swjtu 数值分析报告
数值分析实验报告

数值分析实验报告【引言】数值分析是一门研究利用计算机和数学方法解决实际问题的学科,它在工程、科学和经济领域中有着广泛的应用。
在这个实验报告中,我将分享我在数值分析实验中的一些发现和结果。
【实验目的】本次实验的目的是通过数值方法对给定的问题进行求解,并分析数值方法的精确性和稳定性。
我们选择了经典的插值和数值积分问题来进行实验。
【实验过程】在插值问题中,我使用了拉格朗日插值和样条插值两种方法。
通过使用已知的数据点,这些方法能够通过构造多项式函数来逼近原始函数,从而能够在未知点上进行预测。
通过比较两种插值方法的结果,我发现拉格朗日插值在低维数据上表现更好,而样条插值在高维数据上更能保持插值曲线的平滑性。
在数值积分问题中,我使用了复合梯形公式和复合辛普森公式来进行数值积分。
这两种方法可以将复杂的区间上的积分问题转化为对若干个小区间进行数值积分的问题。
实验结果表明,复合辛普森公式在使用相同的步长时,其数值积分结果更为精确。
【实验结果】我以一个实际问题作为例子来展示实验结果。
问题是计算半径为1的圆的面积。
通过离散化的方法,我将圆划分为多个小的扇形区域,并使用数值积分方法计算每个扇形的面积。
最后将每个扇形的面积相加,即可得到圆的近似面积。
通过调整离散化的精度,我发现随着扇形数量的增加,计算得到的圆的面积越接近真实的圆的面积。
在插值问题中,我选择了一段经典的函数进行插值研究。
通过选择不同的插值节点和插值方法,我发现当插值节点越密集时,插值结果越接近原函数。
同时,样条插值方法在高阶导数连续的情况下能够更好地逼近原始函数。
【实验总结】通过这次实验,我对数值分析中的插值和数值积分方法有了更深入的理解。
我了解到不同的数值方法在不同的问题中有着不同的适用性和精确度。
在实际应用中,我们需要根据具体问题选择合适的数值方法,并进行必要的数值计算和分析,以获得准确可靠的结果。
总的来说,数值分析作为一种重要的工具和方法,在科学研究和工程实践中具有广泛的应用,并且不断发展和创新。
西南交通大学数值分析上机实验报告

数值分析上机实习报告学号:姓名:专业:联系电话:任课教师:序 (3)一、必做题 (4)1、问题一 (4)1.1 问题重述 (4)1.2 实验方法介绍 (4)1.3 实验结果 (5)2、问题二 (7)2.1 问题重述 (7)2.2 实验原理 (7)雅各比算法:将系数矩阵A分解为:A=L+U+D,则推到的最后迭代公式为: (8)2.3 实验结果 (8)二、选做题 (10)3、问题三 (10)3.1 问题重述 (10)3.2 实验原理 (10)3.3 实验结果 (11)总结 (11)序伴随着计算机技术的飞速发展,所有的学科都走向定量化和准确化,从而产生了一系列的计算性的学科分支,而数值计算方法就是解决计算问题的桥梁和工具。
数值计算方法,是一种研究并解决数学问题的数值近似解方法,是在计算机上使用的解数学问题的方法。
为了提高计算能力,需要结合计算能力与计算效率,因此,用来解决数值计算的软件因为高效率的计算凸显的十分重要。
数值方法是用来解决数值问题的计算公式,而数值方法的有效性需要根据其方法本身的好坏以及数值本身的好坏来综合判断。
数值计算方法计算的结果大多数都是近似值,但是理论的严密性又要求我们不仅要掌握将基本的算法,还要了解必要的误差分析,以验证计算结果的可靠性。
数值计算一般涉及的计算对象是微积分,线性代数,常微分方程中的数学问题,从而对应解决实际中的工程技术问题。
在借助MA TLAB、JA V A、C++ 和VB软件解决数学模型求解过程中,可以极大的提高计算效率。
本实验采用的是MATLAB软件来解决数值计算问题。
MA TLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,其对解决矩阵运算、绘制函数/数据图像等有非常高的效率。
本文采用MATLAB对多项式拟合、雅雅格比法与高斯-赛德尔迭代法求解方程组迭代求解,对Runge-Kutta 4阶算法进行编程,并通过实例求解验证了其可行性,使用不同方法对计算进行比较,得出不同方法的收敛性与迭代次数的多少,比较各种方法的精确度和解的收敛速度。
西南交通大学-数值分析--报告

数值分析课程上机作业计算报告班级:学号:姓名:专业:大地测量学及测绘工程指导老师:联系电话:西南交通大学-数值分析--报告序言通过数值分析的理论知识的学习,此次实验将我们学过的理论知识运用于实践之中。
本次实验,我选用的计算机语言为MATLAB,其主要有一下几个特点。
1.编程效率高MATLAB是一种面向科学与工程计算的高级语言,允许使用数学形式的语言编写程序,且比BASIC、FORTRAN和C等语言更加接近我们书写计算公式的思维方式,用MATLAB编写程序犹如在演算纸上排列出公式与求解问题。
因此,MATLAB语言也可通俗地称为演算纸式科学算法语言。
由于它编写简单,所以编程效率高,易学易懂2. 用户使用方便MATLAB语言与其他语言相比,较好的解决了上述问题,把编辑、编译、链接和执行融为一体。
它能在同一画面上进行灵活操作,快速排除输入程序中的书写错误、语法错误以至语义错误,从而加快了用户编写、修改和调试程序的速度,可以说在编程和调试过程中它是一种比VB还要简单的语言。
3. 方便的绘图功能MATLAB的绘图是十分方便的,它有一系列绘图函数(命令),例如线性坐标、对数坐标、半对数坐标及极坐标,均只需调用不同的绘图函数(命令),在图上标出图题、XY轴标注,格(栅)绘制也只需调用相应的命令,简单易行。
另外,在调用绘图函数时调整自变量可绘出不变颜色的点、线、复线或多重线。
这种为科学研究着想的设计是通用的编程语言所不能及的。
目录1.实验一 (1)1.1题目 (1)1.2计算思路 (1)1.3计算结果 (1)1.4总结 (6)2.第二题 (7)2.1题目 (7)2.2 松弛思想分析 (7)2.3问题的求解 (7)2.4总结 (10)3.第三题 (11)3.1题目 (11)3.2 Runge-Kutta法的基本思想 (11)3.3 问题的求解 (12)3.4问题的总结 (14)总结 (15)附件 (16)实验一程序设计 (16)实验二程序设计 (16)实验三程序设计 (17)实验一:插值问题1.1题目已知:a=-5,b=5, 以下是某函数f(x)的一些点(x k,y k), 其中x k=a+0.1(k-1) ,k=1,..,101;(数据略)。
数值分析2016上机实验报告

序言数值分析是计算数学的范畴,有时也称它为计算数学、计算方法、数值方法等,其研究对象是各种数学问题的数值方法的设计、分析及其有关的数学理论和具体实现的一门学科,它是一个数学分支。
是科学与工程计算(科学计算)的理论支持。
许多科学与工程实际问题(核武器的研制、导弹的发射、气象预报)的解决都离不开科学计算。
目前,试验、理论、计算已成为人类进行科学活动的三大方法。
数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。
现在面向数值分析问题的计算机软件有:C,C++,MATLAB,Python,Fortran等。
MATLAB是matrix laboratory的英文缩写,它是由美国Mathwork公司于1967年推出的适合用于不同规格计算机和各种操纵系统的数学软件包,现已发展成为一种功能强大的计算机语言,特别适合用于科学和工程计算。
目前,MATLAB应用非常广泛,主要用于算法开发、数据可视化、数值计算和数据分析等,除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。
本实验报告使用了MATLAB软件。
对不动点迭代,函数逼近(lagrange插值,三次样条插值,最小二乘拟合),追赶法求解矩阵的解,4RungeKutta方法求解,欧拉法及改进欧拉法等算法做了简单的计算模拟实践。
并比较了各种算法的优劣性,得到了对数值分析这们学科良好的理解,对以后的科研数值分析能力有了极大的提高。
目录序言 (1)问题一非线性方程数值解法 (3)1.1 计算题目 (3)1.2 迭代法分析 (3)1.3计算结果分析及结论 (4)问题二追赶法解三对角矩阵 (5)2.1 问题 (5)2.2 问题分析(追赶法) (6)2.3 计算结果 (7)问题三函数拟合 (7)3.1 计算题目 (7)3.2 题目分析 (7)3.3 结果比较 (12)问题四欧拉法解微分方程 (14)4.1 计算题目 (14)4.2.1 方程的准确解 (14)4.2.2 Euler方法求解 (14)4.2.3改进欧拉方法 (16)问题五四阶龙格-库塔计算常微分方程初值问题 (17)5.1 计算题目 (17)5.2 四阶龙格-库塔方法分析 (18)5.3 程序流程图 (18)5.4 标准四阶Runge-Kutta法Matlab实现 (19)5.5 计算结果及比较 (20)问题六舍入误差观察 (22)6.1 计算题目 (22)6.2 计算结果 (22)6.3 结论 (23)7 总结 (24)附录问题一 非线性方程数值解法1.1 计算题目编写不动点迭代法求根程序:把方程010423=-+x x 写成至少四种x=g (x )的形式,取初值5.1x 0=,进行不动点迭代求根,并比较收敛性及收敛速度。
数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
数值分析实验报告5篇

1.69376699767424 0.92310666706964 0.08471614569741 0.40804026409411
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
讨论:
利用这种方法进行这类实验,可以很精确的扰动敏感性的一般规律。即 当对扰动项的系数越来越小时,对其多项式扰动的结果也就越来越小, 即扰动敏感性与扰动项的系数成正比,扰动项的系数越大,对其根的扰 动敏感性就越明显,当扰动的系数一定时,扰动敏感性与扰动的项的幂 数成正比,扰动的项的幂数越高,对其根的扰动敏感性就越明显。
解线性方程组的直接方法
实验 (主元的选取与算法的稳定性) 问题提出:Gauss消去法是我们在线性代数中已经熟悉的。但由于计算 机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保 Gauss消去法作为数值算法的稳定性呢?Gauss消去法从理论算法到数值 算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它 却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的 Gauss消去过程。 实验要求: (1)取矩阵,则方程有解。取n=10计算矩阵的条件数。让程序自动选 取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最 小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去 过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析 不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元
数值分析期末实验报告

数值计算方法论文论文名称:数值计算方法期末总结学号:姓名:完成时间:摘要:数值计算方法是数学的一个重要分支,以用计算机求解数学问题的理论和方法为研究对象。
本文是我对本学期数值分析这门课程中所学到的内容以及所作的工作的总结。
通过一学期的学习,我深入学习了线性方程组的解法,非线性方程的求根方法,矩阵特征值与特征向量的计算,函数的插值方法,最佳平方逼近,数值积分与数值微分,常微分方程初值问题的数值解法。
通过陶老师课堂上的讲解和课下的上机训练,对以上各个章节的算法有了更深刻的体会。
最后做了程序的演示界面,使得程序看起来清晰明了,便于查看与修改。
通过本学期的学习。
关键词:数值计算方法、演示界面第一章前言随着电子计算机的普及与发展,科学计算已成为现代科学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。
通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。
第二章基本概念2.1算法算法是指由基本算术运算及运算顺序的规定构成的完整的解题步骤。
算法可以使用框图、算法语言、数学语言、自然语言来进行描述。
具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。
2.2 误差计算机的计算结果通常是近似的,因此算法必有误差,并且应能估计误差。
误差是指近似值与真正值之差。
绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。
误差来源见表2.1表2.1第三章泛函分析2.1泛函分析概要泛函分析(Functional Analysis)是研究“函数的函数”、函数空间和它们之间变换(映射)的一门较新的数学分支,隶属分析数学。
它以各种学科为具体背景,在集合的基础上,把客观世界中的研究对象抽象为元素和空间。
如:距离空间,赋范线性空间,内积空间。
2.2 范数范数,是具有“长度”概念的函数。
在线性代数、泛函分析及相关的数学领域,泛函是一个函数,其为矢量空间内的所有矢量赋予非零的正长度或大小。
数值分析实习报告总结

一、实习背景数值分析是数学的一个重要分支,它研究如何用数值方法求解数学问题。
随着计算机技术的飞速发展,数值分析在各个领域得到了广泛的应用。
为了提高自己的实践能力,我选择了数值分析作为实习课题,希望通过这次实习,能够掌握数值分析的基本方法,并将其应用于实际问题中。
二、实习过程1. 实习初期在实习初期,我首先了解了数值分析的基本概念、理论和方法。
通过阅读相关教材和文献,我对数值分析有了初步的认识。
接着,我学习了数值分析的基本方法,如泰勒展开、牛顿法、高斯消元法等。
2. 实习中期在实习中期,我选择了几个实际问题进行数值计算。
首先,我使用泰勒展开法求解一个简单的微分方程。
通过编写程序,我得到了微分方程的近似解。
然后,我运用牛顿法求解一个非线性方程组。
在实际计算过程中,我遇到了一些问题,如收敛性、迭代次数过多等。
通过查阅资料和请教导师,我找到了解决方法,成功求解了方程组。
3. 实习后期在实习后期,我进一步学习了数值分析的高级方法,如复化梯形公式、复化Simpson公式、自适应梯形法等。
这些方法在解决实际问题中具有更高的精度和效率。
我选择了一个具体的工程问题,运用复化梯形公式求解定积分。
在计算过程中,我遇到了区间细分、精度控制等问题。
通过不断尝试和调整,我得到了较为精确的积分值。
三、实习收获与体会1. 理论与实践相结合通过这次实习,我深刻体会到理论与实践相结合的重要性。
在实习过程中,我不仅学习了数值分析的理论知识,还将其应用于实际问题中。
这使我更加深刻地理解了数值分析的基本方法,提高了自己的实践能力。
2. 严谨的学术态度在实习过程中,我养成了严谨的学术态度。
在编写程序、进行数值计算时,我注重细节,力求精确。
这使我更加注重学术规范,提高了自己的学术素养。
3. 团队合作精神实习过程中,我与其他同学进行了交流与合作。
在解决实际问题时,我们互相学习、互相帮助,共同完成了实习任务。
这使我更加懂得团队合作的重要性,提高了自己的团队协作能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014数值分析上机实习报告序言对于工程上所遇到的一些复杂的数学问题,有时我们很难利用现有的技术计算出其准确的结果,或者是计算复杂耗时。
但是我们一般可以针对这些实际问题通过建立合理的数学模型,使用简便的计算方法,从而利用计算机技术来高效地计算出比较接近理想值的结果,从而达到既解决复杂的实际问题又不过多占用计算机内存的目的。
报告中采用MATLAB软件对不同的问题和算法进行了求解和比较分析,其结果说明,对于同样的问题,不同的计算方法有着不同的计算特点,每一步所得到的计算结果有差异,并且计算效率和对计算机性能的要求都不一样。
使用的编程语言MATLAB有以下优点及特点:1.工作平台和编程环境十分友好,简单的编程环境提供了比较完备的调试系统,程序不必经过编译就可以直接运行,而且能够及时地报告出现的错误及进行出错原因分析。
2.MATLAB程序语言简单易用,它包含控制语句、函数、数据结构、输入和输出和面向对象编程特点。
用户可以在命令窗口中将输入语句与执行命令同步,也可以先编写好一个较大的复杂的应用程序(M文件)后再一起运行。
3. MATLAB的数据处理能力极强,很适合数值计算。
MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。
函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。
目录序言 (I)目录 (II)一必做题 (1)1.1 题目一 (1)1.1.1 二乘法拟合 (1)1.1.2 插值计算 (3)1.2 题目二 (7)1.2.1 问题一 (8)1.2.2 问题二 (8)1.2.3 问题三 (9)二选做题 (9)1.1 题目 (9)1.1.1 4阶Runge-Kutta算法 (9)1.1.2 Euler法计算 (13)总结 (17)附录 (18)1. 题目一 (18)1)二乘法拟合函数 (18)2)拉格朗日插值函数 (18)2. 题目二 (20)1)Guass-seidel法 (20)2)Jacobi法 (22)3. 题目三 (23)1)Euler法 (23)2)Runge-kutta法 (24)一 必做题1.1 题目一1. 某过程涉及两变量x 和y, 拟分别用插值多项式和多项式拟合给出其对应规律的近似多项式,已知xi 与yi 之间的对应数据如下,xi=1,2,…,10yi = 34.6588 40.3719 14.6448 -14.2721 -13.3570 24.8234 75.2795 103.5743 97.4847 78.2392(1)请用次数分别为3,4,5,6的多项式拟合并给出最好近似结果f(x)。
(2)请用插值多项式给出最好近似结果下列数据为另外的对照记录,它们可以作为近似函数的评价参考数据。
xi =Columns 1 through 71.5000 1.90002.3000 2.70003.1000 3.5000 3.9000 Columns 8 through 144.3000 4.70005.1000 5.5000 5.90006.3000 6.7000 Columns 15 through 177.1000 7.5000 7.9000yi =Columns 1 through 742.1498 41.4620 35.1182 24.3852 11.2732 -1.7813 -12.3006 Columns 8 through 14-18.1566 -17.9069 -11.0226 2.0284 19.8549 40.3626 61.0840 Columns 15 through 1779.5688 93.7700 102.36771.1.1 二乘法拟合分析:题目中给出10个节点,可以确定一个不超过10-1次的多项式。
假设多项式为9...3,2,19,...3,2,1,02210==++++=n i x c x c x c c y n i n i i i ,, 插值条件下的关于系数a i(i=1.2,3......,9)的10个方程组为:⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++999929291019192121100909202010y x a x a x a a y x a x a x a a y x a x a x a a关于a i 的系数行列式为:992999121190200111)det (x x x x x x x x x A=9次以下的方程组未知数小于10但实际方程组有10个,即方程个数多于未知数个数,是个矛盾方程组。
可以用二乘法进行拟合。
拟合结果:图1.1 3次结果 图1.2 4次结果图1.3 5次结果 图1.4 6次结果四次拟合结果对比分析:图1.5 拟合结果对比由图中可知6次多项式拟合结果最为理想。
通过二分法也可计算出拟合函数的近似表达式:为插值次数n x c c y nj j j i ,10∑=+= 三次拟合曲线 n=3,系数为 131.2460 -94.3185 19.3809 -1.0383四次拟合曲线 n=4,系数为 -10.6841 90.3369 -47.7669 7.9959 -0.4039五次拟合曲线 n=5,系数为-24.9847 115.7601 -60.8354 10.8410 -0.6825 0.0101六次拟合曲线n=6,系数为14.0333 41.4354 -19.6251 -0.1965 0.9289 -0.1128 0.00381.1.2 插值计算使用拉格朗日插值函数进行插值给出最好结果。
① 用拉格朗日插值函数进行插值,用两次插值计算函数曲线将原数组分成三组 X=[1 2 3 ];Y=[34.6588 40.3719 14.6448]X=[ 4 5 6 ];Y=[ -14.2721 -13.3570 24.8234]X=[ 7 8 10 ];Y=[75.2795 103.5743 78.2392 ]② 使用插值函数计算所得插值结果:L1 =(581349181000515433*x)/10995116277760000 -(691377309592059753*x^2)/43980465111040000 -109709270219488827/43980465111040000L2 =(2622312362403902221*x^2)/140737488355328000 -(4694404477208231867*x)/28147497671065600 +24961236119073062527/70368744177664000L3 =(1025213448942989933*x)/4398046511104000 -(600514401680402997*x^2)/43980465111040000 -1219653385010719151/1374389534720000图1.6 分段插值整合曲线注:图中可看出分段边界插值函数并没有通过原函数点是因为边界点左右函数值不同,程序绘图时自动计算其平均值。
由图中可知,分段插值虽然插值次数仅为两次插值结果与原来数数据点较好的吻合。
③用类似方法做高次插值结果为:图1.7 分段插值整合曲线(三次插值)图1.8 分段插值整合曲线(四次插值)图1.9 分段插值整合曲线(五次插值)图1.10 分段插值整合曲线(六次插值)图1.11 分段插值整合曲线(七次插值)图1.12 分段插值整合曲线(八次插值)图1.13 分段插值整合曲线(九次插值)图1.13 多次插值函数对比分析结论:1.分段插值法虽然插值次数较少,但是插值过程几乎使用全部节点,也具有较好插值结果。
2.图中使用最高插值次数达到9次,但是插值曲线依然有较好的而结果,并没有出现插值龙格现象。
插值龙格现象主要是由于原始节点存在误差,插值过程中误差积累导致最终结果出现较大偏差。
而本题中,插值接点本身舍入误差很小,所以虽然差值次数达到9次依然有很好的结果。
3.对比分析可知三次、八次、九次插值函数有较好的结果,最终可以选取三次分段插值结果作为最终插值结果。
1.2 题目二用雅格比法与高斯-赛德尔迭代法解下列方程组Ax=b1或Ax=b2,研究其收敛性。
上机验证理论分析是否正确,比较它们的收敛速度,观察右端项对迭代收敛有无影响。
(1)A行分别为A1=[6,2,-1],A2=[1,4,-2],A3=[-3,1,4];b1=[-3,2,4]T;b2=[100,-200,345]T。
(2) A行分别为A1=[1,0,8,0.8],A2=[0.8,1,0.8],A3=[0.8,0.8,1];b1=[3,2,1]T;b2=[5,0,-10]T。
(3)A行分别为A1=[1,3],A2=[-7,1];b1=[4,6]T。
(1)Jacobi法计算收敛性:X=[36.3619;-2.0737;114.0417] k=15;X=[-0.7282;0.8076;0.2548] k=9;(2)Gauss-seidel法计算收敛性:X=[-0.7254;0.8086;0.2538] k=6;X=[36.3637;-2.0751;114.0415] k=11;对比分析可知Jacobi法迭代次数要比Gauss-seidel法多,也就是说在均收敛的情况下,Gauss-seidel法会比Jacobi法收敛快。
而且相同方法下,数据较大时需要迭代的次数就越多。
1.2.2 问题二(1)Jacobi法计算:>> B=[0 0.8 0.8;0.8 0 0.8;0.8 0.8 0];[a,c]=eig(B)a =0.3984 0.7127 0.57740.4180 -0.7014 0.5774-0.8164 -0.0113 0.5774c =-0.8000 0 00 -0.8000 00 0 1.6000用matlab计算迭代式矩阵的谱半径P(A)>1,所以用雅格比迭代法不能收敛。
(2)Gauss-seidel法:X=[32.6912;7.7129;-42.3233] k=23;X=[5.7854; 0.7704;-4.2446] k=17;使用Gauss-seidel法计算式有较好的收敛结果。
(3)A 行分别为A 1=[1,3],A 2=[-7,1];b1=[4,6]T用matlab 计算迭代式矩阵的谱半径P(A)>1,所以用雅格比迭代法不能收敛。
手算高斯-赛德尔迭代法迭代矩阵的谱半径p (B )>1,所以高斯-赛德尔迭代法迭不能收敛。