中考数学复习专题7几何综合题、几何与代数综合题 (1)

合集下载

初中数学代数与几何综合题

初中数学代数与几何综合题

初中数学代数与⼏何综合题初中数学代数与⼏何综合题代数与⼏何综合题从内容上来说,是把代数中的数与式、⽅程与不等式、函数,⼏何中的三⾓形、四边形、圆等图形的性质,以及解直⾓三⾓形的⽅法、图形的变换、相似等内容有机地结合在⼀起,同时也融⼊了开放性、探究性等问题,如探究条件、探究结论、探究存在性等。

经常考察的题⽬类型主要有坐标系中的⼏何问题(简称坐标⼏何问题),以及图形运动过程中求函数解析式问题等。

解决代数与⼏何综合题,第⼀,需要认真审题,分析、挖掘题⽬的隐含条件,翻译并转化为显性条件;第⼆,要善于将复杂问题分解为基本问题,逐个击破;第三,要善于联想和转化,将以上得到的显性条件进⾏恰当地组合,进⼀步得到新的结论,尤其要注意的是,恰当地使⽤分析综合法及⽅程与函数的思想、转化思想、数⾏结合思想、分类与整合思想等数学思想⽅法,能更有效地解决问题。

第⼀类:与反⽐例函数相关1. (09北京)如图,点 C 为O O 直径AB 上⼀点,过点 C 的直线交O O 于点D 、E 两点,且/ ACD=45°,DF _AB 于点 F ,EG _ AB 于点G .当点C 在AB 上运动时,设 AF =x , DE = y ,下列-a -2、、ab b > 0, a b > 2、、ab ,只有当 a = b 时,等号成⽴.图象中,能表⽰ y 与x 的函数关系的图象⼤致是(经过正⽅形 ABOC 的三个顶点 A 、B 、C3. (09延庆)阅读理解:对于任意正实数 a ,2.如图,在平⾯直⾓坐标系中y结论:在a b > 2 ab ( a , b 均为正实数)中,若 ab 为定值p ,则a b > 2 p ,12(2)探索应⽤:已知A(-3,0) , B(0,_4),点P 为双曲线y (x ■ 0)上的任意⼀点,过点P 作PC _ x 轴于点C , PD _ y 轴于D . 求四边形ABCD ⾯积的最⼩值,并说明此时四边形ABCD 的形状.1 、y x 相交4(m , n )(在A 点左侧)是双曲线y =上的动点.过点B 作xBD // y 轴交x 轴于点D.过N(0, - n)作NC // x 轴交双曲线y ⼆⾊于点E ,交BD 于点C .x(1) 若点D 坐标是(―坐标及k 的值. (2) 若B 是CD 的中点,为4,求直线CM(3) 设直线 AM 、BM 分别与y 轴相交于 P 、Q 两点,且 MA=pMP , MB=qMQ ,求p - q 的值.285. (09.5西城)已知:反⽐例函数y 和y在平⾯直⾓坐标系 xOy 第⼀象限中的图 xx82只有当a =b 时,a - b 有最⼩值2 p .根据上述内容,回答下列问题:(1)若m ,只有当m ⼯时,m ?丄有最⼩值mk4. (08南通)已知双曲线 y 与直线x于A 、B 两点.第⼀象限上的点 Mk 8,0),求A 、B 两点四边形OBCE 的⾯积的解析式?象如图所⽰,点A在y 的图象上,AB // y轴,与y 的图象交于点B, AC、BDx x与x轴平⾏,分别与y=2、y=8的图象交于点C、D.x x(1) 若点A的横坐标为2,求梯形ACBD的对⾓线的交点F的坐标;(2) 若点A的横坐标为m,⽐较△ OBC与⼛ABC的⾯积的⼤⼩;(3) 若⼛ABC与以A、B、D为顶点的三⾓形相似,请直接写出点A的坐标.点F 的坐标为(2,17).5-S ABC . (3)点A 的坐标为(2,4)函数y = m ( x - 0 , m 是常数)的图象经过 A(1,4),xB(a ,b),其中a 1 .过点A 作x 轴垂线,垂⾜为C ,连结 AD ,DC ,CB .(1) 若△ ABD 的⾯积为4,求点B 的坐标; (2) 求证:DC // AB ;(3) 当AD =BC 时,求直线 AB 的函数解析式. 答案: (3)所求直线 AB 的函数解析式是 y = -2x ? 6或y = -x 5⼆、与三⾓形相关7. (07北京)在平⾯直⾓坐标系 xOy 中,抛物线y = mx 2 + 2 .3 mx + n 经过P 「3, 5),A(0, 2)两点.(1)求此抛物线的解析式;(2) 设抛物线的顶点为 B,将直线AB 沿y 轴向下平移两个单位得到直线 I,直线I 与抛物线的对称轴交于C 点,求直线l 的解析式;⑶在⑵的条件下,求到直线OB, OC, BC 距离相等的点的坐标.答案:(1)抛物线的解析式为:y = ^x 2- 3x+ 2 3 3(2) 直线I 的解析式为y =守x(3) ⾄煩线OB 、OC 、BC 距离相等的点的坐标分别为:M 1(-"^, 0)、 M 2 (0, 2)、 M 3(0, -2)、M 4 (-2.3, 0).36.( 07上海)如图,在直⾓坐标平⾯内,(1)点B 的坐标为3,; .3⑺.DC // AB .过点2&(08北京)平⾯直⾓坐标系 xOy 中,抛物线y = x + bx + c 与x 轴交于A, B 两点(点A 在点B 的左侧),与y 轴交于点C,点B 的坐标为(3, 0),将直线y = kx 沿y 轴向上平移3个单位长度后恰好经过 B, C 两点.(1) 求直线BC 及抛物线的解析式;(2) 设抛物线的顶点为 D,点P 在抛物线的对称轴上,且⼄APD =WACB,求点P 的坐标;⑶连结CD,求£OCA 与MOCD 两⾓和的度数.答案:(1)直线BC 的解析式为y = -x + 3.抛物线的解析式为y = x 2 - 4x + 3.(2) 点P 的坐标为(2, 2)或(2, -2). (3) . OCA 与.OCD 两⾓和的度数为 45 ... 2 29. (10.6密云) 已知:如图,抛物线 y = -X mx 2m (m 0)与x 轴交于A 、B 两点,点A 在点B 的左边,C 是抛物线上⼀动点(点C 与点A 、B 不重合),D 是OC 中点,连结BD 并延长,交AC 于点E .(1) 求A 、B 两点的坐标(⽤含 m 的代数式表⽰);CE(2 )求的值;AE物线和直线BE 的解析式.且OB = OC ⼆3OA . (I )求抛物线的解析式;(II) 探究坐标轴上是否存在点 P ,使得以点P,代C 为顶点的三⾓形为直⾓三⾓形?若存在,求出P 点坐标,若不存在,请说明理由;1(III) 直线y x 1交y 轴于D 点,E 为抛物线顶(3)当C 、A 两点到y 轴的距离相等,且SCED答案: (1) A (-m , 0), B ( 2m , 0).(2) CEAE(3) 抛物线的解析式为 y = -X 22x 8 .直线BE 的解析式为4丄16 y x3310.(崇⽂ 09)如图,抛物线y =ax 2bx - 3与x 轴交于A, B 两点,与y 轴交于点C ,求抛3点?若.DBC ⼆:…CBE = ■-,求爲「?的值. 答案:(I )y = x 2-2x-3(II )R(0,1)P 2(9,0) , P 3(0,0)3(IIIDBO EOBC =45 .11. (11.6东城)如图,已知在平⾯直⾓坐标系xOy 中,直⾓梯形 OABC 的边0A 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA = AB = 2, OC = 3,过点B 作BD 丄BC ,交OA于点D .将/ DBC 绕点B 按顺时针⽅向旋转,⾓的两边分别交正半轴于点E 和F .(1) 求经过A 、B 、C 三点的抛物线的解析式; (2) 当BE 经过(1)中抛物线的顶点时,求 CF 的长;(3) 在抛物线的对称轴上取两点 P 、Q (点Q 在点P 的上⽅),且PQ = 1,要使四边形 BCPQ 的周长最⼩,求出 P 、Q 两点的坐标.答案:(1) y - -2x 24x 2 .333⼀ 2(3)点P 的坐标为(1,3、与⾯积有相关12. ( 11.6通县)已知如图, AABC 中,AC =BC , BC 与x 轴平⾏,点 A 在x 轴上,点 C 在y 轴上,抛物线y =ax 2 -5ax - 4经过:ABC 的三个顶点,(1) 求出该抛物线的解析式;(2) 若直线y ⼆kx 7将四边形 ACBD ⾯积平分,求此直线的解析式 .(3) 若直线y =kx b 将四边形ACBD 的周长和⾯积同时分成相等的两部分,请你确定y = kx ? b 中k 的取值范围.2 2 4⑵由 y 「2x 3x 2 =- 2(x-1)2 8 3 3CF = FM + CM y 轴的正半轴、x 轴的。

2021中考数学几何专题复习(共11个专题)

2021中考数学几何专题复习(共11个专题)
A、正视图的面积最大B、左视图的面积最大
C、俯视图的面积最大D、三个视图的面积一样大
二、已知展开图,判断原几何体。
例2:将如右图所示的圆心角为90°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是
练习:与“爱”字所在面相对的面上的汉字
三、折叠问题
∠4+∠5= ,∠2+∠6=
∠5=∠G=∠6 ∠4=∠2
则∠3=∠4则MD=ME
“‘三线合一’定理的逆定理”+“平行线的性质”+“等底对等腰”
例2已知:△ABCБайду номын сангаас等腰直角三角形,∠A= ,∠1=∠2,CE⊥BE
求证:BD=2CE
证明:延长CE、BA交于F点
先证CF=2CE
再证RT△ABD≌RT△CAF “∠3=∠F”+”AB=AC”+”∠BAD=∠CAF”
交DE于Q
求证:PQ= BC
证明:先证△ADP≌△PCE可得CE=AD=BC
再证PQ为中位线,PQ= CE
“AAS △≌”+“平行四边形性质”+“△中位线定理”
例4已知:梯形ABCD中,AB=DC,AC⊥BD,E、F为腰上中点,DL⊥BC,M为DL与EF的交点
求证:EF=DL
证明:取AD、EF的中点H、K,连结EH、FH、HK
“‘三线合一’定理的逆定理”+“平行线的判定”
例4已知:在△ABC中,AC>AB,AM为∠A的平分线,AD⊥BC于D
求证:∠MAD= (∠B-∠C)
证明:作BE⊥AM,交AC于E点,交AM于K点
先证∠3=∠4 ∠1=∠2
∠5=∠AEB ①AM为角平分线②BE⊥AM
后证:∠B-∠C=∠4+∠5-∠C=∠4+∠AEB -∠C=2∠4

2019届中考数学总复习:代数几何综合问题

2019届中考数学总复习:代数几何综合问题

2019届中考数学总复习:代数几何综合问题【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.【思路点拨】过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG.求证△BEC≌△BGM,△ABE≌△ABG,设CE=x,在直角△ADE中,根据AE2=AD2+DE2求x的值,即CE的长度.【答案与解析】解:过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG,∴∠AMB=90°,∵AD∥CB,∠D CB=90°,∴∠D=90°,∴∠AMB=∠DCB=∠D=90°,∴四边形BCDM为矩形.∵BC=CD,∴四边形BCDM是正方形,∴BC=BM,且∠ECB=∠GMB,MG=CE,∴Rt△BEC≌Rt△BGM.∴BG=BE,∠CBE=∠GBM,∵∠CBE+∠EBA+∠ABM=90°,且∠ABE=45°∴∠CBE+∠ABM=45°∴∠ABM+∠GBM=45°∴∠ABE=∠ABG=45°,∴△ABE≌△ABG,AG=AE=10.设CE=x,则AM=10-x,AD=12-(10-x)=2+x,DE=12-x,在Rt△ADE中,AE2=AD2+DE2,∴100=(x+2)2+(12-x)2,即x2-10x+24=0;解得:x1=4,x2=6.故CE的长为4或6.【总结升华】本题考查了直角三角形中勾股定理的运用,考查了全等三角形的判定和性质,本题中求证△ABE≌△ABG,从而说明AG=AE=10是解题的关键.类型二、函数与几何问题2.如图,二次函数y =(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.【思路点拨】(1)将点A(1,0)代入y=(x-2)2+m求出m的值,根据点的对称性,将y=3代入二次函数解析式求出B的横坐标,再根据待定系数法求出一次函数解析式;(2)根据图象和A、B的交点坐标可直接求出满足kx+b≥(x-2)2+m的x的取值范围.【答案与解析】解:(1)将点A(1,0)代入y=(x-2)2+m得,(1-2)2+m=0,1+m=0,m=-1,则二次函数解析式为y=(x-2)2-1.当x=0时,y=4-1=3,故C点坐标为(0,3),由于C和B关于对称轴对称,在设B点坐标为(x,3),令y=3,有(x-2)2-1=3,解得x=4或x=0.则B点坐标为(4,3).设一次函数解析式为y=kx+b,将A(1,0)、B(4,3)代入y=kx+b中,得,解得,则一次函数解析式为y=x-1;(2)∵A、B坐标为(1,0),(4,3),∴当kx+b≥(x-2)2+m时,1≤x≤4.【总结升华】本题考察了待定系数法求二次函数,一次函数函数解析式以及数形结合法解不等式.求出B点坐标是解题的关键.举一反三:【变式】如图,二次函数2(0)=++≠的图象与x轴交于A、B两点,其中A点坐标为(-1,0),y ax bx c a点C(0,5)、D(1,8)在抛物线上,M为抛物线的顶点.(1)求抛物线的解析式. (2)求△MCB 的面积.【答案】解:(1)设抛物线的解析式为2y ax bx c =++,根据题意,得058a b c c a b c -+=⎧⎪=⎨⎪++=⎩, 解之,得145a b c =-⎧⎪=⎨⎪=⎩. ∴所求抛物线的解析式为245y x x =-++.(2)∵C 点的坐标为(0,5).∴OC =5.令0y =,则2450x x -++=,解得121,5x x =-=.∴B 点坐标为(5,0).∴OB =5.∵2245(2)9y x x x =-++=--+,∴顶点M 坐标为(2,9).过点M 作MN ⊥AB 于点N ,则ON =2,MN =9.∴11(59)9(52)551522MCB BNM OBC OCMN S S S S ∆∆∆=+-=+⨯⨯--⨯⨯=梯形. 类型三、动态几何中的函数问题3.如图,在平面直角坐标系中,已知点A (-2,-4),OB=2,抛物线y=ax 2+bx+c 经过点A 、O 、B三点.(1)求抛物线的函数表达式;(2)若点M 是抛物线对称轴上一点,试求AM+OM 的最小值;(3)在此抛物线上,是否存在点P ,使得以点P 与点O 、A 、B 为顶点的四边形是梯形?若存在,求点P 的坐标;若不存在,请说明理由.【思路点拨】(1)把A 、B 、O 的坐标代入到y=ax 2+bx+c 得到方程组,求出方程组的解即可;(2)根据对称求出点O 关于对称轴的对称点B ,连接AB,根据勾股定理求出AB 的长,就可得到AM+OM 的最小值.(3)①若OB ∥AP ,根据点A 与点P 关于直线x=1对称,由A (-2,-4),得出P 的坐标;②若OA ∥BP ,设直线OA 的表达式为y=kx ,设直线BP 的表达式为y=2x+m ,由B (2,0)求出直线BP 的表达式为y=2x-4,得到方程组,求出方程组的解即可;③若AB ∥OP ,设直线AB 的表达式为y=kx+m ,求出直线AB ,得到方程组求出方程组的解即可. 【答案与解析】解:(1)由OB=2,可知B (2,0),将A (-2,-4),B (2,0),O (0,0)三点坐标代入抛物线y=ax 2+bx+c ,得4420420a b c a b c c -=-+⎧⎪=++⎨⎪=⎩ 解得:1,21,0.a b c ⎧=-⎪⎪=⎨⎪=⎪⎩∴抛物线的函数表达式为y=212x x -+(2)由y=212x x -+=211(1)22x x --+可得,抛物线的对称轴为直线x=1,且对称轴x=1是线段OB的垂直平分线,连接AB 交直线x=1于点M ,M 点即为所求.∴MO=MB ,则MO+MA=MA+MB=AB,作AC ⊥x 轴,垂足为C ,则|AC|=4,|BC|=4,∴AB=42, ∴MO+MA 的最小值为42. 答:MO+MA 的最小值为42.(3)①如图1,若OB ∥AP ,此时点A 与点P 关于直线x=1对称,由A (-2,-4),得P (4,-4),则得梯形OAPB .② 如图2,若OA ∥BP ,设直线OA 的表达式为y=kx ,由A (-2,-4)得,y=2x .设直线BP 的表达式为y=2x+m ,由B (2,0)得,0=4+m ,即m=-4, ∴直线BP 的表达式为y=2x-4. 由12⎧⎪⎨⎪⎩2y=2x-4,y=-x+x.解得x 1=-4,x 2=2(不合题意,舍去), 当x=-4时,y=-12,∴点P (-4,-12),则得梯形OAPB .③ 如图3,若AB ∥OP ,设直线AB 的表达式为y=kx+m ,则4202k m k m -=-+⎧⎨=+⎩,. 解得12k m =⎧⎨=-⎩,.∴AB 的表达式为y=x-2. ∵AB ∥OP ,∴直线OP 的表达式为y=x .由2,12y x y x x =⎧⎪⎨=-+⎪⎩得 x 2=0,解得x=0,(不合题意,舍去),此时点P 不存在.综上所述,存在两点P (4,-4)或P (-4,-12),使得以点P 与点O 、A 、B 为顶点的四边形是梯形. 【总结升华】本题主要考查对梯形,解二元二次方程组,解一元二次方程,二次函数的性质,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用性质进行计算是解此题的关键.举一反三:【变式】如图,直线434+-=x y 与x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在,请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.【答案】(1)证明:y=443x -+ ∵当x=0时,y=4; 当y=0时,x=3, ∴B (3,0),C (0,4), ∵A (-2,0),由勾股定理得:BC=22345+= ∵AB=3-(-2)=5, ∴AB=BC=5,∴△ABC 是等腰三角形; (2)解:①∵C (0,4),B (3,0),BC=5, ∴sin ∠B=40.85OC BC == 过N 作NH ⊥x 轴于H .∵点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度, 又∵AB=BC=5,∴当t=5秒时,同时到达终点, ∴△MON 的面积是S=12OM NH ⨯⨯ ∴S=20.4t t-⨯②点M 在线段OB 上运动时,存在S=4的情形.理由如下: ∵C (0,4),B (3,0),BC=5, ∴sin ∠B=40.85OC BC == 根据题意得:∵S=4, ∴|t-2|×0.4t=4,∵点M 在线段OB 上运动,OA=2, ∴t-2>0,即(t-2)×0.4t=4,化为t 2-2t-10=0, 解得:111,111(t t =+=-舍去)∴点M 在线段OB 上运动时,存在S=4的情形,此时对应的t 是(111t =+)秒. ③∵C (0,4)B (3,0)BC=5, ∴cos ∠B=30.65OB BC == 分为三种情况:I 、当∠NOM=90°时,N 在y 轴上,即此时t=5;II 、当∠NMO=90°时,M 、N 的横坐标相等,即t-2=3-0.6t ,解得:t=3.125, III 、∠MNO 不可能是90°,即在运动过程中,当△MON 为直角三角形时,t 的值是5秒或3.125秒. 类型四、直角坐标系中的几何问题4.(2015•阳山县一模)如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边分别交于点M 、N ,直线m 运动的时间为t (秒). (1)点A 的坐标是 ,点C 的坐标是 ; (2)当t= 秒或 秒时,MN=AC ; (3)设△OMN 的面积为S ,求S 与t 的函数关系式.【思路点拨】(1)根据BC∥x 轴,AB∥y 轴即可求得A 和C 的坐标;(2)分成MN 是△OAC 的中位线和MN 是△ABC 的中位线时两种情况进行讨论;(3)根据时间t 值的范围不同,M,N 与矩形的两边相交构成不同的三角形,画出图形进行分类讨论,然后正确表示出△OMN 的面积即可. 【答案与解析】 解:(1)A 的坐标是(4,0),C 的坐标是(0,3); (2)当MN 是△OAC 的中位线时,M 是OA 的中点,则t=OA=×4=2; 当MN 是△ABC 的中位线时,如图1. 则△AME∽△OCA,则AE=OA=×4=2,则E 的坐标是(6,0),即平移了6个单位长度.故答案是:2或6.(3)当0<t≤4时,OA=t ,则ON=t , 则S △OMN =×t×t=238t (0<t≤4). 即当4<t <8时,如图1.设直线AC 的解析式是y=kx+b ,根据题意得,解得:,则直线AC 的解析式是y=﹣x+3.设MN 的解析式是y=﹣x+c ,E 的坐标是(t ,0),代入解析式得:c=t , 则直线MN 的解析式是y=﹣x+t .令x=4,解得y=﹣3+t ,即M 的坐标是(4,﹣3+t ). 令y=3,解得:x=t ﹣4,则N 的坐标是(t ﹣4,3). 则S 矩形OABC=3×4=12, S △OCN =OC•CN=×3•(t ﹣4)=36.2t -S △OAM =OA•AM=×4•(﹣3+t )=﹣6.S △BMN =BN•BM=[4﹣(t ﹣4)][3﹣(﹣3+t )]=t 2﹣6t+24. 则S=12﹣(﹣6)﹣(t ﹣6)﹣(t 2﹣6t+24),即S=﹣t 2+3t(4<t <8).【总结升华】本题考查了矩形的性质以及待定系数法求一次函数的解析式,直线平行的条件,正确利用t 表示出M 和N 的坐标是关键.类型五、几何图形中的探究、归纳、猜想与证明问题5.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(01),,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是_______.【思路点拨】由题目中所给的质点运动的特点找出规律,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,即可得出第35秒时质点所在位置的坐标.【答案与解析】解:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒12 3 xy1 2 3 …数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0).【总结升华】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.举一反三:【变式】(2016•泰山区一模)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2014次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0) C.(6,4) D.(8,3)【答案】B.【解析】解:如图,经过6次反弹后动点回到出发点(0,3),∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故选;B.【巩固练习】一、选择题1.(2017•河北一模)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.2.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()二、填空题3. 将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象如图所示,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足的条件的t的值,则t=.4. (2017•宝山区一模)如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A 恰好与B 重合,联结CD 交BE 于F ,如果AC=8,tanA=,那么CF :DF= .三、解答题5.一个形如六边形的点阵.它的中心是一个点(算第一层)、第二层每边有两个点,第三层每边有三个点……依次类推.(1)试写出第n 层所对应的点数; (2)试写出n 层六边形点阵的总点数;(3)如果一个六边形点阵共有169个点,那么它一共有几层?6.如图,Rt △ABC 中,∠B=90°,AC=10cm ,BC=6cm ,现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以2cm/s 的速度,沿AB 向终点B 移动;点Q 以1cm/s 的速度沿BC 向终点C 移动,其中一点到终点,另一点也随之停止.连接PQ .设动点运动时间为x 秒. (1)用含x 的代数式表示BQ 、PB 的长度; (2)当x 为何值时,△PBQ 为等腰三角形;(3)是否存在x 的值,使得四边形APQC 的面积等于20cm 2?若存在,请求出此时x 的值;若不存在,请说明理由.7.阅读理解:对于任意正实数a 、b ,∵2()0,a b -≥20,2,a ab b a b ab ∴-+≥∴+≥a b =只有当时,等号成立。

【复习专题】中考数学复习:几何综合题

【复习专题】中考数学复习:几何综合题

几何综合题(旋转为主的题型)一、知识梳理二、教学重、难点三、作业完成情况四、典题探究例1 已知:如图,点P 是线段AB 上的动点,分别以AP 、BP 为边向线段AB 的同侧作正△APC和正△BPD ,AD 和BC 交于点M.(1)当△APC 和△BPD 面积之和最小时,直接写出AP : PB 的值和∠AMC 的度数; (2)将点P 在线段AB 上随意固定,再把△BPD 按顺时针方向绕点P 旋转一个角度α,当α<60°时,旋转过程中,∠AMC 的度数是否发生变化?证明你的结论.(3)在第(2)小题给出的旋转过程中,若限定60°<α<120°,∠AMC 的大小是否会发生变化?若变化,请写出∠AMC 的度数变化范围;若不变化,请写出∠AMC 的度数.例2 探究:(1)如图1,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,试判断BE 、DF 与EF 三条线段之间的数量关系,直接写出判断结果: ;(2)如图2,若把(1)问中的条件变为“在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF=21∠BAD ”,则(1)问中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由;(3)在(2)问中,若将△AEF 绕点A 逆时针旋转,当点分别E 、F 运动到BC 、CD 延长线上时, 如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明..例3 已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中BA =BC ,DA =DE ,联结EC ,取EC 的中点M ,联结BM 和DM .(1)如图1,如果点D 、E 分别在边AC 、AB 上,那么BM 、DM 的数量关系与位置关系是 ;(2)将图1中的△ADE 绕点A 旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.DCB AEMMEABCD图1 图2例4 在ABCD 中,A DBC ∠=∠,过点D 作DE DF =,且EDF ABD =∠,连接EF ,EC ,N 、P 分别为EC ,BC 的中点,连接NP . (1)如图1,若点E 在DP 上,EF 与DC 交于点M ,试探究线段NP 与线段NM 的数量关系及ABD ∠与MNP ∠满足的等量关系,请直接写出你的结论;(2)如图2,若点M 在线段EF 上,当点M 在何位置时,你在(1)中得到的结论仍然成立,写出你确定的点M 的位置,并证明(1)中的结论.五、演练方阵A 档(巩固专练)1.(1)如图1,△ABC 和△CDE 都是等边三角形,且B 、C 、D 三点共线,联结AD 、BE相交于点P ,求证: BE = AD .(2)如图2,在△BCD 中,∠BCD <120°,分别以BC 、CD 和BD 为边在△BCD 外部作等边三角形ABC 、等边三角形CDE 和等边三角形BDF ,联结AD 、BE 和CF 交于点P ,下列结论中正确的是 (只填序号即可)①AD=BE=CF ;②∠BEC=∠ADC ;③∠DPE=∠EPC=∠CPA =60°; (3)如图2,在(2)的条件下,求证:PB+PC+PD=BE .2. 已知:2AD =,4BD =,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB 的两侧. (1)如图,当∠ADB=60°时,求AB 及CD 的长;(2)当∠ADB 变化,且其它条件不变时,求CD 的 最大值,及相应∠ADB 的大小.3. 如图,△ABC 中,∠ACB=90°,AD=AC,AB=AN,连结CD 、BN,CD 的延长线交BN 于点F . (1)当∠ADN 等于多少度时,∠ACE=∠EBF,并说明理由;(2)在(1)的条件下,设∠ABC=α,∠CAD =β,试探索α、β满足什么关系时,△ACE ≌△FBE ,并说明理由.4. 在△ABC 中,AB =4,BC =6,∠ACB =30°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1. (1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△CBC 1的面积为3,求△ABA 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转的过程中,点P 的对应点是点P 1,直接写出线段EP 1长度的最大值与最小值.图2AFAB 图1C 1C BA 1A图2A 1C 1ABC图1图3A5. 问题1:如图1,在等腰梯形ABCD 中,AD ∥BC ,AB =BC =CD ,点M ,N 分别在AD ,CD 上,若∠MBN =12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请直接写出你的猜想,不用证明;问题2:如图2,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN =12∠ABC 仍然成立,请你进一步探究线段MN ,AM ,CN 又有怎样的数量关系?写出你的猜想,并给予证明.6. 如图,四边形ABCD 、1111A B C D 是两个边长分别为5和1且中心重合的正方形.其中,正方形1111A B C D 可以绕中心O 旋转,正方形ABCD 静止不动.(1)如图1,当11D D B B 、、、四点共线时,四边形11DCC D 的面积为 __; (2)如图2,当11D D A 、、三点共线时,请直接写出11CD DD = _________; (3)在正方形1111A B C D 绕中心O 旋转的过程中,直线1CC 与直线1DD 的位置关系是______________,请借助图3证明你的猜想.B 档(提升精练)1. 如图,△ABC 中,∠90ACB =︒, 2=AC ,以AC 为边向右侧作等边三角形ACD . (1)如图24-1,将线段AB 绕点A 逆时针旋转︒60,得到线段1AB ,联结1DB ,则与1DB 长度相等的线段为 (直接写出结论);(2)如图24-2,若P 是线段BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,求ADQ ∠的度数; (3)画图并探究:若P 是直线BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,是否存在点P ,使得以 A 、 C 、 Q 、 D 为顶点的四边形是梯形,若存在,请指出点P 的位置,并求出PC 的长;若不存在,请说明理由.2. 如图1,△ABC 是等腰直角三角形,四边形ADEF 是正方形,D 、F 分别在AB 、AC 边上,此时BD=CF ,BD ⊥CF 成立.(1)当正方形ADEF 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF 成立吗? 若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF 绕点A 逆时针旋转45°时,如图3,延长BD 交CF 于点G . ①求证:BD ⊥CF ; ②当AB=4,AD=时,求线段BG 的长.3. 已知:在△AOB 与△COD 中,OA =OB ,OC =OD ,︒=∠=∠90COD AOB .(1)如图1,点C 、D 分别在边OA 、OB 上,连结AD 、BC ,点M 为线段BC 的中点,连结OM ,则线段AD 与OM 之间的数量关系是 ,位置关系是 ; (2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α (︒<<︒900α).连结AD 、BC ,点M 为线段BC 的中点,连结OM .请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的 △COD 绕点 O 逆时针旋转到使 △COD 的一边OD 恰好与△AOB 的边OA 在同一条直线上时,点C 落在OB 上,点M 为线段BC 的中点.请你判断(1)中线段AD 与OM 之间的数量关系是否发生变化,写出你的猜想,并加以证明.4. 在Rt △ABC 中,AB =BC ,∠B =90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转. (1)当点O 为AC 中点时,①如图1, 三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,猜想线段AE 、CF 与EF 之间存在的等量关系(无需证明);②如图2, 三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,,三角板的两直角边分别交AB ,BC 于E 、F 两点,若14AO AC ,求OE OF的值.5. 如图1,四边形ABCD ,将顶点为A 的角绕着顶点A 顺时针旋转,若角的一条边与DC 的延长线交于点F ,角的另一条边与CB 的延长线交于点E ,连接EF . (1)若四边形ABCD 为正方形,当∠EAF=45°时,有EF=DF -BE .请你思考如何证明这个结论(只思考,不必写出证明过程);(2)如图2,如果在四边形ABCD 中,AB=AD ,∠ABC=∠ADC=90°,当∠EAF=21∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式(只需写出结论); (3)如图3,如果四边形ABCD 中,AB=AD ,∠ABC 与∠ADC 互补,当∠EAF=21∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式并给予证明.(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF 的周长(直接写出结果即可).C 档(跨越导练)1. 已知:正方形ABCD 中,45MAN ∠=,绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N . (1)如图1,当M A N ∠绕点A 旋转到BM DN =时,有BM DN MN +=.当M A N ∠ 绕点A 旋转到BM DN ≠时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间有怎样的等量关系?请写出你的猜想,并证明.2. 如图,已知四边形ABCD 是正方形,对角线ACBD 相交于O .(1) 如图1,设 E 、F 分别是AD 、AB 上的点,且∠EOF =90°,线段AF 、BF 和EF 之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设 E 、F 分别是AB 上不同的两个点,且∠EOF =45°,请你用等式表示线段AE 、BF 和EF 之间的数量关系,并证明.3. 问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE 是等边三角形,且点D 在ACB ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为 ,点E落在 ,容易得出BE 与DE 之间的数量关系为 ;(2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.4. 在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。

几何与代数相结合的综合问题[整理]

几何与代数相结合的综合问题[整理]

几何与代数相结合的综合问题【考点透视】几何与代数相结合的综合题是初中数学中涵盖广、综合性最强的题型.它可以包含初中阶段所学的代数与几何的若干知识点和各种数学思想方法,还能有机结合探索性、开放性等有关问题;它既突出考查了初中数学的主干知识,又突出了与高中衔接的重要内容,如函数、方程、不等式、三角形、四边形、相似形、圆等.综观全国各地的中考试题,90%左右的压轴题都是几何与代数相结合的综合题.就江苏省十三个大市来说,有十一个大市最后的压轴题都是这样的题型,占分比例都很高.编制这样的综合题,不但考查学生数学基础知识和灵活运用知识的能力;考查学生对数学知识迁移整合能力;考查学生学会将大题分解为小题,逐个击破的能力;考查学生对几何与代数之间的内在联系,多角度、多层面综合运用数学知识、数学思想方法分析问题和解决问题的能力;还考查学生知识网络化、创新意识和实践能力.几何与代数综合题在中考试题中还有特别重要的功能,它关系到整个试卷的区分度;有利于高一级学校选拔人才.[典型例题]例1.已知关于x的一元二次方程x2-(2k+1)x+4k-3=0(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=31,且两条直角边的长b和c恰好是这个方程的两个根时,求△ABC的周长.(2003年江苏省连云港市中考试题)分析:(1)由一元二次方程根的判别式得△=(2k-3)2+4>0即可.(2)由一元二次方程根与系数关系,再由直角三角形的勾股定理建立关于k的一元二次方程,从而求出三角形的另两边之和.解:(1)证明:△=[-(2k+1)] 2-4×1×(4k-3)=4k2-12k+13=(2k-3)2+4 ∵无论k取什么实数值,总有(2k-3)2+4>0,即△>0,∴无论k取什么实数值时,该方程总有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得b+c=2k+1,bc=4k-3.又在Rt△ABC中,根据勾股定理,得b2+c2=a2,∴(b+c)2-2bc=()231,即(2k+1)2-2(4k-3)=31,整理得,得k2-k-6=0,解这个方程,得k=-2或k=3.当k=-2时,b+c=-4+1=-3<0,不符合题意,舍去故k=3,此时b+c=2×3+1=7,故△ABC的周长为7+31.说明:本题一方面考查学生一元二次方程根的判别式、根与系数关系及直角三角形中的勾股定理重要内容;另一方面又考查学生一元二次方程解出的两根是否都符合题意,培养学生严谨解题的习惯.为圆心,OB为半径的圆与AB交于点E,与AC切于点D,若AD=23,且AE、AB的长是关于x的方程x2-8x+k=0的两个实数根(1)求⊙O的半径;图13-1 (2)求CD的长.(2003年江苏省宿迁市中考试题)分析:(1)由圆的切割线定理、方程的根与系数关系易求⊙O的半径.(2)由切线长相等,设CD=CB=x 用勾股定理建立关于x 的一元二次方程即可求出CD 的长.解:(1)∵AD 是⊙O 的切线, ∴AD 2=AE ·AB 又AD=23 ∴AE ·AB=12 ∵AE 、AB 的长是方程x 2-8x+k=0的两个实数根 ∴AE ·AB=k ∴k=12,把k=12代入方程x 2-8x+k=0,解是x 1=2,x 2=6,∴⊙O 的半径为2)(21=-AE AB (2)∵CB ⊥AB ,AB 经过圆心O CB 切⊙O 于点B ∴CD=CB 在Rt △ABC 中,设CD=x 则由勾股定理得AB 2+BC 2=AC 2 ∴62+x 2=(23+x)2 解得x=23 ∴CD=23.说明:本题考查了学生的切割线定理、切线长定理、勾股定理、解一元二次方程及根与系数关系等有关基础知识,并能注意运用方程思想去求线段的长.还可讨论下列两个问题:1、已知:如图13-2,Rt △ABC 中,∠ACB=90°,AB=5,两直角边AC 、BC 的长是关于x 的方程x 2-(m+5)x+6m=0的两个实数根.(1)求m 的值及AC 、BC 的长(BC>AC ).(2)在线段BC 的延长线上是否存在点D ,使得以D 、A 、C 为顶点的三角形与△ABC 相似?若存在,求出CD 的长;若不存在,请说明理由.(2003年江苏省镇江市中考试题)2、已知:如图12-3,四边形ABCD 为菱形,AF ⊥AD 交BD 于E ,交BC 于点F.(1)求证:AD 2=DB DE ⋅21; (2)过点E 作EG ⊥AF 交AB 于点G , 若线段BE 、DE (BE<DE )的长是方程x 2-3mx+2m 2=0(m>0)的两个根,且菱形ABCD 的面积为63,求EG 的长.(2003年江苏省无锡市中考试题)例3.如图13-4,直线y=-434+x 与x 轴、y 轴分别交于点M 、N.(1)求M 、N 两点的坐标;(2)如果点P 在坐标轴上,以点P 为圆心,512为半径的圆与直线y=-434+x 相切,求点P 的坐标. (2003年江苏省南京市中考试题)分析:(1)较简单略;(2)因为⊙P 与直线相切,因此点P 到直线MN 的距离等于圆的半径512,从而想到过点P 作MN 的垂线,由于点P 的位置不确定所以想到对P 点的位置进行分类.不妨以点P 在点N 的下方为例,过点P 作PA ⊥MN 于A ,则要求P 点坐标,只要求OP 长,把问题转化为求PN 长,利用△PAN ∽△MON ,使问题得以解决.当点P 在N 点上方时,可以利用三角形全等知点P 到N 的距离与在点N 下方时PN 的长相等,从而求出P 点坐标,不需要再重复上述步骤.当点P 在x 轴上时利用相同的方法可求出P 点的坐标.图13-2图13-3 4+图13-4解:(1)∵当x=0时,y=4,当y=0时,-434+x =0, ∴x=3. ∴M(3,0),N (0,4) (2)①当P 1点在y 轴上,并且在N 点的下方时,设⊙P 1与直线y=-434+x 相切于点A ,连结P 1A ,则P 1A ⊥MN. ∴∠P 1AN=∠MON=90°. ∵∠P 1NA=∠MNO, ∴△P 1AN ∽△MON. ∴MN N P MO A P 11=.在Rt △OMN 中,OM=3,ON=4 ∴MN=5. 又∵P 1A=512,∴P 1N=4. ∴P 1点坐标是(0,0). ②当P 2点在x 轴上,并且在M 点的左侧时,同理可得P 2点坐标是(0,0).③当P 3点在x 轴上,并且在M 点的右侧时,设⊙P 3与直线y=-434+x 相切于点B ,连结P 3B ,则P 3B ⊥MN. ∴OA//P 3B. ∵OA=P 3B ,∴P 3M=OM=3. ∴OP 3=6. ∴P 3点坐标是(6,0). ④当P 4点在y 轴上,并且在点N 上方时,同理可得P 4N=ON=4. ∴OP 4=8. ∴P 4点坐标是 (0,8).综上,P 点坐标是(0,0),(6,0),(0,8).说明:本题不仅考查学生函数与方程,相似三角形,同时也考查了数形结合,分类讨论等思想,其中熟练地进行线段长与坐标的互化也是解题的关键.其实本题若能从轨迹的角度去考虑,就可以避免了分类的遗漏,也可以把问题转化为求一次函数的解析式,只需求出一次函数的图象与坐标轴的交点坐标.例4.点P 是x 轴正半轴上的一个动点,过点P 作x 轴的垂线PA 交双曲线y=x1于点A ,连结OA.(1)如图13-5①,当点P 在x 轴的正方向上运动时,Rt △AOP 的面积大小是否变化?若不变,请求出Rt △AOP 的面积;若改变,试说明理由.(2)如图13-5②,在x 轴上点P 的右侧有一点D ,过点D 作x 轴的垂线交双曲线于点B ,连结BO 交AP 于点C.设△AOP 的面积为S 1,梯形BCPD 的面积为S 2,则S 1与S 2大小关系是S 1 S 2(填“>”或“<”或“=”)(3)如图13-5③,AO 的延长线与双曲线xy 1=的另一个交点为点F ,FH 垂直于x 轴,垂足为点H ,连结AH 、PF ,试证明四边形APFH 的面积为一常数.(2003年江苏省泰州市中考试题) 分析:(1)因为△AOP 的面积AP OP ⋅21,又由于OP 、AP 的长与A 点的坐标有关,若A 点坐标为(a ,b),则OP=a ,AP=b ,所以△AOP 的面积ab 21=,要探求△AOP 的面积大小是否变化,只需考虑ab 是否变化,由于A (a ,b )在反比例函数图象上,因此ab=1,所以△AOP 的面积不变.(2)由(1)知△AOP 的面积与△BOD 的面积是相等的,观察图形发现梯形BCPD是图13-5①图13-5②图13-5③△BOD 的一部分,因此S 1>S 2.(3)由于双曲线关于原点对称,故A 、F 关于原点对称,所以四边形APFH 是平行四边形.根据平行四边形的性质得四边形APFH 的面积等于△AOP 的面积的4倍,据(1)知△AOP 的面积是常数,所以四边形APFH 的面积为一常数.解:(1)设A 点坐标为(a ,b ),则OP=a ,AP=b∴S △AOP =AP OP ⋅21ab 21= ∵点A (a 、b )在函数y=x 1的图象上 ∴b=a1, ∴ab=1 ∴S △AOP =.21121=⨯ (2)>(3)∵A 、F 关于O 点对称 ∴OA=OF.∵PA ⊥x 轴,HF ⊥x 轴, ∴PA//HF , ∴PA=HF ,∴四边形APFH 是平行四边形, ∴4S △AOP =4221=⨯, ∴四边形APFH 的面积为一常数.说明:本题注重从数量关系和几何图形的变化中去研究问题,从“运动”的角度考查学生的探究能力.它不仅考查了反比例函数的图象与性质,同时考查了数形结合的思想方法,通过点的坐标和线段的长度之间的互化实现了数形结合.例5.设一次函数221+=x y 的图象为直线l ,l 与x 轴y 轴分别交于点A 、B.(1)求tan ∠BAO 的值; (2)直线m 经过点P (-3,0),若直线l 、m 与x 轴围成的三角形和直线l 、m 与y 围成的三角形相似,求直线m 的解析式.(2003年江苏省常州市中考试题)分析:(1)较简单略.(2)首先要画出图形,则l 、m 与x 轴、y 轴围成的三角形分别是△AMP 、△MBN.分两种情况讨论:①当N 在y 轴负半轴上时;已知△AMP ∽△NMB ,则有∠MAP=∠BNM ,这时有Rt △BOA ∽△Rt △PON 得:OA OB ON OP ==21,已知OP=3得ON=6,从而得到N 、P 两点坐标,即可求出直线解析式y=-2x -6.②当N 在y 轴正半轴上同理可得:y=2x+6,当N 在线段内部时,同理求出ON=6出现矛盾,归纳结论得出两条解析式.解:(1)tan 21=∠BAO (2)设直线m 与直线l 相交于点M.与y 轴相交于点N.则直线l 、m 及x 轴围成的三角形△AMP ;直线l 、m 及y 轴围成的三角形为△MBN. ①当N 在y 轴负半轴上时,由于∠ABN 及∠BMN 均大于∠MAP ,则要使△AMP ∽△MBN 只能是∠MAP=∠BNM ,此时有Rt △BOA ∽Rt △PON ,则21==OA OB ON OP ,而OP=3,图13-6则ON=6,∴N (0,-6)又P (-3,0) 则直线m 的解析式为y=-2x -6.②当N 在y 轴正半轴上且在OB 延长线上时,∵显然∠APM 及∠MBN 均为钝角,要使△APM ∽△NBM ,则有∠APM=∠MBN ⇔∠MNB=∠MAP ⇔Rt △PON ∽Rt △BOA ,则21==OA OB ON OP .而OP=3,则ON=6,从而N (0,6),则直线m 的解析式为y=2x+6. ③当N 在线段OB 内部时,若要△AMP ∽△NMB , ⇔∠BAP=∠BNM ⇔∠BAP=∠PNO ⇔Rt △ABO ∽Rt △NPO ⇔2==OB OA OP ON .而OP=3,则ON=6矛盾,即N 不可能在线段OB 内部,综上所述,满足要求的直线m 的解析式应为y=2x+6或y=-2x -6.说明:本题设定问题(1)考查了学生的基础知识,给学习能力较弱的学生建立信心.设定问题(2)首先考查了学生根据题意画出图形的能力;其次考查了学生常用的数学思想,一是数形结合思想,二是分类讨论思想. 例6.如图13-7,已知抛物线y=ax 2+bx+c(a<0)与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴的正半轴交于点C ,以AB 为直径的圆经过点C 及抛物线上的另一点D,∠ABC=60°.(1)求点A 和B 的坐标(用含有字母c 的式子表示);(2)如果四边形ABCD 的面积为3,求抛物线的解析式; (3)如果当x>1时,y 随x 的增大而减小,求a 的取值范围.(2003年江苏省盐城市中考试题)分析:(1)已知∠ABC=60°得到含30°的Rt △BOC ,设C (0,C )解出B 点坐标,再构造含30°的Rt △ABC ,求出A 点坐标.(2)由梯形的有关性质,∠BAC=30°证得上底与腰相等,且S 梯求出C 值.(3)求出抛物线的对称轴、利用图形的直观和函数的增减性求解.解:(1)C (c,0)∴OC=c ,在Rt △BOC 中,∠ABC=60°,∴BO=c cOC3333==连结AC ∵AB 是直径 ∴∠ACB=90° ∴∠BAC=30° ∴在Rt △AOC 中,AO=c OC 33= ∴A (0,3c )B ⎪⎪⎭⎫ ⎝⎛-0,33c (2)∵圆与抛物线都关于抛物线的对称轴对称 ∴四边形ABCD 是等腰梯形 ∴AB+CD=2OA=23c ∵S四边形ABCD =3, ∴c c ⋅⋅3221=3 ∴c 2=1 ∵c>0 ∴c=1 ∴A(0,3) B(-0,33) 设抛物线的解析式为y=a(x-3)(x+33)将 C (0,1)代入得1=a(-3)(33) ∴a=-1 ∴抛物线的解析式为:y=-(x-3)(x+33)即y=-x 2+332x+1 (3)解法1:∵A (3c ,0),B (-33c ,0)在抛物线上∴a ()0)3(32=++c c b c a(-33c)2+b(-33c)+c=0 ∵c>0 ∴3ac+3b+1=0 013331=+-b ac 消去ac 得:b=32 ∴抛物线的对称轴是x=-a b 2=-a 31 ∵当x>1时,y 随x 的增大而减小 ∴-131≤a ∴a 33-≤ 解法2:∵A(0,3c ),B(-33c,0) ∴y=a(x+33c)(x-3c) 将点C(0,c)代入得:c=a ·33c ·(-3c) ∵c>0 ∴c=-a 1 抛物线方程y=a(x-a 33)(x+a 3)即y=ax 2+a x 1332-对称轴方程为x=-a 33 ∵当x>1时,y 随x 的增大而减小 ∴131≤-a∵a<0 ∴33-≤a . 说明:本题既考查学生基本运算能力;又考查学生运用几何图形和函数图象的联系分析问题和解决问题的能力;运用了数学中的数形结合思想及待定系数法.还可研究下面问题:如图13-8,抛物线y=ax 2+bx+c 与x 轴交于点A(x 1,0)、B (x 2,0)(x 1<0<x 2),与y 轴交于点C(0,-2),若OB=4OA ,且以AB 为直径的圆过C 点.(1)求此抛物线的解析式;(2)若D 点在此抛物线上,且AD//CB. ①求D 点的坐标; ②在x 轴下方的抛物线上,是否存在点P 使得△APD 的面积与四边形ACBD 的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.(2003年江苏省连云港市中考试题)例7.OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,OA=10,OC=6.(1)如图13-9①,在OA 上选取一点G ,将△COG 沿CG 翻折,使点O 落在BC 边上,记为E.求折痕CG 所在直线的解析式.(2)如图13-9②,在OC 上选取一点D ,将△AOD 沿AD 翻折,使点O 落在BC 边上,记为E ′.①求折痕AD 所在直线的解析式;②再作E ′F//AB ,交AD 于点F.若抛物线y=h x +-2121过点F ,求此抛物线的解析式,并判断它与直线AD 的交点的个数.(3)如图13-9③,一般地,在OC 、OA 上选取适当的点D ′、G ′,使纸片沿D ′ G ′翻折后,点O 落在BC 边上,记为E ″.请你猜想:折痕D ′G ′所在直线与②中的抛物线会有什么关系?用(1)中的情形验证你的猜想。

中考数学复习专题 代数与几何综合(含答案)

中考数学复习专题 代数与几何综合(含答案)
第- 6 -页 共 8 页
5. 如图 2-5-16,在矩形 ABCD 中,AB=10。cm,BC=8cm.点 P 从 A 出发,沿 A→B→C→D 路线运动,到 D 停止;点 Q 从 D 出发,沿 D→C→B→A 路线运动,到 A 停止,若点 P、 点 Q 同时出发,点 P 的速度为 1cm/s,点 Q 的速度为 2cm/s,a s 时点 P、点 Q 同时改变 速度,点 P 的速度变为 bcm/s,点 Q 的速度变为 d cm/s,图 2-5-17 是点 P 出发 x 秒 后△APD 的面积 S1(cm2)与 x(s)的函数关系图象;图 2-5-18 是点 Q 出发 xs 后面 AQD 的面积 S2(cm2)与 x(s)的函数关系图象. ⑴ 参照图 2-5-17,求 a、b 及图中 c 的值; ⑵ 求 d 的值; ⑶ 设点 P 离开点 A 的路程为 y1(cm),点 Q 到点 A 还需走的路程为 y2(cm),请分别写出 动点 P、Q 改变速度后,y1、y2 与出发后的运动时间 x(s)的函数解析式,并求出 P、 Q 相遇时 x 的值. ⑷ 当点 Q 出发_______s 时,点 P、点 Q 在运动路线上相距的路程为 25cm.
第- 6 -页 共 8 页
答案 一、ABDCB DAACD
二、1、 3 2、 2 -1
三、1、(1)y=- 1 x2+x 2
3、 11
6
4、(-502,502)
(2)x 取最大整数为-1,∴ y=- 1 ×(-1)2-1=– 3 ∴AC= 3
2
2
2
由△BOQ∽△CAQ,可得 BO = OQ
AC AQ
C. y x
D. y 3 x 2
7.如图,反比例函数 y 4 的图象与直线 y 1 x 的

人教版数学2018年中考 代数几何综合问题(1) (共24张PPT)

人教版数学2018年中考  代数几何综合问题(1) (共24张PPT)
代数几何综合问题(1)
高级教师 萧老师
核心考点
考纲要求
对数学能力的 考查,以思维 为核心,包括 对数学知识、
考试题型
中考分值
考查频率
数与代数, 几何与图形
数学知识形成 与发展过程、
解答题
7分
★★★★★
数学知识灵活
应用的考查, 注重全面,适 度综合.
如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°. 若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间
在平面直角坐标系xoy中,定义直线y=ax+b为抛物线y=ax2+bx的特征
直线,C(a,b)为其特征点.设抛物线y=ax2+bx与其特征直线交于A、B 两点(点A在点B的左侧).
在平面直角坐标系xOy内,抛物线y=-x2+bx+c与x轴交于A、B两点,
与y轴交于点C.把直线y=-x-3沿y轴翻折后恰好经过B、C两点. (2)设抛物线的顶点为D,在坐标轴上是否存在这样的点F,使得
∠DFB=∠DCB?若存在,求出点F的坐标;若不存在,请说明理
由.
解:在坐标轴上存在这样的点F,使得∠DFB=∠DCB. 抛物线y=-x2+4x-3的顶点D的坐标为(2,1). 设对称轴与x轴的交点为点E, 在Rt△DEB中,DE=BE=1, ∴ ∠DBE=45°. 在Rt△OBC中,OB=OC=3, ∴ ∠OBC=45°. ∴ ∠DBC=90°. 在Rt△DBC中, DB 2, BC 3 2 ∴tan DCB
在平面直角坐标系xOy内,抛物线y=-x2+bx+c与x轴交于A、B两点, 与y轴交于点C.把直线y=-x-3沿y轴翻折后恰好经过B、C两点. (1)求抛物线的解析式;

初中代数几何综合题(一)

初中代数几何综合题(一)

代数几何综合题(一)代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。

例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。

解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BO PA ,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。

关键是搞清楚用坐标表示的数与线段的长度的关系。

练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。

(4分)2.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2+2x+m -3=O 的两根,且x 1<0<x 2. (1)求m 的取值范围;(2)设点C 在y 轴的正半轴上,∠ACB=90°,∠CAB=30°,求m 的值;(3)在上述条件下,若点D 在第二象限,△DAB ≌△CBA ,求出直线AD 的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O为原B点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何综合题、几何与代数综合题姓名一、应用题1.在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF 绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).2.如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN= _________ ;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.3.如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.(1)求MP的值;(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?1(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)4.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B 作BD⊥y轴于点D,线段OA,OC的长是一元二次方程x2﹣12x+36=0的两根,BC=4,∠BAC=45°.(1)求点A,C的坐标;(2)反比例函数y=的图象经过点B,求k的值;(3)在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请写出满足条件的点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.5.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.2二、动态几何6.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,说明理由.(3)当t为何值时,△CPQ为等腰三角形?347几何综合题、几何与代数综合题一、应用题1. 解:(Ⅰ)当α=90°时,点E ′与点F 重合,如图①.∵点A (﹣2,0)点B (0,2),∴OA=OB=2.∵点E ,点F 分别为OA ,OB 的中点,∴OE=OF=1∵正方形OE ′D ′F ′是正方形OEDF 绕点O 顺时针旋转90°得到的,∴OE ′=OE=1,OF ′=OF=1.在Rt △AE ′O 中,AE ′=.在Rt △BOF ′中,BF ′=.∴AE ′,BF ′的长都等于.(Ⅱ)当α=135°时,如图②.∵正方形OE ′D ′F ′是由正方形OEDF 绕点O 顺时针旋转135°所得,∴∠AOE ′=∠BOF ′=135°.在△AOE ′和△BOF ′中,,∴△AOE ′≌△BOF ′(SAS ).∴AE ′=BF ′,且∠OAE ′=∠OBF ′.∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB ,∠CAO=∠CBP ,∴∠CPB=∠AOC=90°∴AE ′⊥BF ′.(Ⅲ)在第一象限内,当点D ′与点P 重合时,点P 的纵坐标最大.过点P 作PH ⊥x 轴,垂足为H ,如图③所示.∵∠AE ′O=90°,E ′O=1,AO=2,∴∠E ′AO=30°,AE ′=.∴AP=+1.∵∠AHP=90°,∠PAH=30°,∴PH=AP=.∴点P 的纵坐标的最大值为.2. 解:(1)①∵四边形ABCDEF 是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM ∥AB ,PN ∥CD ,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM ﹣∠NPC=180°﹣60°﹣60°=60°, 故答案为;60°.②如图1,作AG ⊥MP 交MP 于点G ,BH ⊥MP 于点H ,CL ⊥PN 于点L ,DK ⊥PN 于点K ,MP+PN=MG+GH+HP+PL+LK+KN ∵正六边形ABCDEF 中,PM ∥AB ,作PN ∥CD ,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM ,HL=BP ,PL=PM ,NK=ND ,∵AM=BP ,PC=DN ,∴MG+HP+PL+KN=a ,GH=LK=a ,∴MP+PN=MG+GH+HP+PL+LK+KN=3a .(2)如图2,连接OE ,∵四边形ABCDEF 是正六边形,AB ∥MP ,PN ∥DC ,∴AM=BP=EN ,又∵∠MAO=∠NOE=60°,OA=OE ,在△ONE 和△OMA 中,∴△OMA ≌△ONE (SAS )∴OM=ON .(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.3.解:(1)∵四边形ABCD为矩形,∴CD=AB=4,∠D=90°,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴PD=PH=3,CD=MH=4,∠H=∠D=90°,∴MP==5;(2)如图1,作点M关于AB的对称点M′,连接M′E交AB于点F,则点F即为所求,过点E作EN⊥AD,垂足为N,∵AM=AD﹣MP﹣PD=12﹣5﹣3=4,∴AM=AM′=4,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴∠CEP=∠MEP,而∠CEP=∠MPE,∴∠MEP=∠MPE,∴ME=MP=5,在Rt△ENM中,MN===3,∴NM′=11,∵AF∥ME,∴△AFM′∽△NEM ′,∴=,即=,解得AF=,即AF=时,△MEF的周长最小;(3)如图2,由(2)知点M′是点M关于AB的对称点,在EN上截取ER=2,连接M′R交AB于点G,再过点E作EQ∥RG,交AB于点Q,∵ER=GQ,ER∥GQ,∴四边形ERGQ是平行四边形,∴QE=GR,∵GM=GM′,∴MG+QE=GM′+GR=M′R,此时MG+EQ最小,四边形MEQG的周长最小,在Rt△M′RN中,NR=4﹣2=2,M′R==5,∵ME=5,GQ=2,∴四边形MEQG的最小周长值是7+5.点评:本题考查了几何变换综合题:熟练掌握折叠的性质和矩形的性质;会利用轴对称解决最短路径问题;会运用相似比和勾股定理计算线段的长.4.解:(1)解一元二次方程x2﹣12x+36=0,解得:x1=x2=6,∴OA=OC=6,∴A(﹣6,0),C(6,0);(2)如图1,过点B作BE⊥AC,垂足为E,∵∠BAC=45°,∴AE=BE,设BE=x,∵BC=4,∴CE=,∵AE+CE=OA+OC,∴x+=12,整理得:x2﹣12x+32=0,解得:x1=4(不合题意舍去),x2=8∴BE=8,OE=8﹣6=2,∴B(2,8),把B(2,8)代入y=,得k=16.(3)存在.如图2,若点P在OD上,若△PDB∽△AOP ,则,即解得:OP=2或OP=6,∴P(0,2)或P(0,6);如图3,若点P在OD上方,△PDB∽△AOP ,则,即,解得:OP=12,∴P(0,12);如图4,若点P在OD上方,△BDP∽△AOP ,则,即,解得:OP=4+2或OP=4﹣2(不合题意舍去),∴P(0,4+2);如图5,若点P在y轴负半轴,△PDB∽△AOP,5则,即,解得:OP=﹣4+2或﹣4﹣2,则P点坐标为(0,2﹣4)或(0,4+2)(不合题意舍去).∴点P的坐标为:(0,2)或(0,6)或(0,12)或(0,4+2)或(0,2﹣4).5.解:(1)解方程x2﹣6x+8=0可得x=2或x=4,∵BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC,∴BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D 坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y 轴的距离为,又由(1)可得F(0,),∴OF=,∴S△OFH =××=;(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,6由(2)可知OF=,OD=4,则有△MOF∽△FOD ,∴=,即=,解得OM=,∴M (﹣,0),且D(4,0),∴G (,0),设N点坐标为(x,y),则=,=0,解得x=,y=﹣,此时N 点坐标为(,﹣);②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM ,∴=,即=,解得OM=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,∵四边形MFND为矩形,∴NF=OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N 点,其坐标为(,﹣)或(﹣4,﹣)或(4,).二、动态几何6. 解:(1)如图1,∵∠ACB=90°,AC=8,BC=6,∴AB=10.∵CD⊥AB,∴S△ABC =BC•AC=AB•CD.∴CD===4.8.∴线段CD的长为4.8.(2)①过点P作PH⊥AC,垂足为H,如图2所示.由题可知DP=t,CQ=t.则CP=4.8﹣t.∵∠ACB=∠CDB=90°,∴∠HCP=90°﹣∠DCB=∠B.∵PH⊥AC,∴∠CHP=90°.∴∠CHP=∠ACB.∴△CHP∽△BCA .∴.∴.∴PH=﹣t.∴S△CPQ =CQ•PH=t (﹣t)=﹣t2+t.②存在某一时刻t,使得S△CPQ:S△ABC=9:100.∵S△ABC =×6×8=24,且S△CPQ:S△ABC=9:100,∴(﹣t2+t):24=9:100.整理得:5t2﹣24t+27=0.即(5t﹣9)(t﹣3)=0.解得:t=或t=3.∵0≤t≤4.8,∴当t=秒或t=3秒时,S△CPQ:S△ABC=9:100.(3)①若CQ=CP,如图1,则t=4.8﹣t.解得:t=2.4.②若PQ=PC,如图2所示.∵PQ=PC,PH⊥QC,∴QH=CH=QC=.7∵△CHP∽△BCA .∴.∴.解得;t=.③若QC=QP,过点Q作QE⊥CP,垂足为E,如图3所示.同理可得:t=.综上所述:当t为2.4秒或秒或秒时,△CPQ为等腰三角形.8。

相关文档
最新文档