A到非空数集B的映射;而对于映射而言,A和B不一 定是数集.
1 0<x<1 x 1.作出函数 y= 的图象,并 x x≥1 求其值域. 1 解: 0<x<1 时, x的图象是双曲线的一部分. 当 y= 当x≥1时,图象为直线y=x的 一部分. 如图所示,由此可知,值域 y∈[1,+∞).
题型二
分段函数求值
3x f(x)= 2 x -4x+6
13 答案:(1) 4
1 (2)1 或- 2
题型三 映射概念及应用 【例3】 判断下列对应是不是从集合A到集合B的 映射: (1)A=N*,B=N*,对应关系f:x→|x-3|; (2)A={平面内的圆},B={平面内的矩形},对应 关系f“作圆的内接矩形”; (3)A={高一· 一班的男生},B={男生的身高}, 对应关系f:每个男生对应自己的身高;
(4)A={x|0≤x≤2},B={y|0≤y≤6},对应关系 f: 1 x→y= x. 2
解:(1)由于A中元素3在对应关系f作用下其与3的差 的绝对值为0,而0∉B,故不是映射. (2)因为一个圆有无数个内接矩形,即集合A中任何 一个元素在集合B中有无数个元素与之对应,故不是映 射. (3)对A中任何一个元素,按照对应关系f,在B中都 有唯一一个元素与之对应,符合映射定义,是映射. 1 (4)是映射,因为 A 中每一个元素在 f:x→y= x 作 2
(3)写分段函数定义域时,区间端点应不重不 漏.
(4)处理分段函数问题时,要首先确定自变量的 取值属于哪一个范围,然后选取相应的对应关系. (5)求分段函数的定义域则是各段定义域的并集; 求分段函数的值域也是分别求出各段上的值域后取 并集;求分段函数最大(小)值则是分别在每段上求出 最大(小)值,然后取各段中的最大(小)值.
用下对应的元素构成的集合 C={y|0≤y≤1}⊆B, 符合映 射定义.
点评:给定两集合A,B及对应关系f,判断 是否是从集合A到集合B的映射,主要利用映射 的定义,用通俗的语言讲:A→B的对应有“多对 一”、“一对一”、“一对多”,前两种对应是A到B 的映射,而最后一种不是A到B的映射.
3.判断下列对应关系哪些是从集合A到集合B的映 射,哪些不是,为什么?
1.2.2
函数的表示法(二)
自学导引
1.分段函数 (1)分段函数就是在函数定义域内,对于自变量 x的不同取值范围,有着不同的_________的函数. 对应关系 (2)分段函数是一个函数,其定义域、值域分别 并集 是各段函数的定义域、值域的_____;各段函数的定 义域的交集是空集. 分别作出每一段的 (3)作分段函数图象时,应_________________ 图象 . _____
x>0 x=0, x<0
则f
1 f 的 2
( 1 A. 2 3 D.- 2
)
1 3 B.- C. 2 2 1 1 1 = -1=- , 解析:∵f 2 2 2
∴f
1 1 1 1 f =f - =- +1= . 2 2 2 2
答案:(1)3 (2) 3
点评:(1)给定自变量求函数值时,应根据自 变量所在的范围,利用相应的解析式直接求值; (2)若给函数值求自变量,应根据每一段的解 析式分别求解,但应注意要检验求得的值是否在 相应的自变量取值范围内.
2.(1)已知函数 ________;
x-2,|x|≤1 f(x)= 1+x2,|x|>1
2.映射 (1)映射f:A→B是由非空集合A、B以及A到B的 对应关系f所确定的. (2)映射定义中的两个集合A、B是非空的,可以 是数集,也可以是点集或其他集合,A、B是有先后 次序的,A到B的映射与B到A的映射一般是截然不同 的,即f具有方向性. (3)映射f:A→B要求:对于集合A中的任何一个 元素在集合B中都有唯一的元素和它对应,这样有: ①A中每一个元素都可以在B中找到一个且只有 一个元素和它对应.