Development of Basalt Fiber Reinforced
玄武岩纤维复合材料性能特征及其在人工鱼礁中的应用

大连理工大学专业学位硕士学位论文摘要玄武岩纤维增强复合材料(Basalt Fiber Reinforced Polymer,简称BFRP)凭借其轻质、高强、耐腐蚀等材料特性在土木工程结构中应用的越来越广泛,经过国内外对玄武岩纤维材料制品的数十年的研究,已经累积了大量的试验数据。
本文将首先玄武岩纤维材料制品的性能数据进行收集分析,收集包括玄武岩纤维复合筋、玄武岩纤维片材、玄武岩纤维布、玄武岩纤维管、玄武岩纤维土工格栅等玄武岩纤维制品基本力学性能及在不同环境下的性能数据,以此建立一个玄武岩纤维制品数据库,基于建立的数据库重点对BFRP筋的性能进行分析并统计参数,根据分析所得结论即BFRP筋在海水环境下退化程度最低,适宜应用于海洋环境下。
根据这一结论将BFRP筋应用于长期处于海洋环境下的人工鱼礁设计建造中,提出基于可靠度的人工鱼礁耐久性设计优化方法,并利用该方法设计出BFRP筋、GFRP筋再生海水海砂混凝土鱼礁,同时按照规范设计方法设计钢筋再生海水海砂混凝土鱼礁,依据设计结构建立有限元模型进行静力学试验分析,从而对比验证BFRP筋应用于人工鱼礁设计的可行性。
最后,利用研究提出人工鱼礁设计方法进行BFRP筋混凝土人工鱼礁的装配化设计,并应于与实际工程中。
本文的主要内容如下:(1)建立玄武岩制品的数据库,收集玄武岩制品的基本力学性能以及耐久性等数据。
重点对BFRP筋进行分析,分析内容包括BFRP筋抗拉强度、弹性模量和延伸率的分布类型、分布区间等变化规律以及BFRP筋在酸碱盐溶液中的耐久性能,得到BFRP 筋基本力学性能如抗拉强度、弹性模量、延伸率的主要分布区间,即BFRP筋抗拉强度在1000-1200(MPa),弹性模量在40-50(GPa),延伸率在2-2.8(%),除了得到BFRP筋的基本力学数据,还在BFRP筋耐久性方面得出BFRP筋在海水腐蚀下退化率低可应用于海工结构中这一结论,最后,根据数据库数据计算BFRP筋抗拉强度的统计参数以供下一章结构可靠性分析中设计变量统计参数的确定。
玄武岩纤维增强地质聚合物混凝土的动态本构模型

第27卷第4期 V ol.27 No.4 工 程 力 学 2010年 4 月 Apr. 2010 ENGINEERING MECHANICS111———————————————收稿日期:2008-11-05;修改日期:2009-07-06基金项目:空军工程大学工程学院优秀博士学位论文创新基金项目(BC07002)作者简介:*许金余(1963―),男,吉林靖宇人,教授,博士,博导,从事结构工程、防护工程研究(E-mail: jinyuxu@); 李为民(1982―),男,江苏盐城人,博士,从事防护工程研究(E-mail: lwm_afeu0830@);黄小明(1968―),男,湖北云梦人,高工,硕士,从事机场工程、道面设计施工研究(E-mail: hxm1968313@); 李 澎(1970―),男,湖南长沙人,工程师,硕士,从事机场工程研究(E-mail: lp263@).文章编号:1000-4750(2010)04-0111-06玄武岩纤维增强地质聚合物混凝土的动态本构模型*许金余1,2,李为民1,黄小明3,李 澎3(1. 空军工程大学工程学院机场建筑工程系,西安 710038;2. 西北工业大学力学与土木建筑学院,西安 710072;3. 空后机场营房部,北京 100720)摘 要:以矿渣与粉煤灰为原材料制备玄武岩纤维增强地质聚合物混凝土(BFRGC),采用f 100mm 分离式霍普金森压杆(SHPB)装置对BFRGC 进行了冲击压缩试验,并对SHPB 试验过程中的波形整形技术展开了研究,以此来提高材料SHPB 试验的精度。
通过SHPB 试验,获得了BFRGC 在10s -1―102s -1应变率范围内的应力-应变曲线,分析了BFRGC 的强度和变形性能,并建立了BFRGC 的率型非线性粘弹性本构模型。
通过试验对模型进行验证,模型曲线与试验曲线吻合良好,该文建立的率型本构模型可以较为准确地描述BFRGC 的动态力学行为。
外加剂改良膨胀土试验研究

外加剂改良膨胀土试验研究贾延安 1张洋 1黄闪闪 1郝朝伟 2*1.安徽省公路桥梁工程有限公司 安徽合肥 230031;2.交通运输部公路科学研究院 北京 100088摘要: 以江淮地区弱膨胀土为研究对象,选取胀缩总率为评价指标,研究水泥、石灰、玄武岩纤维和固化剂4种改性材料对膨胀土改良效果的影响,并对水泥、石灰改良膨胀土的抗剪强度进行了研究。
试验结果表明:随着外加剂掺量提高,改良土的胀缩总率逐渐减小,且趋势减缓。
同等掺量下,石灰改性效果优于水泥,固化剂和玄武岩纤维改性效果不明显。
随着外加剂掺量增加,改良土的黏聚力和内摩擦角逐渐增大,趋势减缓;同等掺量下,石灰改性土的抗剪性能优于水泥改性土。
关键词: 膨胀土 外加剂 膨胀潜势 抗剪强度中图分类号: TU411文献标识码: A文章编号: 1672-3791(2024)04-0139-04Experimental Study on the Improvement of Expansive Soil withAdmixturesJIA Yan'an 1ZHANG Yang 1HUANG Shanshan 1HAO Chaowei2*1.Anhui Road and Bridge Engineering Co., Ltd., Hefei, Anhui Province, 230031 China;2.Research Institute ofHighway, Ministry of Transport, Beijing, 100088 ChinaAbstract: Taking weak expansive soil in the Jianghuai area as the research object and selecting the total swelling-shrinkage percentage as the evaluation index, this paper studies the impact of the improvement effect of the four modified materials of cement, lime, basalt fiber and curing agent on expansive soil, and also studies the shearing strength of cement and lime improving expansive soil. The test results show that with the increase of admixture con⁃tent, the total expansion and contraction rate of improved soil decreases gradually with a slowing trend, that under the same dosage, the modification effect of lime is better than that of cement, and the modification effect of curing agent and basalt fiber is not obvious, that with the increase of admixture content, the cohesion and internal friction angle of improved soil gradually increase with a slowing trend, and that under the same dosage, the shearing perfor⁃mance of lime-modified soil is better than that of cement-modified soil.Key Words: Expansive soil; Admixture; Expansion potential; Shearing strength1 背景介绍膨胀土是一种遇水膨胀、失水收缩,并能反复胀缩变形的特殊黏性土,其主要由强亲水性黏土矿物成分如蒙脱石和伊利石等组成,具有较强的胀缩特性和裂隙性。
玄武岩纤维对混凝土性能的影响研究

引言随着近年来建筑行业的迅速发展,对特殊性能混凝土的要求及需求不断提高,掺加纤维作为一种技术手段,逐步应用于桥梁、水利、市政等行业的工程建设中[1]。
玄武岩纤维是一种绿色、环保、无污染的高性能无机非金属材料,具有较高的拉伸强度、剪切模量和弹性模量,且具有耐高温、耐超低温、耐酸碱腐蚀等特性[2]。
研究表明[3-4],将玄武岩纤维掺入混凝土中,纤维通过桥接裂缝可显著减少混凝土裂纹的产生,进而提高混凝土基体的抗压强度、抗拉强度和韧性,使混凝土中易出现的脆性问题得到改善。
同时,掺入纤维可有效提高混凝土基体的抗冻性能和抗冲击性能[5],对提高混凝土结构耐久性具有积极意义。
为了更好地发挥玄武岩纤维对混凝土增韧阻裂的效果,寻找更合理的纤维掺量及纤维混凝土的生产工艺,本文对玄武岩纤维混凝土的相关性能开展测试研究,为玄武岩纤维混凝土的应用提供技术参考。
1 材料与方法1.1 试验材料水泥:北京金隅,P·O 42.5普硅酸盐水泥,其28d抗压强度50.4MPa;粉煤灰:宣化热电,I级粉煤灰,其细度9.2%、需水量比89%;砂子:天然河砂,中砂,其细度模数2.9;石子:5~25mm碎石;外加剂:北京同科,早强型聚羧酸减水剂,其减水率28%;玄武岩纤维:山西太原,其单丝直径18.0μm、密度2650kg/m3。
1.2 配合比采用构件生产用C50高性能混凝土,配合比见表1。
1.3 试验方法不同搅拌工艺对混凝土性能影响的试验:测试玄武玄武岩纤维对混凝土性能的影响研究宋玉剑北京港创瑞博混凝土有限公司 北京 102202摘 要:研究了掺加玄武岩纤维混凝土的搅拌工艺、力学性能和耐久性能,采用生产施工配合比,与混凝土生产实际紧密结合,为玄武岩纤维混凝土的生产与应用提供指导。
结果表明:当纤维掺量在0.3%及以下时,纤维要有足够的搅拌时间,使其得到较好分散并混合均匀,再加入水可有效避免纤维出现团聚的情况,从而使混凝土和易性更好;掺入玄武岩纤维后,混凝土的7d抗压强度平均下降4.1%,28d抗压强度平均下降7.12%,但不会影响抗压强度增长趋势,且对降低混凝土早期收缩的作用较为明显,在一定条件下可以达到预期的应用效果。
硅烷偶联剂改性对玄武岩纤维增强乙烯基酯树脂复合材料力学性能的影响

第31卷㊀第4期2023年7月现代纺织技术AdvancedTextileTechnologyVol.31ꎬNo.4Jul.2023DOI:10.19398∕j.att.202211029硅烷偶联剂改性对玄武岩纤维增强乙烯基酯树脂复合材料力学性能的影响骆宣耀1ꎬ韦粤海1ꎬ2ꎬ马雷雷1ꎬ2ꎬ田㊀伟1ꎬ2ꎬ祝成炎1ꎬ2(1.浙江理工大学纺织科学与工程学院(国际丝绸学院)ꎬ杭州㊀310018ꎻ2.浙江理工大学湖州研究院有限公司ꎬ浙江湖州㊀313000)㊀㊀摘㊀要:为改善玄武岩纤维与乙烯基酯树脂的界面结合性能ꎬ分别采用质量分数为0.5%㊁1.0%㊁1.5%㊁2.0%的硅烷偶联剂KH550㊁KH560㊁A171对玄武岩纤维进行改性ꎬ采用模压成型工艺制备玄武岩纤维增强乙烯基酯树脂复合材料ꎮ利用扫描电子显微镜㊁红外光谱仪和万能试验机等对玄武岩纤维的表面微观形貌和化学结构以及复合材料的力学性能进行测试与分析ꎮ结果表明:经质量分数为1%的硅烷偶联剂KH550㊁KH560㊁A171改性后的玄武岩纤维和乙烯基酯树脂的界面结合最好ꎬ经改性后的玄武岩纤维增强复合材料相比于未改性的弯曲强度分别提高了16.71%㊁14.96%㊁13.59%ꎻ冲击强度提高10.13%㊁8.84%㊁7.41%ꎮ综合考虑实验结果ꎬ3种硅烷偶联剂对复合材料的改性效果从大到小依次为KH550㊁KH560和A171ꎮ关键词:玄武岩纤维ꎻ乙烯基酯树脂ꎻ复合材料ꎻ硅烷偶联剂ꎻ力学性能中图分类号:TS15㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1009 ̄265X(2023)04 ̄0103 ̄08收稿日期:20221115㊀网络出版日期:20230223基金项目:浙江理工大学湖州研究院项目(2022)作者简介:骆宣耀(1998 )ꎬ男ꎬ浙江台州人ꎬ硕士研究生ꎬ主要从事纺织复合材料方面的研究ꎮ通信作者:祝成炎ꎬE ̄mail:cyzhu@zstu.com㊀㊀玄武岩纤维是一种性能优异的环境友好型纤维[1]ꎮ它是以纯天然玄武岩矿石为原料ꎬ经1450~1500ħ高温熔融后ꎬ通过铂铑合金漏板拉丝工艺制成的纤维[2 ̄3]ꎮ玄武岩纤维作为一种无机高性能纤维ꎬ因其具有高强高模㊁耐高低温㊁耐酸碱腐蚀㊁较好的抗蠕变性等优点ꎬ因此可替代昂贵的碳纤维和芳纶纤维作为复合材料的增强体[4 ̄5]ꎮ在纤维增强复合材料中ꎬ纤维与树脂基体间的界面对于整体性能影响很大ꎬ当复合材料受到载荷时ꎬ基体通过界面将所受应力传递给纤维ꎮ因此ꎬ纤维增强复合材料要求有优良的界面相ꎬ以便基体有效地向纤维传递载荷[6]ꎮ但是ꎬ玄武岩纤维在生产过程中由于熔岩液体表面张力的存在形成了光滑的表面ꎬ纤维表面能较低㊁化学惰性强㊁比表面积小[7 ̄8]ꎮ未改性玄武岩纤维不能与树脂基体发生反应ꎬ界面结合性能较差ꎬ玄武岩纤维容易脱黏抽出ꎬ无法充分发挥它的优异力学性能ꎬ获得力学性能优良的复合材料ꎮ因此ꎬ对玄武岩纤维进行改性处理十分重要[9 ̄10]ꎮ玄武岩纤维的常用改性方法主要有硅烷偶联剂法ꎬ等离子体法ꎬ酸碱蚀刻法ꎬ聚合物涂层法ꎮ合适的改性方法与工艺对复合材料的界面性能和力学性能至关重要ꎮManikandan等[11]使用H2SO4和NaOH溶液对玄武岩纤维进行蚀刻改性ꎬ采用手糊的方法将玄武岩纤维与不饱和聚脂树脂制备复合材料ꎬ结果证明经H2SO4和NaOH改性后ꎬ纤维表面增加了新的活性基团ꎬ增强了纤维与树脂基体的界面结合能力ꎬ复合材料的力学性能得到提高ꎮ毕松梅等[12]将玄武岩纤维置于N2气氛下进行等离子体改性ꎬ采用热压工艺将玄武岩纤维与聚丙烯制备复合材料ꎮ结果证明纤维经等离子体改性后ꎬ增大了其与树脂的浸润性ꎬ改善了界面的黏结状况ꎬ提升了复合材料的力学性能ꎮ但采用酸碱蚀刻法ꎬ等离子体法改性处理玄武岩纤维都会在一定程度上损伤纤维的内部结构ꎬ对纤维本身造成损伤[13]ꎮ而硅烷偶联剂改性操作步骤较为简洁ꎬ改性时不会损伤纤维ꎮLiu等[14]研究了硅烷偶联剂KH550改性玄武岩纤维对其增强聚乳酸复合材料性能的影响ꎮ结果表明KH550成功地连接了纤维与树脂基体ꎬ增强了界面的结合强度ꎮ经KH550改性后的复合材料的结晶性能优于未改性ꎬKH550改性后的纤维增强复合材料的抗拉断裂强度得到提升ꎮ洪晓东等[15]研究了硅烷偶联剂KH570改性玄武岩纤维对其增强环氧树脂复合材料力学性能的影响ꎮ结果表明玄武岩纤维经过KH570处理后ꎬ其表面出现许多凸起ꎬ并变得非常粗糙ꎬ复合材料的抗拉强度和抗冲击性能获得提高ꎮ以上研究肯定了硅烷偶联剂改性可以提升玄武岩纤维增强复合材料的界面性能和力学性能ꎬ但对于不同种类不同质量分数硅烷偶联剂对玄武岩纤维及其乙烯基酯树脂复合材料作用效果还有待深入研究ꎮ因此ꎬ本文采用不同质量分数的硅烷偶联剂KH550㊁KH560㊁A171改性玄武岩纤维ꎬ通过模压成型工艺制备玄武岩纤维增强乙烯基酯树脂复合材料ꎬ分析其增强乙烯基酯树脂复合材料的力学性能来研究硅烷偶联剂的改性效果ꎬ并探讨其改性作用机制ꎬ为其在工程实践中的应用提供理论支持ꎮ1㊀实㊀验1.1㊀实验材料玄武岩纤维织物ꎬ组织为平纹ꎬ经纬密均为50根∕10cmꎬ面密度为300g∕m2ꎬ表面呈现类似黑金色ꎬ海宁安捷复合材料有限公司生产ꎮ聚酰亚胺薄膜ꎬ深圳润海电子有限公司生产ꎮ乙烯基酯树脂ꎬ上纬新材料科技股份有限公司生产ꎮ丙酮ꎬ西陇科学股份有限公司生产ꎮ硅烷偶联剂KH550㊁KH560㊁A171ꎬ无水乙醇ꎬ去离子水ꎬ杭州高晶精细化工有限公司生产ꎮ1.2㊀实验设备精密电子天平(AL201 ̄ICꎬ梅特勒 ̄托利多有限公司)ꎻ台式真空干燥箱(DZF ̄6050ꎬ扬州市慧科电子有限公司)ꎻ半自动平板硫化仪(QLB ̄25Tꎬ江苏省无锡市中凯橡胶机械有限公司)ꎻ金刚石带锯切割机(SYJ ̄D2000ꎬ沈阳市科晶自动化设备有限公司)ꎻ万能强力仪(MTSꎬMTS工业系统有限公司)ꎻ傅里叶红外光谱仪(Nicolet ̄5700ꎬ美国热电公司)ꎻ场发射扫描电镜(GeminiSEM ̄500ꎬ蔡司英国)ꎮ1.3㊀实验方法1.3.1㊀玄武岩纤维的改性处理将玄武岩纤维平纹织物浸泡在丙酮溶液中48h去除表面上浆剂ꎬ然后用去离子水清洗多次后放入80ħ真空烘箱中充分干燥[16]ꎬ待用ꎮ将无水乙醇和去离子水以8ʒ2比例混合ꎬ再将硅烷偶联剂加入该溶液中并搅拌均匀ꎬ配制成不同种类不同质量分数的硅烷偶联剂醇解液ꎬ将上述处理后的织物置于其中ꎬ于室温下反应5h后ꎬ用无水乙醇洗去未经反应的硅烷偶联剂ꎬ再放入80ħ真空干燥箱中充分干燥ꎬ备用ꎬ不同种类硅烷偶联剂的化学结构如图1所示ꎮ图1㊀不同种类硅烷偶联剂的化学结构Fig.1㊀Chemicalstructureofdifferentsilanecouplingagents1.3.2㊀玄武岩纤维∕乙烯基酯树脂复合材料的制备将6层玄武岩纤维平纹织物与乙烯基酯树脂以通过半自动平板硫化仪模压成型ꎮ图2示出复合材料模压成型铺层图ꎬ经过前期实验探索ꎬ设置模压固化条件为:30ħꎬ时间60minꎬ压强2MPaꎬ复合材料厚度2mmꎮ1.上盖板ꎻ2.聚酰亚胺薄膜ꎻ3.预制件ꎻ4.垫片ꎻ5.下模具ꎮ图2㊀玄武岩纤维与乙烯基酯树脂模压成型Fig.2㊀Basaltfiberfabricmoldedwithvinylresin401 现代纺织技术第31卷1.4㊀测试与表征1.4.1㊀形貌观察对纤维表面㊁试样截面喷金ꎬ使用场发射扫描电镜观察经硅烷偶联剂KH550处理后玄武岩纤维的纵向形貌以及复合材料的截面形貌ꎮ1.4.2㊀化学结构测试使用Nicolet ̄5700傅里叶红外光谱仪(FTIR)对样品在4000~400cm-1波数内的结构进行表征ꎮ红外光谱可以对样品进行定性分析ꎬ得到透过率随波数变化的FTIR光谱图ꎮ1.4.3㊀力学性能测试使用万能试验机对复合材料的弯曲强度进行测试ꎬ加载速度为5mm∕minꎮ使用万能试验机对复合材料的冲击强度进行测试ꎬ接触试样瞬间的冲击速度为5m∕sꎮ2㊀结果与讨论2.1㊀硅烷偶联剂改性玄武岩纤维的表面形貌分析㊀㊀图3所示为不同质量分数硅烷偶联剂KH550改性玄武岩纤维前后的纵向表面扫描电镜图ꎮ由图3(a)可以明显看到ꎬ硅烷偶联剂改性前的玄武岩纤维表面非常光滑ꎬ没有表面附着颗粒及凸起ꎬ因此未改性玄武岩纤维与乙烯基酯树脂的黏结性能和界面结合性能较差ꎻ由图3(b)㊁图3(c)可以看出经硅烷偶联剂改性后的玄武岩纤维表面变得粗糙ꎬ有少许颗粒附着ꎮ由图3(d)㊁图3(e)可以看到ꎬ随着硅烷偶联剂质量分数上升至1.5%㊁2.0%ꎬ玄武岩纤维表面出现较多颗粒附着直至纤维表面被覆盖并形成凸起ꎮ图3㊀硅烷偶联剂KH550改性玄武岩纤维表面形貌SEMFig.3㊀SEMimagesofthesurfacemorphologyofthebasaltfiberfabricmodifiedbysilanecouplingagentKH5502.2㊀硅烷偶联剂改性玄武岩纤维的FTIR分析㊀㊀图4所示为玄武岩纤维经硅烷偶联剂KH550㊁KH560㊁A171改性前后的FTIR光谱图ꎬ在改性前的玄武岩纤维FTIR光谱中ꎬ玄武岩纤维的特征峰主要存在于3350㊁850㊁715cm-1附近ꎬ其中在3350cm-1处的宽峰为纤维结构中 OH伸缩振动ꎬ对应于纤维表面的Si OHꎮ在850㊁715cm-1处左右的吸收峰为典型的Si O和Si OH的伸缩振动峰ꎬ说明玄武岩纤维的主要成分为SiO2ꎮ而经硅烷偶联剂KH550㊁KH560㊁A171处理后ꎬ对比可以看出玄武岩纤维在3350cm-1处附近的吸收峰强度变小ꎬ这应该是归因于硅烷偶联剂处理后的玄武岩纤维表面羟基数量减少ꎬ硅烷偶联剂的活性基团与玄武岩纤维表面 OH结合ꎮ在2920cm-1和2850cm-1左右出现的特征峰是由于C H对称和反对称伸缩振501 第4期骆宣耀等:硅烷偶联剂改性对玄武岩纤维增强乙烯基酯树脂复合材料力学性能的影响动ꎮ在1430cm-1处附近可见Si CH2弯曲振动峰ꎮ1093cm-1和1048cm-1处附近的振动峰分别是由Si O C和Si O拉伸振动形成的ꎮ这些结果清楚地表明ꎬ3种硅烷偶联剂对玄武岩纤维的改性是成功的ꎮ图5示出硅烷偶联剂改性玄武岩纤维的作用机制图ꎮ硅烷偶联剂是指将两种不同化学特性的水解基团X和有机基团Y连接到同一硅原子的化合物ꎮ硅烷偶联剂水解形成硅醇ꎬ硅醇进行缩聚ꎬ生成含有机基团的低聚硅氧烷ꎻ玄武岩纤维表面的羟基与含有机基团的低聚硅氧烷反应形成氢键ꎬ并与失水干燥后的玄武岩纤维形成共价键相连ꎬ从而实现了硅烷偶联剂对玄武岩纤维的接枝ꎮ由于硅烷偶联剂KH550㊁KH560㊁A171一边侧链上的甲氧基和乙氧基都会在水解过程中被羟基取代ꎬ所以硅烷偶联剂KH550㊁KH560㊁A171另一边侧链上不同的有机基团会对玄武岩纤维的改性效果产生不同的影响ꎮKH550侧链上的有机基团为氨基ꎬKH560侧链上的有机基团为环氧基ꎬA171侧链上的有机基团为乙烯基ꎮ图4㊀硅烷偶联剂改性玄武岩纤维FTIR光谱图Fig.4㊀FTIRspectrumofthebasaltfabricmodifiedwiththesilanecouplingagent图5㊀硅烷偶联剂改性玄武岩纤维作用机制Fig.5㊀Mechanismofthemodificationofbasaltfibersbythesilanecouplingagent2.3㊀硅烷偶联剂改性对复合材料界面结合效果的影响㊀㊀图6示出不同种类硅烷偶联剂改性玄武岩纤维增强乙烯基酯树脂复合材料截面ꎮ由图6可知ꎬ复合材料的界面结合效果在硅烷偶联剂KH550㊁KH560㊁A171改性处理后均得到改善ꎬ未使用硅烷偶联剂改性时ꎬ纤维与树脂间存在较大间隙ꎬ界面结合效果较差ꎮ而在硅烷偶联剂KH550㊁KH560㊁A171作用下ꎬ硅烷偶联剂会接枝吸附于玄武岩纤维表面并形成共价键ꎬ乙烯基酯树脂的有机高聚物分子会与硅烷偶联剂的有机基团Y反应并相互连接ꎬ使玄武岩纤维与乙烯基酯树脂通过硅烷偶联剂相互结合得更加紧密ꎬ作用机制如图7所示ꎮ在本文实验条件中ꎬ当硅烷偶联剂KH550㊁KH560㊁A171质量分数为1%时ꎬ玄武岩纤维与乙烯基酯树脂的界面结合状况改善明显ꎮ601 现代纺织技术第31卷㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图6㊀玄武岩纤维增强乙烯基酯树脂复合材料截面Fig.6㊀Sectionofthebasaltfiber ̄reinforcedvinylestercomposite图7㊀硅烷偶联剂与乙烯基酯树脂作用机制Fig.7㊀Mechanismofsilanecouplingagentwithvinylesterresin2.4㊀硅烷偶联剂改性对复合材料力学性能的影响㊀㊀不同种类不同质量分数硅烷偶联剂改性玄武岩纤维增强乙烯基酯树脂复合材料的弯曲强度和冲击强度如图8所示ꎮ弯曲强度和冲击强度拟合曲线方程及其相关系数如表1和表2所示ꎮ观察图8和表1㊁表2可知ꎬ玄武岩纤维经不同种类不同质量分数硅烷偶联剂改性后ꎬ不同程度地提升了复合材料的冲击强度和弯曲强度ꎬ复合材料的拉伸强度和弯曲强度拟合曲线的皮尔逊相关系数R的绝对值近似于1ꎬ表明拟合曲线近似呈一元二次方程关系ꎬ呈现先增加后减小的趋势ꎮ结合图2和图6ꎬ可以发现经1%质量分数的硅烷偶联剂改性后的玄武岩纤维表面出现较为均匀的颗粒排列ꎬ有一定的裂纹和沟壑ꎬ增加了纤维的粗糙度ꎬ且硅烷偶联剂与纤维和树脂进行了充分反应ꎬ改善了玄武岩纤维与乙烯基酯树脂的界面结合效果ꎬ因此复合材料的力学性能达到最好ꎮ但当硅烷偶联剂质量分数较低时ꎬ玄武岩纤维与乙烯基酯树脂结合状况较差ꎻ当硅烷偶联剂质量分数较高时ꎬ硅烷偶联剂覆盖纤维表面并形成多层弱界面层ꎬ阻碍了玄武岩纤维与乙烯基酯树脂的结合ꎮ701第4期骆宣耀等:硅烷偶联剂改性对玄武岩纤维增强乙烯基酯树脂复合材料力学性能的影响图8㊀硅烷偶联剂质量分数对复合材料力学性能的影响Fig.8㊀Effectofsilanecouplingagentmassfractiononmechanicalpropertiesofcomposites表1㊀弯曲强度拟合曲线方程及其相关系数Tab.1㊀Bendstrengthfittingcurveequationanditscorrelationcoefficient拟合曲线拟合曲线方程RR2KH550y=262.64+78.42x-36.14x20.99470.9894KH560y=262.86+69.66x-32.24x20.99190.9839A171y=263.14+64.33x-30.56x20.98960.9794表2㊀冲击强度拟合曲线方程及其相关系数Tab.2㊀Impactstrengthfittingcurveequationanditscorrelationcoefficient拟合曲线拟合曲线方程RR2KH550y=148.46+26.05x-11.91x20.98740.9749KH560y=148.53+23.21x-10.79x20.98930.9787A171y=148.39+19.46x-8.98x20.99250.9851经质量分数为1%的KH550改性后ꎬ玄武岩纤维增强复合材料的弯曲强度和冲击强度达到了306.73㊁163.41MPaꎬ相比于未改性时提升了16 71%㊁10.13%ꎮ经质量分数为1%的KH560处理后ꎬ玄武岩纤维增强复合材料的弯曲强度和冲击强度达到了302.12㊁161.49MPaꎬ相比于未改性时提升了14.96%㊁8.84%ꎮ经质量分数为1%的A171改性后ꎬ玄武岩纤维增强复合材料的弯曲强度和冲击强度达到了298.53㊁159.37MPaꎬ相比于未改性时提升了13.59%㊁7.41%ꎮ3种硅烷偶联剂对复合材料力学性能的提升幅度依次为KH550㊁KH560㊁A171ꎮ这是由于3种硅烷偶联剂侧链上的有机基团不同所导致改性纤维增强复合材料力学性能的差异ꎮKH550中含有氨基ꎬ氨基极性强㊁表面能大ꎬ能够与乙烯基酯树脂的羟基相互反应并形成共价键相连ꎮKH560中的环氧基也可与乙烯基酯树脂的羟基发生反应起到连接纤维与树脂的作用ꎮA171中不饱和碳碳双键可与乙烯基酯树脂不饱和双键反应并相互连接ꎬ但整体的处理效果不如KH550㊁KH560ꎮ3㊀结㊀论通过研究不同种类不同质量分数硅烷偶联剂改性对玄武岩纤维增强乙烯基酯树脂复合材料力学性能的影响ꎬ得出如下结论:a)玄武岩纤维经硅烷偶联剂改性后ꎬ硅烷偶联剂接枝于玄武岩纤维表面ꎬ使表面变得粗糙并增加了纤维的表面化学活性ꎬ形成了一层传输应力的界面层ꎬ提升了玄武岩纤维增强复合材料的弯曲强度和冲击强度ꎮb)在本实验条件下ꎬ玄武岩纤维经过不同种类不同质量分数硅烷偶联剂改性后ꎬ制作的复合材料的弯曲强度和冲击强度均得到不同程度的提升ꎬ弯曲强度和冲击强度拟合曲线的皮尔逊相关系数R的绝对值近似于1ꎬ表明拟合曲线近似呈一元二次方程关系ꎬ呈现先增加后减小的趋势ꎮc)经质量分数为1%的KH550改性后ꎬ玄武岩纤维增强复合材料的弯曲强度和冲击强度相比于未处理时提升了16.71%㊁10.13%ꎮ经质量分数为1%的KH560改性后ꎬ玄武岩纤维增强复合材料的弯曲强度和冲击强度相比于未改性时提升了14 96%㊁8.84%ꎮ经质量分数为1%的A171改性处理后ꎬ玄武岩纤维增强复合材料的弯曲强度和冲击强度相比于未改性时提升了13.59%㊁7.41%ꎮ3种硅烷偶联剂对复合材料的改性效果从大到小依次为KH550㊁KH560和A171ꎮ801 现代纺织技术第31卷参考文献:[1]李婉婉ꎬ汪进前ꎬ盖燕芳ꎬ等.玄武岩∕碳纤维混杂三维正交复合材料拉伸性能研究[J].现代纺织技术ꎬ2019ꎬ27(2):1 ̄5.LIWanwanꎬWANGJinqianꎬGEYanfangꎬetal.Investi ̄gationontensilepropertiesofthree ̄dimensionalorthogonalbasalt∕carbonfiberhybridcomposites[J].AdvancedTextileTechnologyꎬ2019ꎬ27(2):1 ̄5.[2]JAMSHADHꎬMISHRAR.Agreenmaterialfromrock:Basaltfiber[J].TheJournaloftheTextileInstituteꎬ2016ꎬ107(7):923 ̄937.[3]李艳ꎬ张得昆ꎬ孙昭玲ꎬ等.玄武岩纤维湿法非织造布黏合工艺的优化及其性能[J].西安工程大学学报ꎬ2020ꎬ34(3):1 ̄6.LIYanꎬZHANGDekunꎬSUNZhaolingꎬetal.Optimizedbondingprocessofbasaltfiberwet ̄laidnonwovensanditsproperties[J].JournalofXi'anPolytechnicUniversityꎬ2020ꎬ34(3):1 ̄6.[4]何艳芬ꎬ陈雪善.玄武岩基∕玄武岩+轶纶复合针刺滤材的开发研究[J].现代纺织技术ꎬ2017ꎬ25(1):18 ̄22.HEYanfenꎬCHENXueshan.Studyonthedevelopmentofbasaltfiberfabric∕basaltfiber&Yilunfibercompositeneedlingfiltermaterial[J].AdvancedTextileTechnologyꎬ2017ꎬ25(1):18 ̄22.[5]梁荷叶ꎬ高晓平.玄武岩纤维四轴向经编复合材料力学性能研究[J].现代纺织技术ꎬ2018ꎬ26(6):1 ̄6.LIANGHeyeꎬGAOXiaoping.Researchonmechanicalpropertiesofcompositereinforcedwithquad ̄axialwarp ̄knittedbasaltfabric[J].AdvancedTextileTechnologyꎬ2018ꎬ26(6):1 ̄6.[6]靳婷婷ꎬ申士杰ꎬ李静ꎬ等.低温等离子处理对玄武岩纤维表面及复合材料性能的影响[J].玻璃钢∕复合材料ꎬ2015(6):29 ̄35.JINTingtingꎬSHENShijieꎬLiJingꎬetal.Impactonthesurfaceofbasaltfiberandcompositematerialpropertiesoflow ̄temperatureplasmatreatment[J].FiberReinforcedPlastics∕Compositesꎬ2015(6):29 ̄35.[7]KHANDELWALSꎬRHEEKY.Recentadvancesinbasalt ̄fiber ̄reinforcedcomposites:Tailoringthefiber ̄matrixinterface[J].CompositesPartB:Engineeringꎬ2020ꎬ192:108011.[8]李义ꎬ黄东迪ꎬ于开锋ꎬ等.硅炭黑改性玄武岩纤维增强聚酰胺6复合材料性能[J].吉林大学学报(工学版)ꎬ2021ꎬ51(1):181 ̄187.LIYiꎬHUANGDongdiꎬYUKaifengꎬetal.Performanceofsilicacarbonblackmodifiedbasaltfiberreinforcedpolyamide6composite[J].JournalofJilinUniversity(EngineeringandTechnologyEdition)ꎬ2021ꎬ51(1):181 ̄187.[9]SEPERꎬBOLLINOFꎬBOCCARUSSOLꎬetal.Influenceofchemicaltreatmentsonmechanicalpropertiesofhempfiberreinforcedcomposites[J].CompositesPartB:Engineeringꎬ2018ꎬ133:210 ̄217.[10]FAZELIMꎬFLOREZJPꎬSIMÃORA.Improvementinadhesionofcellulosefiberstothethermoplasticstarchmatrixbyplasmatreatmentmodification[J].CompositesPartB:Engineeringꎬ2019ꎬ163:207 ̄216.[11]MANIKANDANVꎬWINOWLINJAPPESJTꎬSURESHKUMARSMꎬetal.Investigationoftheeffectofsurfacemodificationsonthemechanicalpropertiesofbasaltfibrereinforcedpolymercomposites[J].CompositesPartBEngineering.2012ꎬ43(2):812 ̄818.[12]毕松梅ꎬ朱钦钦ꎬ赵堃ꎬ等.等离子体改性对玄武岩∕聚丙烯复合材料性能的影响[J].产业用纺织品ꎬ2013ꎬ31(6):32 ̄35.BISongmeiꎬZHUQinqinꎬZHAOKunꎬetal.Influenceofplasmamodificationtreatmentonbasaltfiber∕polypropylenecomposites[J].TechnicalTextilesꎬ2013ꎬ31(6):32 ̄35.[13]WANGJJꎬZHOUSFꎬHUANGJꎬetal.Interfacialmodificationofbasaltfiberfillingcompositeswithgrapheneoxideandpolydopamineforenhancedmechanicalandtribologicalproperties[J].RSCAdvancesꎬ2018ꎬ8(22):12222 ̄12231.[14]LIUASQꎬYUJJꎬWUGHꎬetal.EffectofsilaneKH550oninterfaceofbasaltfibers(BFs)∕Poly(lacticacid)(PLA)composites[J].IndustriaTextilaꎬ2019ꎬ70(5):408 ̄412.[15]洪晓东ꎬ杨东旭ꎬ邓恩燕.改性玄武岩纤维增强环氧树脂复合材料的力学性能[J].工程塑料应用ꎬ2013ꎬ41(2):20 ̄24.HONGXiaodongꎬYANGDongxuꎬDENGEnyan.Mecha ̄nicalpropertiesofbasaltfiberwithsurfacemodificationreinforcedepoxyresincomposites[J].EngineeringPlasticsApplicationꎬ2013ꎬ41(2):20 ̄24.[16]KIMMTꎬKIMMHꎬRHEEKYꎬetal.Studyonanoxygenplasmatreatmentofabasaltfiberanditseffectontheinterlaminarfracturepropertyofbasalt∕epoxywovencomposites[J].CompositesPartB:Engineeringꎬ2011ꎬ42(3):499 ̄504.901第4期骆宣耀等:硅烷偶联剂改性对玄武岩纤维增强乙烯基酯树脂复合材料力学性能的影响011 现代纺织技术第31卷Effectsofsilanecouplingagentmodificationonthemechanicalpropertiesofbasaltfiber ̄reinforcedvinylesterresincompositesLUOXuanyao1ꎬWEIYuehai1ꎬ2ꎬMALeilei1ꎬ2ꎬTIANWei1ꎬ2ꎬZHUChengyan1ꎬ2(1.CollegeofTextileScienceandEngineering(InternationalInstituteofSilk)ꎬZhejiangSci ̄TechUniversityꎬHangzhou310018ꎬChinaꎻ2.ZhejiangSci ̄TechUniversityHuzhouResearchInstituteCo.ꎬLtd.ꎬHuzhou313000ꎬChina)Abstract:Fiber ̄reinforcedresinmatrixcompositeshavedevelopedrapidlyinrecentyears.Theiroverallpropertiesarenotonlyrelatedtothepropertiesofresinsandfibers butalsocloselyrelatedtotheinterfacebetweenresinsandfibers.Whenthecompositeisloaded theinterfacewilltransferthestressofthematrixtothereinforcedfiberintheformofshearstress.Therefore fiber ̄reinforcedcompositesrequireexcellentinterfacephasessothatthematrixcaneffectivelytransferloadtothefiber.Theappropriatemodificationmethodcanimprovetheinterfaceandmechanicalpropertiesofthecomposites.Theoperationstepsofsilanecouplingagentmodificationarerelativelysimple andthefiberwillnotbedamagedduringmodification.Therearehydroxylgroupsonthesurfaceofthebasaltfiber sotheuseofsilanecouplingagentscanbuildabridgebetweenthebasaltfiberandresinmatrix.Inordertoimprovetheinterfacialbondingpropertyofthebasaltfiberandvinylesterresin silanecouplingagentsKH550 KH560andA171witharespectivemassfractionof0.5%1.0%1.5%and2.0%wereusedtomodifythebasaltfiber andbasaltfiber ̄reinforcedvinylesterresincompositeswerepreparedbythemoldingprocess.Thescanningelectronmicroscope infraredspectrometeranduniversaltestingmachinewereusedtotestandanalyzethesurfacemicromorphologyandchemicalstructureofbasaltfibersandthemechanicalpropertiesofcompositematerials andtoexplorethemodificationmechanismofsilanecouplingagentswithdifferentkindsandconcentrations providingtheoreticalsupportfortheirapplicationinengineeringpractice.Theresearchresultsshowthatafterthebasaltfiberismodifiedbythesilanecouplingagent thesilanecouplingagentisgraftedonthesurfaceofthebasaltfiber whichmakesthesurfaceroughandincreasesthesurfacechemicalactivityofthefiber forminganinterfacelayertotransmitstress andimprovingthebendingstrengthandimpactstrengthofbasaltfiber ̄reinforcedcomposites.TheabsolutevalueofPearsoncorrelationcoefficientRofbendingstrengthandimpactstrengthfittingcurvesisapproximately1afterthebasaltfiberismodifiedbysilanecouplingagentswithdifferentkindsanddifferentmassfractions whichindicatesthatthefittingcurveisapproximatelyaquadraticequationwithonevariable showingatrendoffirstincreasingandthendecreasing.ThebasaltfibermodifiedbysilanecouplingagentsKH550 KH560andA171withamassfractionof1%hasthebestinterfacebondingwithvinylesterresin andtheflexuralstrengthofthemodifiedbasaltfiber ̄reinforcedcompositeisrespectively16.71%14.96%and13.59%higherthanthatoftheunmodifiedcomposite theimpactstrengthincreasesby10.13%8.84%and7 41%.Withtheexperimentalresultstakenintoconsiderationcomprehensively themodificationeffectofKH550isthelargest followedbythatofKH560 andthatofA171isthesmallest.Inthispaper basaltfibersweremodifiedbysilanecouplingagentsKH550 KH560 andA171withdifferentmassfractions andthemechanicalpropertiesoftheirreinforcedvinylesterresincompositeswereanalyzedtostudythemodificationeffectofsilanecouplingagents andthebesttypeandconcentrationofsilanecouplingagentsweregiven playingacertainguidingroleinimprovingtheinterfacialbondingpropertiesandmechanicalpropertiesofcomposites.Keywords:basaltfiber vinylesterresin compoundmaterial silanecouplingagent mechanicalproperty。
玄武岩纤维的发展现状及趋势

玄武岩纤维的发展现状及趋势文 | 王 淼 沈艳琴 武海良作者简介:王 淼,女,1998年生,硕士在读,主要研究方向为新型浆料与浆纱技术。
通信作者:沈艳琴,教授,E-mail :shenyanqin1208@ 。
作者单位:西安工程大学纺织科学与工程学院。
玄武岩纤维是以天然玄武岩石料为原材料,在1 450 ~ 1 500 ℃下熔融后通过铂铑合金拉丝漏板高速拉制而成的连续纤维,因优异的力学性能、耐高温、耐酸碱、绝缘性及隔热隔音性,在军事、高温过滤等领域具有广阔的应用前景及发展潜力。
1 玄武岩纤维发展现状玄武岩纤维于1840年在英国威尔斯试制成功,1922年法国人Paul 提出了玄武岩连续纤维制造技术并获得专利(US1438428),但并没有实质性的工业化生产;1954年苏联莫斯科玻璃和塑料研究院开发出了玄武岩连续纤维;1985年乌克兰纤维实验室建成投产第 1 台工业化生产炉,采用200孔漏板、组合炉拉丝工艺。
前苏联于20世纪80年代中期投入工业化生产,90年代后期实现了工业化生产,并成为最大的玄武岩纤维生产和消费国。
2019年,全球玄武岩纤维年产量约 3 万t ,主要集中于乌克兰、俄罗斯、中国、美国、德国、比利时等国家,其中美国年产量约3 000 ~ 5 000 t ,俄罗斯年产量约2 000 ~5 000 t ,主要应用于军工、油气管道。
相对而言,我国开展玄武岩纤维的研究较晚。
20世纪90年代中期,南京玻璃纤维研究设计院最早开始超细玄武岩纤维研究,主要用于军工领域。
2001年,哈尔滨工业大学的玄武岩纤维研究团队在成都航天基地建成单体炉纺丝装置;2002年11月我国将“连续玄武岩纤维及其复合材料”列入国家863计划;2003年底,国内第 1 家玄武岩纤维生产企业在上海成立;2004年我国玄武岩纤维开始在上海实现产业化,主要生产直径11 μm 以上的连续玄武岩纤维;2018年四川省玻纤集团有限公司成为全球首家成功采用池窑方式生产连续玄武岩纤维的企业,实现了产能8 000 t /a 。
玄武岩连续纤维浸润剂研制及其对纤维性能的影响

- III -
哈尔滨工业大学工学硕士学位论文
the waterborne polyurethane sizing treatment, because it was intermolecular force, e.g., Van Der Waals force, to bond two single fibers, the mass force of the basalt fibers was not large. However, on their surfaces, there were several groups with big polarity. So, the resin could infiltrate the fibers better. Nevertheless, polyurethane was easy to hydrolyze in alkali environments, this kind of sizing agent’s alkali resistance was not good. Furthermore, when polyester was used as film former, it could make the fiber possess many good properties, such as good friction resistance and alkali resistance. In this work, the polyester was used as an assistant film former with epoxy. Using this sizing agent, the fibers’ mechanical properties and its composites’ ones were common, but it was suitable for the weaving process. Through adding modified nano-SiO2 particles in the sizing agent, the nano-SiO2 particles were connected onto the surface of the basalt fibers, making the basalt fiber surface become rough and thus enabling the adhesive force between fibers and resin to increase. It was found that the interlayer shear strength of the epoxy matrix composite increased by about 5%.
玄武岩纤维增强聚合物锚杆在岩土锚固中的研究进展

锚杆具有抗拉强度高、弹性模量大等特点ꎬ凭借良好
的抗酸碱腐蚀性能、优异的力学性能、绿色无污染的
生产工艺、良好的材料兼ห้องสมุดไป่ตู้性、良好的化学稳定性和
绝缘性等优点在岩土锚固领域有着广阔的发展前
[2 ̄5]
ꎮ
FRP 筋与钢筋相比ꎬ具有抗拉强度高、耐腐蚀性
能优良、抗疲劳性能好、质量轻等优点ꎬ同时也存在
抗剪性能差、弹性模量小、变形大等缺点
[6]
ꎮ 目前常
用的 FRP 锚杆主要有 4 种ꎬ分别为芳纶纤维增强聚合
物( Aramid Fiber Reinforced PolymerꎬAFRP) 锚杆、碳
纤维增强型聚合物(Carbon Fiber Reinforced Polymerꎬ
用于岩土锚固 [7ꎬ8] ꎮ GFRP 锚杆在我国 30 年间发展
其具有价格低廉、性价比高等优势ꎬ在岩土锚固、基
坑支护、地下工程领域应用更为广泛ꎬ但 GFRP 锚杆
在碱环境中抗腐蚀能力相对较弱ꎬ满足不了一些特
殊工程的需求ꎮ BFRP 锚杆虽然开发较晚ꎬ研究相
266033)
摘要: 玄武岩纤维增强聚合物( Basalt Fiber Reinforced PolymerꎬBFRP) 筋具有抗拉强度高、抗碱腐蚀性能强、稳定性好、绿
色环保等优点ꎬ已逐渐成为非金属锚杆的最佳选择ꎬ开始在岩土锚固领域崭露头角ꎮ 本文主要介绍了 BFRP 锚杆在试验、理论
及数值计算方面的研究进展ꎬ总结了锚杆拉拔试验所需监测锚杆应力传感器的种类ꎻ归纳分析现有的 FRP 界面黏结滑移模型
非金属材料ꎬ具有优越的力学性能ꎬ其原材料在我国
少ꎬ适用性不高ꎮ CFRP 锚杆虽然具有较高的抗拉
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Development of Basalt Fiber ReinforcedWood-plastic Composite MaterialsJinxiang Chen 1, a, Sujun Guan 2,b , Shunhua Zhang2,c,Jingjing Zheng2,d, Juan Xie1, e and Yun Lu 3,f1International Institute for Urban Systems Engineering & School of Civil Engineering,Southeast University, Nanjing, 210096, China2Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hang Zhou, 310018, China;3Department of Mechanical Engineering, Graduate School & Faculty of Engineering,Chiba University, Chiba, 263-8522, Japana chenjinx@,b guansujun1222@,c zshhzj@ ,d zjj_cecily@,e xiejuanch@,f luyun@faculty.chiba-u.jp Keywords: Wood Plastic Composite; Basalt Fiber; Composite MaterialAbstract. The relationship between properties of BF-WPC and the content of BF were studied, when wood-plastics composite (WPC) was reinforced by 12mm and 3mm short basalt fiber (SBF). The results showed that there may have some uneven distributions of SBF in WPC, when the content of 12 mm BF exceeded 30%. Restricted to the uneven distribution and the quantity of “end weak’’, it formed the close comprehensive property of BF-WPC by the length of 12mm and 3mm BF. The comprehensive property of BF-WPC has a maximum range of 15%-30% of the content of 12mm BF. Compared to pure WPC, the tensile and bending strength of BF-WPC have improved. However, the reinforce effect of BF-WPC is different and is dependent on the index of each property. The BF-WPC plate can be developed with different properties and be a cost-effective material by choosing different length and content of BF.IntroductionPresently, the research and development of ecological materials have become a major issue, due to the increasing consciousnes on environmental protection and the decreasing amount of forest resources [1]. Wood plastic composites (WPC) is made of plant fiber and thermoplastic materials by extrusion, injection molding, hot molding and other means [2]. WPC inherits the color and texture of the original wood [3-4], so it can be widely used in furniture, floor, pallet and automobile, et al [5]. The raw material of WPC could come from the waste plastic and scrap timber, thus using WPC could realize the conversion process of "turning the waste to be useful" [6] or recycling. However, compared to real wood, there are some deficiencies in applicating WPC, such as more energy consumption, higher production cost, higher density with lower strength ability, etc [7]. Until today, WPC could not be applied to structure materials and other similar field due to higher property requirements[8]. In order to overcome these shortcomings, a lot of studies had been carried out and had been proven to achieve gratifying resultson material formulation [9], reinforced by glass fiber [10], modification [11], and processing technology [12-14]. The aforementioned shortcomings of WPC are not well resolved, therefore, continues research and development should be carried out in order to find new break throughs in these deficiencies.On the other hand, this paper would introduce basalt fiber (BF) which is known as "the 21st century non-pollutant green materials", which is a new kind of fiber prepared with natural ore and drawn through platinum rhodium alloy by melting at high temperature [15]. BF has wide raw materialsources, low cost [16], and excellent property, such as high temperature resistance, corrosioncost-effective and high strength fiber [18], which had been widely used in road traffic [19], buildings and other reinforcement fields [20-21]. In view of this, through the cross-disciplinary advantage, on the basis of "wood" and "plastics" composite, it can effectively improve the tensile and bending strength by preliminary experiment using 3mm short BF reinforce WPC, but the growth of elongation is not ideal [22]. This article coincides to improve by increasing the length of short BF.In order to determine the length interval of short BF of effectively reinforced WPC, the effect of longer BF reinforced WPC was discussed in this article. Futhermore, the relationship between the length and content of short BF, and the mechanical properties of BF-WPC was also investigated. It is clear that the BF-WPC could be developed by new technology-- using different length and content of short BF.Experimental methodMaterial design and equipment In order to reduce the number of experiments, to improve the efficiency and to find out the best effect, select the length of 12mm and 3mm BF to reinforce WPC on experimental basis of 3mm BF reinforced WPC. Materials BF of diameter 17 µm which was made in 2010 provided by ZHEJIANG GBF BASALT FIBER Co., LTD; WPC of HDPE: Teak powder=3:7, (SHXINJIXIN Co., LTD). Experiment designs are divided into 6 groups in which the content of BF increases from 0% and each additional sample by 6%, and each group size is five. So, the total size is ten for 3mm BF including previous experiment results.The preparation process and property testing Mixing BF and WPC to the extruder by double roller mill to refine about 5-10minutes, and the front roll is at 160 and the back is at 170 ℃ respectively. After crushing the well mixed materials, mold it by the plate vulcanizing compression, molding temperature is at 180 ℃, preheating it for 5-10 minutes, pressurize it for 8min and at 8 MPa, then cold pressure 15 minutes after unloading mode.According to GB/T 7-2005, GB/T 1449-2005 and GB/T 1043-1993 prepare the tensile, bending and impact samples, and test it by electronic all-powerful experiment on tensile (gauge is 80mm) and bending (span is 60mm), test speed is at 10mm/min Scan sample by SEM [22]. The detailed experimental conditions can be reffered to the reference [22].Result and discussionMechanical properties Figure 1 shows the tensile strength of BF-WPC with the different contents of 12mm and 3 mm BF. From the graph, we can see that the tensile strength of BF-WPC is first increased and then gradually decreased, with the content of BF increased. When the length of BF is 12 mm, the elongation of BF-WPC had improved than the length of 3mm BF`s, while the content of BF amount 18%-30%.Fig.1 Relationship between the tensile properties of BF-WPC and BF content.T e nsileS t r e n g th /M P aMass fraction of BF / % Elo nga t ion/%Mass fraction of BF / %Fig. 2 is the bending strength of BF-WPC with different content of BF respectively. The graph shows that with the increasing content of BF, the bending strength of BF-WPC haveincreased during the process, and when reached its maximum it bagan to decline. These changes varies depending on the content of BF. The bnding strength reaches its maximum when the content of 12 mm BF is about 24%. The amount of changes varies after it reaches its maximum, in which the largest was more than 50%, while the smallest about one third, which maybe related to the propery index and the length of short fiber.Fig. 2 Relationship between bending strength of BF-WPC and BF content.Fracture fractography of BF-WPC Figure 3 shows the cross-section fractography of BF-WPC by bending broke, with the length of BF is 3mm and 12mm and the content of 18% and 24%. Figure 3 shows that WPC mixed density is uniform; while from the cross-section in Figure 3, no matter what length of BF is used, they all showed the overhanging BF (as shown with general arrow mark), also some hollow holes after BF had been polled out (as shown with wide arrow mark). However, the overhanging section of the length of 12mm BF is longer than that of 3 mm. Moreover, from the Fig. 3(d), the length of 12 mm of BF and its content of 24%, the distribution part of the overhanging section of BF is more dense, and almost formed a wispy. In other words, the uniformity of distribution of BF in WPC had decreased if content of BF is more than 30%.Fig.3 Fractography of bending fracture surfaces of composite.(a)3mm 18%(b)3mm 24%(c)12mm 18%(d)12mm 24%B en d ingS t re ng t h/M P aMass fraction of BF / %Property analysis of BF-WPC and its strengthening mechanisms Figs 1 and 2 show that, whether the length of BF length is 3 mm or 12 mm, except that the e longation has no largely change, other mechanical property index of BF-WPC both show a rising progress, then all began to decline after reaching its maximum, along with the increase of the content of BF. Bending strength reaches its maximum when the content of BF is about 20%-30%, while the tensile strength is about 15%-25%. With the similar report about the glass fiber reinforced WPC [10]: the percentage of wood powder in WPC is not more than 30%, the best content of additive glass fiber is 15%, and the tensile and bending strength increased 23-40% and 10% respectively [10, 23]. Compared with that of the glass fiber, it is visible that the content of added BF to reinforce WPC could substantially increase, at the same time, substantially increasing its mechanical properties,For the strength mechanism and the mentioned maximum phenomenon, it can be explained that when composites under external load is put in place, the shear force will load the matrix transfer to enhance the fiber [24], and the mutual snare deformation between BF and matrix would be interfaced, thus the enhancement between the two worked [25-26]. When the content of reinforced fiber reached a certain value, these excessive fibers affect the even combination between matrix and fiber, which will cause the transferefficiency of stress to decline between the interface. Thereby the maximum phenomenon will show the properties index of materials.According to current mechanism of "shear stress transmission", if the BF and WPC are mixed well, and squeezed evenly, then the effect will be better. From Figure3, WPC dense wrapped around BF, and the mechanical properties such as tensile strength of BF confirmed to be much larger than WPC. Therefore, the tensile and bending strength had been significant reinforced, which can be demonstrated that when the materials was mixed fully in the experiment, the result of the molding process is ideal. In this experiment, the content of wood powder in WPC is up to 70%, and the best content range of BF is about 15%-30%, which is much larger than that 15% of glass fiber. In this regard, as reported [22], when the length of BF is 3mm even if the content of BF is up to 30%, Figure 3 shows that the mainly is WPC, while BF should have enough space. Therefore, as long as the content is not too much, BF may not become phenomenon of "difficult to be evenly combined" (referred to as "uneven").With the qualitative hypothesis of "weak end", it could explain that the phenomenon of the maximum content of BF is less than 30% [22].By this hypothesis, the quantity of "weak end" of the length of 12mm BF is only 1/4 to 3mm, with the same content of BF, compared to 3mm BF, if the fiber diameter is the same. Therefore, mechanical properties of each index and the maximum content of BF should be better and bigger. Although Fig. 1 shows the changes of trends of the tensile experiments, the effect is not very apparent. While Figure 3 shows that the length of overhanging BF (Fig. 3c, d) is much longer than that of 3mm (Fig. 3a, b), and the mentioned part section of overhanging BF will be fastened together(Fig. 3d), when the length of BF is 12mm. So it could be presumed that the content of 12mm BF is 24%, which may have begun to affect the uniformity of fiber distribution. In other words, the length of reinforced BF is not longer the better, the effect is also related with the content and distributation of BF.The relationship between the two will be more detailed and studied on the other coverage.Development of the BF-WPC with different cost-effective Based on the above effect of strength property of WPC in different length of BF and the analysis of the mechanism, the relationship between the length of 12mm and 3mm, and the mechanical properties has no significant variation. For instance, the bending strength of 3mm BF reinforced WPC is better than that of 12mm (Fig. 2), while the elongation are opposite (Fig. 1b); the tensile strength is relatively close (Fig. 1a). Therefore, there are several possible reasons: 1) Despite the length of reinforced BF, it could play a significant impact on some mechanical properties, but the effect on comprehensive enhancement caused by the two kinds may be consider to be simlar with the BF length of 3 mm and 12 mm, because of the "weak end" and "uneven" effect caused by the length of fiber roughly offset each other. 2) The range of the length of BF from 3 mm to 12 mm is a large gap, which separates by 3 times, so there maybe an optimallength of BF during that range, which will be judged by further experiments.In any case, the existingproperties of WPC, it is indisputable that it can developed new materials of BF-WPC which will have better mechanical properties than the present WPC.How to effectively develop BF-WPC plate? In order to further explained this question, taking the tensile strength as an example: Figure 4 shows the development of curve that is related to the effect of growth of the tensile strength of each additional 1% BF.Fig. 4 clearly shows that the effect iscompletely different with each additional 1% of BF. Therefore, choosing the content of 10%-20% of BF may obtain better the strengthening effect, while use as less BF as possible. In order to obtain the best effect with, different needed indicators by using different formulas, based on the experimental results shown Figs 1 and 2, such as the content of 3mm BF is 25%, would gain the best bending strength of plate(Fig. 2). Similarly, the content of 12mm BF is 18% would gain the better tensile strength of plate (Fig. 1). Acording to different purpose, it is visible thatdeveloping different cost-effective BF-WPC plate is best achieved by choosing different lengths of BF and adjusting its content.Summary(1) No matter what the length of BF is, either 3 mm or12 mm, the relationship between the tensile and bending strength of BF-WPC and the content of BF had the same reaction, which started at increasing and then gradually declining after it reaches its maximum, and the results also showed the combined value of each property. However, the growth of each property and the content of BF varies from each other, when the property reaches its peakest point: Bending strength reaches its highest strength when the content of BF is about 20%-30%, while the tensile strength is about 15%-25%. The effect of these development, the largest was more than50%, while the smallest about one third, which maybe related to the propery index and the length of short fiber.(2)For the length of 12mm BF reinforced WPC, the length of overhanging BF is much longer than that of 3mm, especially the content of BF exceeded 30%, there may have some uneven distributions of SBF in WPC for the length of 12mm BF. Restricted to the uneven distribution and the quantity of “end weak’’, it formed the close comprehensive property of the BF-WPC with the two types length of BF. However, the reinforced effect of BF-WPC is different and is dependent on the index of these properties.(3) Acording to different purpose, it is visible that developing different cost-effective of BF-WPC plate is achieved by choosing different length of BF and adjusting its content.AcknowledgmentThis work is supported by Natural Science Foundation of China under Grant 50908045. The authors would like to thank Zhejiang ShiJin basalt fiber Co., LTD who supplied and supported us in these experiments.Fig.4 Reinforce effect of the tensile strength for added each 1% BF of 12 mm content Every increase in content, Content of BF/w/w%G ro wthra teofT e nsi l e St ren g th /%References[1] X. Yin and H. Ren: Plastics Vol. 31(2002), p. 25-28[2] W. Yu, Z. Sun and X. Lei: Chemical Building Materials Vol. 9(2004), p. 14-16[3] P. Tu: New Building Materials Vol. 7(2001), p. 10-12[4] A. Kamal, S. Pang and S. Mark: Composites Part B: Engineering Vol. 39(2008), p. 807-815[5] J. Markarian: Plastics additives & compounding Vol. 7(2005), p. 20-26[6] J. Guo, Y. Tang and Z. Xu: Journal of Hazardous Materials Vol. 179(2010), p. 203-207[7] Q. Wang and W.Wang. Wood-plastic composite materials and products (Chemical Industry Press,Beijing 2007)[8] A. Afrifah, A. Hickok and M. Matuana: Composites Science and Technology Vol. 70(2010), p.167-172[9] F. James and M. Armando: Composites Part A: Applied Science and Manufacturing Vol.41(2010), p. 1434-1440[10] Y. Cui, B. Noruziaan, S. Lee, M. Chang and J. Tao: Polymer Materials Science & EngineeringVol. 22(2006), p. 231-234[11] W. Andrea and H. Salim: Building and Environment Vol. 42(2007), p. 2637-2644[12] Y. Shu-Kai and G. Rakesh: Composites Part A: Applied Science and Manufacturing Vol.39(2008), p. 1694-1699[13] Y. Lei and Q. Wu: Bioresource Technology Vol. 101(2010), p. 3665-3671[14] K. Oksman: Wood Science and Technology Vol. 30(1996), p. 197-205[15] X. Hu and T. Shen: Hi-Tech Fiber & Application Vol. 30(2005), p. 7-13[16] X. Hu: Hi-Tech Fiber & Application Vol. 33(2008), p. 12-18[17] M. Wang, Z. Zhang, Y. Li, M. Li and Z. Sun: Journal of Reinforced Plastics and CompositesMarch Vol. 27(2008), p. 393-407[18] M. Jiri, K.Vladimir and R. Jitka: Engineering Fracture Mechanics Vol. 69(2002), p. 1025-1033[19] B. Jin and G. Wu: Science and Technology Innovation Herald Vol. 13(2009), p. 74-75[20] M. Černý, P. Glogar and Z. Sucharda: Journal of Composite Materials May Vol. 43(2009), p.1109-1120[21] Q. Liu, S. Montgonery, P. Richard and A. Mcdonnell: Polymer composites Vol. 27(2006), p.41-48[22] S. Guan, C. Wan, L. Wang, Y. Xu and J. Chen: Study on mechanical properties of basalt fiberteinforced wood-plastic composites, edtied by Acta Materiae Compositae Sinica, 2011, in press [23] Z. Qin: Performance and structure research of glass fiber/wood flour/polypropylene three phasecomposites(Suzhou University, Suzhou 2005)[24] H. Li and J. Tao: Engineering Plastics Application Vol. 37(2009), p. 17-19[25] J. Xu, X. Quan, W. Gao, H. Gao and Y. Wu: Materials Review Vol. 23(2007), p. 112-115[26] M. He, W. Chen and X. Dong: Polymer Physics (Fudan University Press, Shanghai 1991).Manufacturing Process Technologydoi:10.4028//AMR.189-193Development of Basalt Fiber Reinforced Wood-Plastic Composite Materialsdoi:10.4028//AMR.189-193.4043。