Microstructure and oxidation behavior of NiCoCrAl-YSZ microlaminates produced by EB-PVD

合集下载

TiN粉体的氧化行为

TiN粉体的氧化行为

TiN粉体的氧化行为陈珊璐;郭伟明;黄楚云;林华泰【摘要】本文研究了T iN粉体在空气气氛下的氧化行为.物相分析结果表明,T iN 粉体在600℃时已开始发生显著氧化,氧化5h时产物中T iO2含量高达58.3w t%;在800℃氧化0.5h时,T iN粉体已完全氧化为TiO2.基于X射线衍射(XRD)图谱结合参比强度法,进行了等温氧化动力学分析研究.氧化动力学分析表明,在600℃时,TiN粉体氧化在0~2h和2~5h两个阶段内均遵从线性动力学规律,受化学反应控制,但在后期氧化速率显著降低.显微结构观察表明,随着氧化的进行,由于自身的体积膨胀,完整的T iN颗粒逐渐形成裂纹,然后开裂,并最终破碎为T iO2小颗粒.【期刊名称】《材料科学与工程学报》【年(卷),期】2018(036)004【总页数】4页(P631-634)【关键词】TiN粉体;氧化;TiO2;动力学;显微结构【作者】陈珊璐;郭伟明;黄楚云;林华泰【作者单位】广东工业大学机电工程学院 ,广东广州 510006;广东工业大学机电工程学院 ,广东广州 510006;广东工业大学机电工程学院 ,广东广州 510006;广东工业大学机电工程学院 ,广东广州 510006【正文语种】中文【中图分类】TQ174.751 引言TiN具有高熔点、高硬度、高化学稳定性、耐磨损以及优良导电性等[1],作为第二相可以较好地改善Si3N4陶瓷的力学性能和导电性能[2-4]。

Si3N4陶瓷具有优异的高温抗氧化性能,在1000℃以下基本不发生氧化[5],然而TiN抗氧化性能较差,在1000℃以下已发生显著氧化[6-7]。

因此,TiN作为第二相,恶化了Si3N4基陶瓷的抗氧化性能。

例如, Feldhoff等人[8]研究了Si3N4-TiN复相陶瓷在600~1100℃之间的氧化行为,发现第二相TiN在650℃开始发生氧化,生成TiO2:2TiN+2O2=2TiO2+N2↑[9-10](1)原位显微结构观察表明,反应生成TiO2附着在复相陶瓷的最外表面。

二硼化钛陶瓷在不同温度下的氧化行为_英文_

二硼化钛陶瓷在不同温度下的氧化行为_英文_

二硼化钛陶瓷在不同温度下的氧化行为黄飞,傅正义,王为民,王皓,王玉成,张金咏,张清杰(武汉理工大学,复合材料新技术国家重点实验室,武汉 430070)摘要:采用静态氧化法对不同温度下TiB2陶瓷的氧化行为进行研究,利用X射线衍射仪、扫描电镜、X射线光电子能谱仪对氧化前后的样品进行表征。

结果表明:低温下TiB2陶瓷氧化动力学满足抛物线规律,并在表面形成液相B2O3,阻止氧化反应的进一步进行,冷却后B2O3以玻璃态覆盖在表面。

高温下TiB2氧化反应在4h前满足抛物线规律,表面形成一层TiO2多孔结构;氧化4h后,随着氧扩散距离的延长,扩散阻力加大,从而使氧化速率降低,氧化反应不再满足抛物线规律。

关键词:二硼化钛;氧化动力学;微观结构中图分类号:TF123;TB332 文献标识码:A 文章编号:0454–5648(2008)05–0584–04OXIDATION BEHA VIOR OF TITANIUM DIBORIDE CERAMIC AT DIFFERENT TEMPERATURES HUANG Fei,FU Zhengyi,W ANG W eimin,W ANG Hao,W ANG Yucheng,ZHANG Jinyong,ZHANG Qinjie(State key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University ofTechnology, Wuhan 430070, China)Abstract: The oxidation behavior of TiB2 ceramics at different temperatures was investigated using the static oxidation kinetic method. The samples before and after oxidation have been characterized by X-ray diffractometer, scanning electron microscope and X-ray photoelectron spectrometer. The results show that the oxidation kinetics appear the parabolic law at low temperature. A liquid B2O3 coating on the surface of TiB2 ceramic could prevent from further oxidation. After the ceramic samples were cooled, their sur-faces were covered with glassy B2O3. At high temperature, the oxidation reaction of TiB2 ceramics showed the parabolic law only before 4h. Porous rutile TiO2 formed on the surface. But the oxidation behavior with the parabolic law for the TiB2 ceramics was not observed after oxidation for 4h because of the long path of diffusion, strong diffusion resistance and low reaction rate.Key words: titanium diboride; oxidation kinetics; microstructureTitanium diboride with P6/mmm structure is a uniquely stable compound of the boron element and tita-nium element.[1] TiB2 based materials have received wide attention because of their high hardness and elastic modulus, good abrasion resistance and superior thermal and electrical conductivity.[2–3] Potential applications in-clude high temperature structural materials, cutting tools, armor, electrodes in metal smelting and wear parts. De-spite its useful properties, the application of monolithic TiB2 is limited by poor sinterability, exaggerated grain growth at high temperature and poor oxidation resistance above 800.℃[4–5]The starting temperature to oxidize TiB2 ceramics is about 400℃ and oxidation kinetics is controlled by outward diffusion of interstitial titanium ions and inner diffusion of oxygen ions.[5–6] But there are conflicting viewpoints about the detailed oxidation process, for ex-ample, about the oxidation products and oxidation mechanism. Koh et al.[7] investigated the oxidation be-havior of dense TiB2 specimens with 2.5% in mass (the same below) Si3N4 and found that TiB2 exhibited two distinct oxidation behaviors depending on the tempera-ture. At temperatures below 1000℃, the oxidation layer comprised two layers: an inner layer of crystalline TiO2 and an outer layer mainly composed of B2O3. When the oxidation temperatures were higher than 1000℃, the收稿日期:2007–09–23。

cr35ni45钢高温长期服役过...

cr35ni45钢高温长期服役过...

第36卷第8期2014年8月北京科技大学学报Journal of University of Science and Technology BeijingVol.36No.8Aug.2014Cr35Ni45钢高温长期服役过程的氧化与渗碳机理宋若康1),张麦仓1)✉,彭以超1),杜晨阳2),郑 磊1),姚志浩1),董建新1)1)北京科技大学材料科学与工程学院,北京100083 2)中国特种设备检测研究院,北京100013✉通信作者,E⁃mail:mczhang@摘 要 采用扫描电镜㊁电子探针和X 射线衍射等手段对不同服役时间(原始态㊁1.5a 和6a)Cr35Ni45乙烯裂解炉管内壁的氧化与渗碳机理进行了系统分析.结果表明:高温长时服役后炉管内壁出现了氧化层㊁碳化物贫化区和碳化物富集区三个区域,其氧化行为包括Cr 2O 3外氧化和SiO 2内氧化,且服役过程中外氧化膜发生反复破坏和重建;炉管服役过程的渗碳行为主要由内表面结焦引起,外氧化膜的反复破坏可以加重渗碳,但外氧化膜在破坏后能自动修复,所以服役态两个炉管的渗碳程度较轻;外氧化膜的反复破坏和重建使亚表层贫铬,导致形成碳化物的临界碳浓度增加,在内壁亚表层形成贫碳化物区,多余的碳原子在其内侧析出,形成碳化物富集区.关键词 耐热钢;氧化;渗碳;高温分类号 TG 142.73High temperature oxidation and carburizing mechanisms of Cr35Ni45heat⁃resistant steel under service conditionsSONG Ruo⁃kang 1),ZHANG Mai⁃cang 1)✉,PENG Yi⁃chao 1),DU Chen⁃yang 2),ZHENG Lei 1),YAO Zhi⁃hao 1),DONG Jian⁃xin 1)1)School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China 2)China Special Equipment Inspection and Research Institute,Beijing 100013,China ✉Corresponding author,E⁃mail:mczhang@ABSTRACT The oxidation and carburizing mechanisms of Cr35Ni45type pyrolysis furnace tubes serviced for different time (as⁃cast,1.5a and 6a)were systematically investigated by scanning electron microscopy (SEM),electron probe and X⁃ray diffraction (XRD).Compared with original uniform microstructure distribution,there are three zones including an oxidation layer,a carbide depletion zone and a carbide⁃rich zone at the subsurface region of the Cr35Ni45tube inner wall after long time service.The oxidation behavior of the Cr35Ni45tubes at high temperature consists of the external oxidation of chromium and the internal oxidation of silicon,and the outer oxidation layer is greatly affected by repeated destruction and reformation in decoking.The carburizing behavior of the Cr35Ni45tubes mainly results from coking on the inner wall surface,and repeated destruction of the outer oxidation layer can aggravate this carburiza⁃tion.But due to auto⁃remediation of the outer oxidation layer,carburization of both the serviced tubes is at a lesser degree.Also,re⁃peated destruction and reformation of the outer oxidation layer cause the depletion of Cr,the increase in critical concentration of C in the subsurface of the inner wall and carbide participation at the below region,leading to the formation of a carbide depletion zone and a carbide⁃rich zone.KEY WORDS heat⁃resistant steel;oxidation;carburization;high temperature收稿日期:2013⁃⁃05⁃⁃14DOI:10.13374/j.issn1001⁃⁃053x.2014.08.009; 乙烯裂解炉是石化工业的重要装置,裂解炉炉管是乙烯裂解炉的核心部件.炉管的工作环境恶劣,工作温度高,炉管管壁处在管内烃类渗碳㊁管内外氧化硫化及高温环境下,同时又承受内压㊁自重㊁温差及开停车所引起的疲劳㊁热冲击等复杂的应力作用[1-4].乙烯裂解炉管常见的失效形式有渗碳开裂㊁弯曲㊁鼓胀㊁蠕变开裂㊁热疲劳开裂㊁热冲击开裂㊁氧化等形式,其中由于炉管内壁氧化和渗碳引起材北 京 科 技 大 学 学 报第36卷料失效的比例最大[5].由于裂解炉管的运行环境比较恶劣,要求炉管材料具有良好的抗高温渗碳㊁抗高温氧化以及高蠕变断裂强度等性能,炉管材料一般选用高铬㊁镍的合金.高含量的铬㊁镍保证了材料的耐蚀性,同时在炉管中还含有铌㊁硅等微量元素以提高材料的抗渗碳和抗高温蠕变性能[6-11].目前常用的炉管材料有Cr25Ni20㊁Cr25Ni35和Cr35Ni45,其中Cr35Ni45型炉管的使用温度最高,综合性能最好[12-13],但由于开发较晚,有关该类材料在服役条件下的系统研究较少.本文主要对使用不同年限的Cr35Ni45型炉管内壁的氧化和渗碳行为进行研究,旨在探讨高温服役过程中材料内壁氧化和渗碳机理.1 实验材料及方法实验材料为Cr35⁃⁃Ni45型辐射段炉管,实际服役温度在1000℃左右,服役时间分别为0㊁1.5和6 a.炉管采用离心铸造的方式制成,原始铸态炉管材料的化学成分为(质量分数):C0.5%;Nb1%;Cr 35.4%;Ni43.57%;Ti0.01%;Si1.6%;Fe 余量.从上述三个炉管上各切出的尺寸为10mm×15 mm×7mm的弧形小块,经60#~2000#砂纸依次打磨后,用PG⁃⁃1A金相试样抛光机机械抛光,最后用H3PO4+H2SO4+CrO3的电解侵蚀液在5V电压的条件下侵蚀5s,采用9XB⁃⁃PC光学显微镜㊁JSM⁃⁃6510A扫描电镜和电子探针分别观察管内壁组织形态特征以及其相的组成.刮下已使用1.5a炉管的内表面氧化层,利用日本理学(Rigaku)D/MAX⁃⁃RB 型衍射仪分析其相组分结构.2 实验结果图1为原始态及不同服役状态的炉管内壁组织.从图1(a)可以看出,未服役炉管的内壁平整光滑,基体上的共晶碳化物M23C6和NbC一直延伸至内边缘.服役过程中炉管处于高温氧化和渗碳的环境,服役1.5a后内壁发生了很大变化,如图1(b)所示,内壁分成了如图2所示的三个区域:内壁最外侧的氧化层区㊁中间的碳化物贫化区和紧靠其内的碳化物富集区.其中,氧化层分为内氧化层和外氧化层,X射线衍射(图3)和电子探针分析结果(表1)综合显示外氧化层是Cr2O3,内氧化层是SiO2.外层的Cr2O3呈连续膜状,对基体起到很好的保护作用;而SiO2呈树枝状分布,没有形成连续的膜.中间层为碳化物贫化区,由于基体中的铬原子扩散到内壁处与氧形成氧化膜,导致该区的铬含量降低及形成碳化物的临界碳浓度增高,该区的碳化物分解,且贫化区中出现了蠕变孔洞.贫化区内侧是碳化物富集区,该区域的二次碳化物颗粒数量比内部基体上的多,且晶界和枝晶间的碳化物比内部基体上的粗大.图1 炉管内壁的组织特征.(a)原态;(b)服役1.5年;(c)服役6年Fig.1 Microstructures of the Cr35Ni45tube inner wall:(a)as⁃casted;(b)serviced for1.5a;(c)serviced for6a表1 电子探针定点分析结果(原子分数)Table1 Result of EMPA%位置C Si Cr Ni Fe Nb O相10.880.0334.970.260.740.0863.04Cr2O3 20.1928.140.170.160.13071.21SiO2 30.080.0331.550.080.55067.71Cr2O3 40.4826.160.110.110.07073.07SiO2 图1(c)为服役6a后炉管内壁的组织形貌.可以看出,与服役1.5a类似,炉管内壁处存在如图2所示的三个区域.但是,内壁旧的外氧化层Cr2O3部分剥落,新的氧化层薄膜刚刚形成,剥落可能由清焦过程或开停车时的热冲击造成,氧化层的破坏不仅会加速基体氧化,还会加重基体渗碳.从图4所示元素分布可知(此处氧化膜还未剥落),在氧化膜内裂纹处的碳含量明显较高,这主要由渗碳引起.此外,Cr㊁Ni㊁Si和O元素的分布也十分不均匀,这主要由Cr2O3和SiO2氧化物的存在导致,它们与Cr2O3和SiO2氧化物的分布规律一致.对比图1(b)和(c),服役6a后贫化区的宽度增大,与服役1.5a的炉管相似,它的基体贫化区和碳化物富集区也出现了一些蠕变孔洞,且在长时间高温服役中,碳㊃6401㊃第8期宋若康等:Cr35Ni45钢高温长期服役过程的氧化与渗碳机理图2 内壁分区示意图Fig.2 Schematic diagram of the oxidation distribution of the tube in⁃ner wall图3 氧化膜的X 射线衍射谱Fig.3 XRD pattern of the oxide layer化物富集区的细小碳化物颗粒已经合并长大.图4 服役6a 炉管内壁区域元素分布Fig.4 Elemental distribution of the tube inner wall serviced for 6a3 分析讨论3.1 不同服役时间炉管内壁的氧化机理炉管服役过程中,内壁处于高温氧化和渗碳环境,它内部的合金元素会与氧结合形成氧化物.根据Wagner 理论[14-17],对于任一合金元素B,它形成连续外氧化膜BO b 的临界浓度N *B 可表示为N *B (=πg *2b NS 0D o V mD B V )ox12.式中,g *是氧化物的临界体积分数,N S 0是氧在合金表面的浓度,D o 是氧在合金中的扩散系数,D B 是B元素在合金中的扩散系数,V m 和V ox 分别是合金与氧化物的摩尔体积.可以看出,氧化时合金元素要有足够的浓度才能形成连续完整的氧化膜,且氧分压越大,形成连续外氧化膜的临界浓度N *B 越高.合金基体元素中硅与氧的亲合力最强,其次是铬㊁铁和镍.管材刚开始服役时,其内表面的硅㊁铬㊁铁和镍氧化物都开始形核,形成不同的氧化物颗粒,但由于硅的含量和热力学活度较低,低于形成单一SiO 2氧化膜的临界浓度,生长速度慢,氧化后的SiO 2颗粒不能横向生长至彼此相互连接起来,难以单独在内壁最外侧形成氧化层,最终被快速生长的Cr 2O 3氧化层覆盖.铁和镍与氧的亲和力较弱,在随后过程中铁镍的氧化物会被铬还原,因此最外侧的氧化层是由铬形成的.尽管铬与氧的亲和力比硅低,但其含量及活度比硅高,高于形成单一氧化膜的临界浓度,在最外侧形成完整的氧化层,对基体起到了很好的保护作用,抑制了氧原子和碳原子向合金基体内部扩散,使合金的氧化和渗碳速度大幅下降.在随后的氧化过程中,炉管内氧原子主要通过氧化膜中贯通式裂纹或氧化膜中晶界和缺陷向合金内部扩散,铬原子通过氧化膜缺陷向外扩散,但由于铬在Cr 2O 3氧化膜中的扩散系数很小,所以铬与氧的反应主要在氧化膜和金属的界面上进行,部分在Cr 2O 3氧化膜内反应,导致Cr 2O 3氧化膜增厚.㊃7401㊃北 京 科 技 大 学 学 报第36卷根据材料学基本理论,合金中各元素的氧化与形成氧化物过程的动力学和热力学因素有关.Cr 2O 3和SiO 2的生成吉布斯自由能分别可表示为:ΔG Cr 2O 3=ΔG ⊖Cr 2O 3-RT ln P O 2,ΔG SiO 2=ΔG ⊖SiO 2-RT ln P O 2.式中,ΔG⊖Cr 2O 3和ΔG⊖SiO 2分别是Cr 2O 3和SiO 2的标准生成吉布斯自由能,P O 2为氧分压.其中两式中的RT ln P O 2分别表示形成Cr 2O 3和SiO 2所需的氧分压条件.根据Ellingham 氧势图可知,ΔG⊖Cr 2O 3>ΔG⊖SiO 2,同一氧分压下,SiO 2的生成吉布斯自由能更低.随着氧化膜不断增厚,硅原子在氧化铬层中的溶解度降低,硅在奥氏体基体中的含量不断增加,而铬含量则逐渐降低,且氧原子扩散至基体内部时氧的分压逐渐降低,最终导致ΔG Cr 2O 3=0,而此时ΔG SiO 2<0,硅发生内氧化.一般而言,铬和硅的竞争性氧化分两种情况:(1)在氧化膜较薄时,氧扩散至界面时仍具有较高的氧分压使ΔG Cr 2O 3<0,且铬具有足够的浓度形成单一氧化膜,这时仍发生铬的氧化,导致氧化膜的增厚;(2)随着氧化膜的增厚,氧向内扩散越来越困难,氧分压逐渐降低以致ΔG Cr 2O 3=0,导致Cr 2O 3氧化膜不再生长,硅发生氧化,SiO 2在紧贴Cr 2O 3层下面的位置形成,然后随着氧扩散的方向沿晶界呈树枝状形态生长.结合图1(b)和(c)还可以看出,炉管在服役过程中内壁外层的Cr 2O 3氧化膜会逐渐发生破坏出现裂纹,甚至部分剥落.Cr 2O 3外氧化膜的破坏主要有以下几个原因造成:(1)实际生产中常常通入水蒸气清焦,周期性清焦会引起热疲劳现象,容易导致外氧化层的破坏;(2)根据龚春欢[18]和刘丰军[19]提出的氧化膜破坏机理及剥落机制,工业生产中开停车产生的热冲击会使炉管内产生很大的冲击热应力,而且形成的氧化膜与基体膨胀系数不匹配,易产生热应力,当这些应力超过氧化膜的强度极限或氧化膜与基体的结合强度时会导致氧化膜的破坏;(3)元素Cr 的PBR (氧化物与金属的体积比)值为2.02,远大于1,它发生氧化后会产生体积膨胀,致使合金的基体承受拉应力,而氧化膜承受压应力,当氧化膜厚度到达一定尺寸时,内应力超过氧化膜的强度极限或氧化膜与基体的结合强度就会导致氧化膜出现裂纹甚至剥落;(4)Cr 2O 3在高温(980℃以上)下不稳定,易与O 2反应生成挥发性CrO 3,炉管使用过程中由于结焦的原因容易导致材料部分区域超温,使Cr 2O 3氧化膜发生反应生成易挥发的CrO 3,发生破坏.图5为服役1.5a 炉管外氧化层的破落方式.可以看出,Cr 2O 3氧化膜自身结合强度较高,裂纹先从界面处形成,最终扩展至膜内,导致剥落,这与Almeida 提出的氧化膜破裂方式一致[20-21].氧化层的剥落使得该层Cr 2O 3氧化膜失去了对合金的保护作用,合金基体直接暴露在氧化和渗碳环境中,加速了材料的氧化和渗碳.在此后的服役过程中,新的氧化层又形成,而后又以同样的方式在从氧化层/基体处剥落,如此反复循环.图5 炉管裂纹扩展路径Fig.5 Crack propagation path of the tube不同服役时段炉管内表层氧化膜的生长和破坏循环过程可用图6示意性描述:(a)Cr 2O 3和SiO 2两种氧化物形核后首先垂直于金属基体生长,然后Cr 2O 3颗粒会横向彼此相连[21-22];(b)刚开始形成的Cr 2O 3氧化膜相对较薄,在应力作用下,氧化膜有一定的变形,而SiO 2已被覆盖;(c)Cr 2O 3氧化膜自身结合强度较高,裂纹首先在氧化膜/合金界面处形核,随着氧化的进行,裂纹不断扩展,当裂纹穿透氧化层时,氧化层从氧化层/基体界面处剥落.裂纹存在为氧化气氛扩散提供了快速的通道,内层的SiO 2颗粒长大并沿晶界扩展;(d)Cr 2O 3氧化层的剥落使得该层氧化膜基本失去了对合金的保护作用,在此后的氧化过程中,新的Cr 2O 3氧化层又形成,SiO 2则不断以树枝态沿晶界生长;(e)随着新形成的氧化层不断增厚,裂纹在合金/氧化膜界面形核;(f)Cr 2O 3氧化膜再次剥落,新的氧化层又形成,如此反复循环.值得注意的是,在外层Cr 2O 3膜剥落的同时,由于内氧化的SiO 2与基体结合强度较高,且大多沿晶界生长,不易剥落,所以只发生了部分脱落,随着氧原子沿晶界的扩散,树枝状的SiO 2继续向材料内部延伸,内氧化深度不断增加.3.2 不同服役时间炉管内壁与渗碳分区的形成高温长时服役中炉管的渗碳过程比较复杂,通㊃8401㊃第8期宋若康等:Cr35Ni45钢高温长期服役过程的氧化与渗碳机理图6 氧化膜形成和破坏过程Fig.6 Formation and failure process of oxide scales常认为它与氧化过程交互进行.对于炉管内壁的渗碳机制,目前尚存争议,主要有两种机制[23]:(1)炉管内表面结焦是造成内壁渗碳的主要原因,丝状催化结焦的沉积促进炉管内壁组织弱化,而非催化气相焦炭的沉积在一定程度上延缓了材料的弱化;(2)Bennett 和Price 提出了裂缝腐蚀机制,认为裂解气体通过炉管内壁氧化层中空洞和裂缝向合金内部扩散,由于晶间氧化(形成SiO 2)消耗了裂解气中的氧化气氛,只剩下碳氢气,在基体金属的催化作用下,这些碳氢气分解成活性碳,扩散进入合金内部,以碳化物形式析出,产生内部渗碳区,但此机制很难解释炉管贫碳化物区深度远远超过晶间氧化物区前沿的现象.对于Cr35Ni45钢,从图1(b)和(c)中可以看出,贫化区的宽度远远超过晶间氧化物SiO 2的延伸宽度,可以认为炉管内壁的渗碳主要由其内表面结焦引起,表面结焦层作为渗碳介质,活性碳原子通过氧化层和贫化区于碳化物富集区形成碳化物,形成内部渗碳,导致材料组织弱化.从图4看出,碳原子在氧化膜开裂处的浓度比周围高,渗碳只是在氧化膜破坏时才较明显.根据Ling 和Petkovie⁃Luton 等[24-25]的研究,当基体中铬的质量分数大于10%时,剥落后的保护性Cr 2O 3氧化膜就能重新形成,波谱定点测量显示,三个炉管亚表层铬质量分数分别是28%㊁25%和19%,可见氧化膜破坏后仍能自动修复,且对照Ling 和Petkovie⁃Luton 等对该类材料组织弱化所分的五个阶段,服役态的两个炉管应处于第二㊁三阶段,在此阶段内材料基体含有足够高的铬,保护性氧化膜破坏后能自动修复,所以两个炉管的渗碳程度都很低.根据Zhu 等[26]研究,当合金中碳含量超过固溶极限时,多余的碳原子会与合金元素结合,以碳化物形式析出,设析出碳化物类型为M n C m ,则形成碳化物的临界碳浓度C max 可用下式表示:C max =[e -ΔGΘ/RT]-1/m [γC ]-1[γM ]-n /m [C M ]-n /m .式中,ΔG ⚪是碳化物标准形成吉布斯自由能,γC 和γM 分别为碳及合金元素的活度系数,C M 为碳化物形成元素的浓度.对于本研究中主要的碳化物Cr 23C 6来说,Cr 的浓度越高,形成碳化物所需的临界碳浓度C max 越小,反之亦然.内壁贫化区与碳化物富集区的形成与外氧化膜的反复破坏和重建有密切联系,首先外氧化膜的反复破坏和重建使合金内壁次表层的Cr 浓度比基体低,而Cr 在基体中的扩散速率较小,短时间内难以通过合金内部的Cr 扩散予以补充,从而使得形成Cr 的浓度以及形成碳化物的临界碳浓度C max 从炉管的次表层到心部呈梯度分布.随着Cr 的不断消耗,C max 不断增大,导致此区域内富Cr 的碳化物M 23C 6不稳定而发生分解,在合金的亚表层出现了一个碳化物的贫化区.同时,碳化物的分解导致固溶在贫化区内的碳浓度提高,使贫化区与合金内部形成碳浓度梯度,碳原子向内部扩散.由于贫碳化物区的C max 较高,通过氧化层缺陷和晶间氧化通道扩散进入合金基体的活性碳原子以及由碳化物分解而排出的碳在扩散通过该区时并不形成碳化物,而是继续扩散向内扩散到C max 较小区域,在炉管贫化区内侧与合金元素结合形成碳化物,形成碳化物富集区.从图7可以看㊃9401㊃北 京 科 技 大 学 学 报第36卷出,服役1.5a 炉管的碳化物富集区与心部基体相比二次碳化物数量明显比心部基体多,且一次碳化物更粗大.随着服役时间的延长,贫化区越来越宽,碳化物富集区前沿也向内部推进.图7 服役1.5a 炉管碳化物富集区Fig.7 Carbide⁃rich zone of the tube serviced for 1.5a从图1(b)和(c)中可以看出,在两个服役炉管的碳化物贫化区中出现了一些孔洞,这主要由以下几点因素造成:(1)炉管内壁上氧化膜的形成,致使合金基体受到氧化膜对它的拉应力作用,容易在贫化区晶界处产生孔洞;(2)服役炉管存在氧化层㊁贫化区㊁碳化物富集层以及心部基体四个区域,这四个区域分别具有不同的组织形态,具有不同的热膨胀系数和力学性质,所以当合金服役过程中受到热应力作用,发生变形时,各区域的变形不协调,相互阻碍,应力不能有效释放;(3)炉管服役过程中受到蠕变应力的作用,炉管的碳化物贫化区中没有析出相,蠕变抗力较低,因此会在碳化物贫化区中优先出现蠕变孔洞.4 结论(1)Cr35Ni45炉管在高温服役过程中其内壁出现了氧化层㊁碳化物贫化区和碳化物富集区三个区域,其氧化行为包括Cr 的外氧化和Si 的内氧化,且服役过程中外氧化膜发生反复破坏和重建.(2)炉管内壁出现的渗碳行为主要由内表面结焦引起,外氧化膜的反复破坏加剧了渗碳过程,但基体含铬量较高,保护性氧化膜在破坏后能重建,故两个服役条件下的炉管渗碳程度较小.(3)炉管内壁外氧化膜的反复破坏和重建使亚表层贫铬,导致形成碳化物的临界碳浓度增加,该区碳化物分解,形成贫碳化物区,分解后多余的碳原子和由渗碳进入基体的碳原子在贫化区内侧以碳化物的形式析出,形成碳化物富集区.参 考 文 献[1] Kaya A A,Krauklis P,Young D J.Microstructure of HK40alloyafter high temperature service in oxidizing /carburizing environ⁃ment.Mater Charact ,2002,49:23[2] Khodamorad S H,Rezaie H,Sadeghipour A,et al.Analysis of ethylene cracking furnace tubes.Eng Fail Anal ,2012,21:1[3] Voicu R,Andrieu E,Poquillon D,et al.Microstructure evolutionof HP40⁃Nb alloys during aging under air at 1000℃.Mater Char⁃act ,2009,60:1020[4] Laigo J,Christien F,Le G R,et al.SEM,EDS,EPMA⁃WDSand EBSD characterization of carbides in HP type heat resistant al⁃loys.Mater Charact ,2008,59:1580[5] Sustaita⁃Torres I A,Haro⁃Rodríguez S,Guerrero⁃Mata M P,et al.Aging of a cast 35Cr⁃45Ni heat resistant alloy.Mater Chem Phys ,2012,133:1018[6] Shi S,Lippold J C.Microstructure evolution during service expo⁃sure of two cast,heat⁃resisting stainless steels HP⁃Nb modified and20⁃32Nb.Mater Charact ,2008,59:1029[7] Shen L M,Gong J M,Tang J Q,et al.Study on the carburizationresistance of Cr25Ni35Nb and Cr35Ni45Nb alloys for ethylenecracking furnace tube at high temperature.J Shanghai Jiaotong Univ ,2010,44(5):604(沈利民,巩建鸣,唐建群,等.Cr25Ni35Nb 和Cr35Ni45Nb 裂解炉管的抗高温渗碳能力.上海交通大学学报,2010,44(5):604)[8] Shen L M,Geng L Y,Gong J M.Effects of aging time on me⁃chanical properties and microstructure in Cr35Ni45Nb centrifugallycast austenitic steel.J Nanjing Univ Technol Nat Sci Ed ,2011,33(2):28(沈利民,耿鲁阳,巩建鸣.时效时间对Cr35Ni45Nb 离心铸造奥氏体钢力学性能与微观组织的影响.南京工业大学学报:自然科学版,2011,33(2):28)[9] Piekarski B.Effect of Nb and Ti additions on microstructure andidentification of precipitates in stabilized Ni⁃Cr cast austeniticsteels.Mater Charact ,2001,47:181[10] Wang W Z,Xuan F Z,Wang Z D,et al.Effect of overheatingtemperature on the microstructure and creep behavior of HP40Nballoy.Mater Des ,2011,32(7):4010[11] Borjali S,Allahkaram S R,Khosravi H.Effects of working tem⁃perature and carbon diffusion on the microstructure of high pres⁃sure heat⁃resistant stainless steel tubes used in pyrolysis furnacesduring service condition.Mater Des ,2012,34:65[12] Swaminathan J,Guguloth K,Gunjan M,et al.Failure analysisand remaining life assessment of service exposed primary reformer heater tubes.Eng Fail Anal ,2008,15(4):311[13] Ul⁃Hamid A,Tawancy H M,Mohammed A R I,et al.Failureanalysis of furnace radiant tubes exposed to excessive tempera⁃ture.Eng Fail Anal ,2006,13(6):1005[14] Li T F.Metal High Temperature Oxidation and Hot Corrosion.Beijing:Chemical Industry Press,2003:139(李铁藩.金属高温氧化和热腐蚀.北京:化学工业出版社,2003:139)[15] Tian S G,Lu X D,Sun Z D.Internal oxidation and internal nit⁃ridation of Ni⁃base alloy with high Cr contents during high tem⁃perature exposure.Chin J Nonferrous Met ,2012,22(2):408㊃0501㊃第8期宋若康等:Cr35Ni45钢高温长期服役过程的氧化与渗碳机理(田素贵,卢旭东,孙振东.高Cr镍基合金的高温内氧化和内氮化行为.中国有色金属学报,2012,22(2):408) [16] Liu P S.High Temperature Oxidation Behavior of Aluminum Com⁃pound Coating Cobalt Base Alloy.Beijing:Metallurgical IndustryPress,2008:12(刘培生.钴基合金铝化物涂层的高温氧化行为.北京:冶金工业出版社,2008:12)[17] Ribeiro A F,De Almeda L H,Dos Santos D S,et al.Micro⁃structural modifications induced by hydrogen in a heat resistantsteel type HP⁃45with Nb and Ti additions.J Alloys Compd,2003,356⁃357:693[18] Gong C H.Analysis of causes of ethylene cracker tubes.Petro⁃chem Corros Prot,2004,21(5):23(龚春欢.乙烯裂解炉管开裂原因分析.石油化工腐蚀与防护,2004,21(5):23)[19] Liu F J.Investigation on High Temperature Oxidation of FGH95,FGH96and FGH97Alloys[Dissertation].Beijing:University ofScience and Technology Beijing,2007(刘丰军.FGH95㊁FGH96和FGH97合金的高温氧化行为研究[学位论文].北京:北京科技大学,2007) [20] Yu L.Microstructure and Property of C⁃⁃SiC⁃⁃B4C⁃⁃TiB2Compos⁃ite[Dissertation].Shenyang:Northeastern University,2008(喻亮.C⁃⁃SiC⁃⁃B4C⁃⁃TiB2复合材料的组织和性能[学位论文].沈阳:东北大学,2008)[21] De Almeida L H,May I L.Microstructural characterization ofmodified25Cr⁃35Ni centrifugally cast steel furnace tubes.MaterCharact,2002,49:219[22] Mostafaei M,Shamanian M,Purmohamad H,et al.Microstruc⁃tural degradation of two cast heat resistant reformer tubes afterlong term service exposure.Eng Fail Anal,2011,18:164 [23] Wu X Q,Yang Y S,Zhan Q,et al.Surface coking behavior on25Cr35Ni heat⁃resistant alloy.Corros Sci Prot Technol,1999,11(5):274(吴欣强,杨院生,詹倩,等.25Cr35Ni耐热合金表面结焦机制.腐蚀科学与防护技术,1999,11(5):274) [24] Ling S,Ramanarayanan T A,Petkovie⁃Luton putationalmodeling of mixed oxidation⁃carburization processes:Part1.Oxid Met,1993,40:179[25] Petkovie⁃Luton R,Ramanarayanan T A.Mixed⁃oxidant attack ofhigh⁃temperature alloys in carbon⁃and oxygen⁃containing environ⁃ments.Oxid Met,1990,34:381[26] Zhu Z C,Cheng C Q,Zhao J,et al.High temperature corrosionand microstructure deterioration of KHR35H radiant tubes in con⁃tinuous annealing furnace.Eng Fail Anal,2012,21:59㊃1501㊃。

表面纳米化对锆合金微动腐蚀行为的

表面纳米化对锆合金微动腐蚀行为的

装备环境工程第19卷第11期·110·EQUIPMENT ENVIRONMENTAL ENGINEERING2022年11月重大工程装备表面纳米化对锆合金微动腐蚀行为的影响唐晨1,张伟1,李正阳2,蔡振兵2(1.中国核动力研究设计院,成都 610213;2.西南交通大学 摩擦学研究所,成都 610031)摘要:目的研究N36锆合金表面纳米化层的形貌和微观结构,分析表面纳米化层的微动腐蚀机理。

方法采用超声表面滚压技术(USRP)对锆合金进行表面纳米化处理,研究不同滚压速度对表面纳米化层形貌、相组成、粗糙度、显微硬度、电化学腐蚀和微动腐蚀行为的影响。

结果USRP处理后,锆合金表面有明显的塑性变形痕迹,致使锆合金表面发生加工硬化,提高了表面的硬度。

锆合金的腐蚀电流密度相较于基体更低,最大磨损深度和磨损率均低于基体。

结论USRP处理后的锆合金晶粒细化、晶界增多,提高了锆合金的表面活性,有利于钝化膜的形成。

锆合金的磨损机理为氧化磨损和磨粒磨损的共同作用。

关键词:锆合金;超声表面滚压;表面纳米化;腐蚀;微动腐蚀中图分类号:TG172 文献标识码:A 文章编号:1672-9242(2022)10-0110-09DOI:10.7643/ issn.1672-9242.2022.11.015Effect of Surface Nanocrystallization on Fretting CorrosionBehavior of Zirconium AlloyTANG Chen1, ZHANG Wei1, LI Zheng-yang2, CAI Zhen-bing2(1. Nuclear Power Institute of China, Chengdu 610213, China; 2. Tribology Research Institute, Southwest JiaotongUniversity, Chengdu 610031, China)ABSTRACT: The morphology and microstructureof N36 zirconium (Zr) alloy surface nanocrystallization layer were studied.The frettingcorrosion mechanism of the surface nanocrystallization layer was analyzed. Ultrasonic surface rolling processing (USRP) was used to preparesurface nanocrystallization layer on Zr alloys.The effects of rolling speeds on the morphology, phase composition, roughness, hardness, electrochemical corrosion and fretting corrosion behavior of the surface nanocrystallization layer were studied. Results shows thatZralloyafter USRP present plastic deformation trace.The plastic deformation on the sur-face of Zr alloy leads to work hardening and increases the surface hardness.The electrochemical corrosion tests indicate that Zr alloy after USRP shows a lower corrosion current density compared with substrate.The wear depth and wear rate of Zr alloy af-ter USRP is lower than thatsubstrate. The Zr alloy after USRP refinegrain and increase the number of grain boundary, which im-proving the activity of Zr alloy and beneficial to form passivation film. The wear mechanism of Zr alloy after USRP is the inter-收稿日期:2021–05–27;修订日期:2021–08–02Received:2021-05-27;Revised:2021-08-02基金项目:国家自然科学基金重点项目(U2067221)Fund:The National Natural Science Foundation of China (U2067221)作者简介:唐晨(1980—),男,硕士,工程师,主要研究方向为核燃料与材料。

镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能

镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能

文章编号:1001-9731(2021)01-01022-04镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能*余灏勋,马廷霞(西南石油大学机电工程学院,成都610500)摘要:利用微弧氧化法,在微弧氧化反应电解质中加入氟钛酸钾和G R/T i O2粉末,在镁合金表面制备了MA O-G R/T i O2涂层㊂采用S E M和F T-I R分别对G R/T i O2粉末的表面形貌和结构进行了研究,用S E M㊁X R D 和元素线扫描对MA O-G R/T i O2涂层的表面形貌㊁相结构和元素分布进行了研究,用三电极技术对MA O-G R/T i O2涂层的耐腐蚀性能进行了研究㊂结果表明,通过溶胶-凝胶法可将纳米T i O2接枝到G O表面,生成G R/T i O2粉末;MA O-G R/T i O2涂层主要由M g2T i O4相㊁M g3(P O4)2相㊁M g和M g O相组成;以界面为分界线,涂层一侧T i㊁P和O元素高于基体一侧,基体一侧M g元素高于涂层一侧;MA O-G R/T i O2涂层的腐蚀电位为-0.723V,腐蚀电流密度为8.96ˑ10-8A/c m2,相比镁合金基体和MA O涂层,腐蚀电位提高了48.3%和36.7%,表明MA O-G R/T i O2涂层可以显著提高镁合金基体的耐蚀性能㊂关键词:镁合金;微弧氧化法;复合涂层;耐腐蚀性能中图分类号: T B332文献标识码:A D O I:10.3969/j.i s s n.1001-9731.2021.01.0040引言镁合金耐蚀性差严重限制了其在许多领域的应用[1-2]㊂目前为止,研究者广泛研究的耐腐蚀方法是在合金表面形成防腐涂层㊂微弧氧化技术(MA O)是在常规阳极氧化技术基础上发展起来的一种新型的镁合金表面处理技术,该技术可以制造高质量的涂层,具有高硬度值,强附着力,并可以大幅提高镁合金基体的耐腐蚀性[3]㊂因此,MA O已经成为提高镁合金耐蚀性研究最热门的技术之一[4-6]㊂MA O涂层的耐蚀性主要取决于涂层的厚度㊁成分和组织结构[7]㊂根据已有的研究,电解液的组成会影响涂层的微观结构㊁成分和性能,因为这些元素可以在氧化过程中掺杂入涂层中[8-9]㊂几种类型的电解质,如硅酸盐[10]㊁铬酸盐[11]和磷酸盐[12],已被用于制备MA O涂层㊂一般来说,在这些电解质中形成的MA O涂层主要由M g O相和其它一些与电解质有关的化合物组成[如M g O㊁M g3-(P O4)2㊁M g A l2O4或M g F2][13]㊂由于M g O在中性或酸性环境中不稳定,这些涂层不能提供足够的长期腐蚀保护㊂解决该问题最有效的办法是通过改变电解质的组成,在MA O涂层中加入稳定氧化物或其它稳定化合物,如N b2O5㊁Z r O2㊁T i O2㊁M g2Z r5O12㊁C e O2㊁M g F2或Z r F4㊂这些氧化物和化合物可以在氧化处理过程中嵌入到涂层中,以提高涂层的耐蚀性[14]㊂然而,在这些电解液中,有许多化合物不能长期使用(相对不稳定),因为在微弧氧化过程中,试样表面预先形成了小的火花,不能得到均匀的MA O涂层[15]㊂石墨烯(G R)和氧化石墨烯(G O)具有优异的力学和耐腐蚀性能,不仅力学强度高,而且耐磨性优异[16-17]㊂T i O2颗粒具有优异的耐腐蚀性能[18-20]㊂本文以氟钛酸钾(K2T i F6)㊁六偏磷酸钠[(N a P O3)6]㊁氢氧化钠(N a O H)和三乙胺(T E A)组成的合适电解质,制备了含有M g2T i O4和G R/T i O2的MA O-G R/T i O2涂层㊂采用X R D㊁S E M和元素线扫描等手段研究了涂层的相结构㊁表面形貌和元素组成,并采用电化学阻抗法评价了涂层的耐蚀性㊂1实验1.1 G R/T i O2粉末的制备采用加压氧化法合成G O,采用溶胶-凝胶法制备G R/T i O2粉末㊂由于G O的亲水性和静电斥力,在水中形成了稳定的溶胶㊂具体制备方法:取5m L钛酸丁酯,与10m L冰乙酸均匀混合,然后加入30m L无水酒精进行稀释,分散搅拌均匀30m i n后得到溶液A;将G O超声分散在15m L蒸馏水中,超声浴2h,随后加入15m L无水酒精,并用稀硝酸调节p H值至2,得到溶液B㊂将溶液B缓慢加入到溶液A中,并在室温下搅拌3h,并陈化得到凝胶,随后将凝胶转入水热反应釜中,210ħ下恒温反应10h后自然冷却至室温,用去离子水将所得产物洗涤至中性,并烘干,即得到G R/T i O2粉末㊂220102021年第1期(52)卷*基金项目:四川省科技计划资助项目(18F Z J C00734)收到初稿日期:2020-06-03收到修改稿日期:2020-09-23通讯作者:马廷霞,E-m a i l:1499893831@q q.c o m 作者简介:余灏勋(1994 )男,成都人,硕士,主要从事新型复合材料制备研究㊂1.2复合涂层的制备将A Z31合金(M g-3%(质量分数)A l-0.8%(质量分数)Z n)试样切割成10mmˑ10mmˑ5mm,用100~1000#的S i C砂纸打磨㊂然后分别在乙醇和去离子水中超声清洗20m i n,最后在空气中干燥㊂采用功率为2k W的恒流电源,通过MA O法制备涂料㊂分别以镁合金基体和不锈钢板作为工作电极和对电极㊂为了制备含有G R/T i O2的MA O涂层,采用以下磷酸盐电解质进行一次处理:即由15g/L氟钛酸钾(K2T i F6),20g/L六偏磷酸钠[(N a P O3)6], 10g/L氢氧化钠(N a O H),3g/L G R/T i O2粉末和0.3g/L三乙胺(T E A)组成的电解质,使G R/T i O2粉末带负电荷,然后将电解质超声处理1h,随后连接电极,并将电极放入电解质中㊂两个电极之间的距离为2c m,在400V的固定外加电压下进行10m i n的一次微弧氧化反应㊂得到的复合涂层标记为MA O-G R/ T i O2涂层㊂采用相同的MA O工艺(磷酸盐电解质中没有G R/T i O2)制备的M g合金作为对照组,标记为MA O涂层㊂1.3样品的表征采用T T R I I IX射线衍射仪对制备的涂层相组成进行了X射线衍射分析,2θ值在10~85ʎ之间,步长增量为0.01ʎ,扫描速度为4ʎ/m i n;采用N I C O L E T F T-I R5700光谱仪对G O㊁G R/T i O2粉末及复合涂层进行F T-I R光谱测试;采用德国蔡司(型号:S U P R A-55)扫描电子显微镜对G R/T i O2粉末和复合涂层的表面形貌及元素组成进行研究㊂1.4电化学测量采用三电极技术在电化学工作站(C H I660E)上进行动电位极化实验㊂以复合涂层样品为工作电极,铂板为对电极,饱和甘汞电极(S E C)为参比㊂所有测试都在(37ʃ1)ħ的3.5%(质量分数)氯化钠溶液中进行㊂用1c m2的硅胶覆盖所有样品暴露的表面㊂在溶液中稳定1h后进行动电位极化试验,以确保开路电位是静态的㊂电位扫描速度为5m V/s,记录极化曲线㊂E I S的信号幅度为5m V,频率为0.01~ 10000H z㊂采用T a f e l外推和线性极化法,从动电位极化图中获取腐蚀电位(E c o r r)和腐蚀电流密度(i c o r r)㊂本文选择性地展示了极化曲线,所展示的极化曲线数据最接近每组样本的平均值㊂2结果与讨论2.1 G O和G R/T i O2粉末的表征2.1.1 F T-I R分析图1为G O和G R/T i O2粉末的F T-I R光谱图㊂由图1可知,G O曲线中3395c m-1处的宽吸收峰为-O H伸缩振动峰,2358c m-1处的伸缩振动对应C-O 键,1733c m-1处的伸缩振动对应C=O键, 1621c m-1位置的伸缩振动对应C=C键,1222c m-1位置的伸缩振动对应C-O-C键,1057c m-1位置的伸缩振动对应C-O H键;G R/T i O2曲线中,535c m-1处的吸收峰对应T i-O-T i键,而1733,1222和1057c m-1处峰强的减弱,说明G O在反应过程中被还原成了G R ㊂图1 G O和G R/T i O2粉末的F T-I R光谱图F i g1F T-I Rs p e c t r a o fG Oa n dG R/T i O2p o w d e r2.1.2S E M分析图2为G O和G R/T i O2粉末的S E M图㊂从图2 (a)可以看出,G O为片状多层结构,具有许多类似于波动丝绸的褶状㊂从图2(b)可以看出,T i O2颗粒分散在G R的片状表面,大部分G R表面可以被T i O2颗粒包裹住,颗粒大小为纳米级,表明T i O2纳米粒子可以成功地接枝到G R表面㊂图2 G O和G R/T i O2粉末的S E M图F i g2S E Mi m a g e s o fG Oa n dG R/T i O2p o w d e r s2.2 MA O-G R/T i O2涂层的表征2.2.1 X R D和元素线扫描分析图3为MA O-G R/T i O2涂层的X R D图谱㊂由图3可知,涂层X R D图谱中可以明显观察到18.6ʎ和29.5ʎ处的M g2T i O4对应峰;此外,还可以观察到明显的M g3(P O4)2㊁M g和M g O的对应峰,但是并未发现典型的T i O2峰,可能是因为T i O2峰和M g2T i O4峰有一定重叠而被掩盖,也有可能是T i O2含量太少㊂图4为MA O-G R/T i O2涂层截面元素的线扫描分析㊂从图4可以看出,以界面为分界线,涂层一侧T i㊁P和O元素高于基体一侧,基体一侧M g元素高于涂层一侧,而基体一侧A l元素只稍微高于涂层一侧,区别并不明显㊂这一元素分布和图3中MA O-G R/ T i O2涂层X R D图谱测试结果正好吻合㊂32010余灏勋等:镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能图3 MA O -G R /T i O 2涂层的XR D 图谱F i g 3X R D p a t t e r no fMA O -G R /T i O 2co a t i ng 图4 MA O -G R /T i O 2涂层截面元素的线扫描分析F i g 4L i n e s c a n n i n g a n a l ys i s o f s e c t i o n a l e l e m e n t s o f MA O -G R /T i O 2co a t i n g 2.2.2 S E M 分析图5展示了镁合金基体上MA O 和MA O -G R/T i O 2涂层的SE M 形貌㊂从图5可以看出,由于涂层生长不均匀,MA O 生长过程中会捕获熔融氧化物和气泡,MA O 涂层和MA O -G R /T i O 2涂层的表面均存在圆形孔隙通道,这是电解质与M g 合金基体接触的通道㊂由于在相对冷的电解质中,熔融氧化物是从数千度的温度下快速冷却的,所以在MA O 涂层和MA O -G R /T i O 2涂层上表面粗糙,并可以观察到微小裂纹㊂MA O -G R /T i O 2涂层表面并未观察到明显的G R /T i O 2材料,只是相比MA O ,表面更加粗糙㊂图5 MA O 和MA O -G R /T i O 2涂层的S E M 图F i g 5S E Mi m a g e s o fMA Oa n dMA O -G R /T i O 2co a t -i n gs 2.3 腐蚀行为评价图6为镁合金基体㊁M A O 涂层和M A O -G R /T i O 2涂层在N a C l 溶液中的典型动电位极化曲线㊂根据T a f e l 外推和线性极化法提取了电化学参数的平均值,结果如表1所示㊂由图6和表1可知,与镁合金基体相比,M A O 涂层和M A O -G R /T i O 2涂层都提高了腐蚀电位,说明涂层的稳定性和有效性优于镁合金基体㊂M A O -G R /T i O 2涂层的腐蚀电位相比镁合金基体和M A O 涂层,提高了48.3%和36.7%㊂这些结果表明,M A O -G R /T i O 2涂层可以显著提高M g 合金基体的耐蚀性能㊂图6 镁合金基体㊁MA O 涂层和MA O -G R /T i O 2涂层在Na C l 溶液中的动电位极化曲线F i g 6P o t e n t i o d yn a m i c p o l a r i z a t i o nc u r v e s o f m a g n e s i u m a l l o y ma t r i x ,MA O c o a t i n g a n d MA O -G R /T i O 2co a t i n g i nN a C l s o l u t i o n表1 镁合金基体㊁MA O 涂层和MA O -G R /T i O 2涂层材料的腐蚀特性分析结果T a b l e1A n a l ys i sr e s u l t so fc o r r o s i o nc h a r a c t e r i s t i c s o f m a g n e s i u m a l l o y m a t r i x ,MA O c o a t i n ga n dMA O -G R /T i O 2co a t i n g i nN a C l s o l u t i o n 试样腐蚀电位/V 腐蚀电流密度/A ㊃c m -2镁合金基体-1.3981.59ˑ10-5MA O 涂层-1.1423.12ˑ10-7MA O -G O /T i O 2涂层-0.7238.96ˑ10-83 结 论(1)通过溶胶-凝胶法可将纳米T i O 2接枝到GO 表面,但是接枝过程中,G O 被还原成了G R ,生成了G R /T i O 2粉末材料㊂(2)MA O -G R /T i O 2涂层主要由M g 2T i O 4相㊁M g 3(P O 4)2相㊁M g 和M g O 相组成㊂以界面为分界线,涂层一侧T i ㊁P 和O 元素高于基体一侧,基体一侧M g 元素高于涂层一侧,而基体一侧A l 元素只稍微高于涂层一侧㊂(3)MA O -G R /T i O 2涂层的腐蚀电位为-0.723V ,腐蚀电流密度为8.96ˑ10-8A /c m 2,相比镁合金基体和MA O 涂层,腐蚀电位提高了48.3%和36.7%,表明MA O -G R /T i O 2涂层可以显著提高镁合金基体的耐蚀性能㊂参考文献:[1] G u oK W.Ar e v i e wo fm a g n e s i u m /m a g n e s i u ma l l o ys c o r -420102021年第1期(52)卷r o s i o n [J ].R e c e n tP a t e n t so n C o r r o s i o nS c i e n c e ,2011,1(1):72-90.[2] Y a n g K H ,G e rM D ,H w uW H ,e t a l .S t u d y of v a n a d i u m -b a s e d c h e m i c a l c o n v e r s i o n c o a t i ng on t h e c o r r o s i o n r e s i s t -a n c e o fm a g n e s i u ma l l o y [J ].M a t e r i a l sC h e m i s t r y &P h ys -i c s ,2015,101(2-3):480-485.[3] H u a n g YS ,L i uH W.T E Ma n a l y s i s o nm i c r o -a r c o x i d e c o a t i n go n t h e s u r f a c e o fm a g n e s i u ma l l o y[J ].J o u r n a l o fM a t e r i a l sE n -g i n e e r i n g &Pe rf o r m a n c e ,2011,20(3):463-467.[4] J i a ng BL ,G eYF .M i c r o -a r c o x i d a t i o n (M A O )t o i m pr o v e t h e c o r r o s i o n r e s i s t a n c eo fm a g n e s i u m (M g )a l l o ys [J ].C o r r o s i o n P r e v e n t i o n o fM a g n e s i u m A l l o ys ,2013:163-196.[5] W a n g S ,L i uP .T h e t e c h n o l o g y o f p r e p a r i n gg r e e nc o a t i n gb yc o nd u c t i n g m i c r o -a r co x i d a t i o no n A Z 91D m a gn e s i u m a l l o y [J ].P o l i s hJ o u r n a l o fC h e m i c a lT e c h n o l o g y ,2016,18(4):36-40.[6] L iY ,L uF ,L iH L ,e t a l .C o r r o s i o n m e c h a n i s mo fm i c r o -a r co x i d a t i o nt r e a t e db i o c o m p a t i b l eA Z 31m a gn e s i u m a l -l o y i ns i m u l a t e db o d y f l u i d [J ].P r o gr e s s i n N a t u r a lS c i -e n c e :M a t e r i a l s I n t e r n a t i o n a l ,2014,24(5):516-522.[7] N i eR R ,Z h uF ,S h e nL R ,e t a l .E f f e c t so f f i l mt h i c k n e s so n t h e p h a s e c o m p o s i t i o n a n dm i c r o s t r u c t u r e p r o pe r t i e s of m i c r o -a r c o x i d a t i o n c o a t i ng [J ].J o u r n a l o fB i o m e d i c a lE n -g i n e e r i n g,2010,27(2):354-357.[8] Y a n g W ,X uD P ,G u oQ Q ,e t a l .I n f l u e n c eo f e l e c t r o l yt e c o m p o s i t i o no n m i c r o s t r u c t u r ea n d p r o p e r t i e so f c o a t i n gs f o r m e do n p u r eT i s u b s t r a t eb y mi c r oa r co x i d a t i o n [J ].S u r f a c e&C o a t i n g sT e c h n o l o g y,2018,349:522-528.[9] P a kSN ,Y a oZP ,J uKS ,e t a l .E f f e c t o f o r ga n i c a d d i t i v e s o n s t r u c t u r e a n d c o r r o s i o n r e s i s t a n c e o fMA Oc o a t i n g[J ].V a c u u m ,2018,151:8-14.[10] Z h a n g R F ,X i o n g G Y ,H uC Y.C o m p a r i s o no f c o a t i n gp r o p e r t i e so b t a i n e db y MA Oo nm a g n e s i u ma l l o y s i n s i l -i c a t ea n d p h y t i ca c i de l e c t r o l y t e s [J ].C u r r e n t A p pl i e d P h ys i c s ,2010,10(1):255-259.[11] M aY ,L i uN ,W a n g Y ,e t a l .Ef f e c t o f c h r o m a t ea d d i t i v e o nc o r r o s i o nr e s i s t a n c eo fMA Oc o a t i ng so n m a gn e s i u m a l l o ys [J ].J o u r n a l o f t h eC h i n e s eC e r a m i cS o c i e t y ,2011,39(9):1493-1497.[12] S o l d a t o v a E ,B o l b a s o vE ,K o z e l s k a y aA I ,e t a l .T h e e l a s t i c i t yo f c a l c i u m p h o s p h a t eM A Oc o a t i n g s c o n t a i n i n g di f f e r e n t c o n c e n -t r a t i o n s o f c h i t o s a n [J ].I O PC o n f e r e n c eS e r i e s M a t e r i a l sS c i -e n c e a n dE n g i n e e r i n g,2009,544:63-70.[13] G u oP Y ,W a n g N ,Q i nZS ,e ta l .E f f e c to fe l e c t r o l yt e c o m p o s i t i o no n g r o w t h m e c h a n i s m a n ds t r u c t u r eo fc e -r a m i cc o a t i n g so n p u r eT i b yp l a s m ae l e c t r o l yt i co x i d a -t i o n [J ].T r a n s a c t i o n sof M a t e r i a l s &H e a tT r e a t m e n t ,2013,34(7):181-186.[14] S a n k a r aN a r a y a n a nTSN ,P a r k I S ,L e eM H.S t r a t e gi e s t o i m p r o v e t h e c o r r o s i o n r e s i s t a n c e o fm i c r o a r c o x i d a t i o n (MA O )c o a t e d m a g n e s i u m a l l o y sf o rd e gr a d a b l ei m -p l a n t s :P r o s p e c t s a n d c h a l l e n g e s [J ].P r o gr e s s i n M a t e r i -a l sS c i e n c e ,2014,60:1-71.[15] W a n g C ,C h e nJ ,H e JH ,e t a l .E f f e c t o f e l e c t r o l yt e c o n -c e n t r a t i o no n t h e t r i b o l o g i c a l pe rf o r m a n c e o fMA Oc o a t -i ng s o na l u m i n u ma l l o y s [J ].F r o n t i e r so fCh e mi c a lS c i -e n c e a n dE n g i n e e r i n g,2020,12:1-7.[16] L i uS ,G uL ,Z h a oHC ,e t a l .C o r r o s i o n r e s i s t a n c e o f g r a ph e n e -r e i n f o r c e dw a t e r b o r n e e p o x y c o a t i n gs [J ].J o u r n a l o fM a t e r i a l s S c i e n c e&T e c h n o l o g y ,2016,32(05):425-431.[17] Z h a n g XR ,MaR N ,D u A ,e t a l .C o r r o s i o n r e s i s t a n c e o f o r g a n i c c o a t i n g b a s e do n p o l y h e d r a l o l i g o m e r i c s i l s e s qu i -o x a n e -f u n c t i o n a l i z e d g r a p h e n eo x i d e [J ].A p pl i e dS u r f a c e S c i e n c e ,2019,484:814-824.[18] D e ya b M A ,K e e r a ST.E f f e c t o f n a n o -T i O 2p a r t i c l e s s i z e o n t h e c o r r o s i o n r e s i s t a n c e o f a l k y d c o a t i n g[J ].M a t e r i a l s C h e m i s t r y &P h ys i c s ,2014,146(3):406-411.[19] A oN ,L i uD X ,W a n g SX ,e t a l .M i c r o s t r u c t u r ea n dt r i -b o l o g i c a lb e h a v i o ro fa T i O 2/h B N c o m p o s i t ec e r a m i c c o a t i n g fo r m e dv i am i c r o -a r co x i d a t i o no fT i -6A l -4Va l -l o y [J ].J o u r n a lo f M a t e r i a l s S c i e n c e &T e c h n o l o g y,2016,32(10):1071-1076.[20] M o m e n z a d e h M ,S a n j a b i S .T h e e f f e c t o fT i O 2n a n o pa r t i -c l e c o d e po s i t i o no n m i c r o s t r u c t u r ea n dc o r r o s i o nr e s i s t -a n c e o fe l e c t r o l e s s N i Pc o a t i n g [J ].M a t e r i a l s &C o r r o -s i o n ,2012,63(7):614-619.P r e pa r a t i o na n d c o r r o s i o n r e s i s t a n c e o fm i c r o -a r c o x i d e c e r a m i c c o a t i n g o nm a g n e s i u ma l l o y su r f a c e Y U H a o x u n ,MA T i n gx i a (S c h o o l o fM e c h a n i c a l E n g i n e e r i n g ,S o u t h w e s tP e t r o l e u m U n i v e r s i t y ,C h e n g d u610500,C h i n a )A b s t r a c t :MA O -G R /T i O 2co a t i n g w a s p r e p a r e d o n t h e s u r f a c e o fm a g n e s i u ma l l o y b y a d d i n g p o t a s s i u mf l u o r i d e t i t a n a t e a n dG R /T i O 2po w d e r i n t o t h e e l e c t r o l y t e o fm i c r o -a r c o x i d a t i o n r e a c t i o nb y m i c r o -a r c o x i d a t i o nm e t h o d .T h e s u r f a c em o r p h o l o g y a n d s t r u c t u r eo fG R /T i O 2po w d e rw e r e s t u d i e db y S E M a n dF T -I R.S E M ,X R Da n d e l e m e n t a l l i n e s c a n n i n g w e r eu s e d t o s t u d y t h e s u r f a c em o r p h o l o g y ,ph a s e s t r u c t u r e a n d e l e m e n t d i s t r i b u t i o no f MA O -G R /T i O 2c o a t i n g ,a n d t h e c o r r o s i o n r e s i s t a n c e o fMA O -G R /T i O 2co a t i n g w a s s t u d i e db y t h r e e -e l e c t r o d e t e c h n o l o g y .T h e r e s u l t s s h o w e d t h a tn a n oT i O 2co u l db e g r a f t e do n t o t h es u r f a c eo fG O b y s o l -g e lm e t h o dt o g e n e r a t eG R /T i O 2p o w d e r .MA O -G R /T i O 2c o a t i n g w a s m a i n l y c o m p o s e do f M g 2T i O 4p h a s e ,M g 3(P O 4)2p h a s e ,M g a n d M g O p h a s e .T a k i n g t h e i n t e r f a c ea s t h eb o u n d a r y ,T i ,Pa n d Oe l e m e n t so nt h ec o a t i n g si d e w e r eh i g h e r t h a n t h o s e o n t h e s u b s t r a t e s i d e ,a n dM g e l e m e n t s o n t h e s u b s t r a t e s i d ew e r e h i gh e r t h a n t h o s e o n t h e c o a t i n g s i d e .T h e c o r r o s i o n p o t e n t i a l o fMA O -G R /T i O 2co a t i n g w a s -0.723Va n d t h e c o r r o s i o n c u r r e n t d e n -s i t y w a s 8.96ˑ10-8A /c m 2.C o m p a r e dw i t hm a g n e s i u ma l l o y s u b s t r a t e a n dMA Oc o a t i n g ,t h e c o r r o s i o n p o t e n -t i a l o fMA O -G R /T i O 2c o a t i n g w a s i n c r e a s e db y 48.3%a n d 36.7%,w h i c h i n d i c a t e d t h a tMA O -G R /T i O 2co a t -i n g c o u l d s i g n i f i c a n t l y i m p r o v e t h e c o r r o s i o n r e s i s t a n c e o fm a g n e s i u ma l l o y su b s t r a t e .K e y w o r d s :m a g n e s i u ma l l o y ;m i c r o -a r c o x i d a t i o n ;c o m p o s i t e c o a t i n g;c o r r o s i o n r e s i s t a n c e 52010余灏勋等:镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能。

Cr_涂层锆合金事故容错燃料包壳材料研究进展

Cr_涂层锆合金事故容错燃料包壳材料研究进展

表面技术第52卷第12期研究综述Cr涂层锆合金事故容错燃料包壳材料研究进展严俊,廖业宏,彭振驯,王占伟,李思功,马海滨,薛佳祥,任啟森(中广核研究院有限公司 核燃料与材料研究所,广东 深圳 518000)摘要:自2011年日本福岛核事故后,事故容错燃料成为核电企业和相关科研机构的研究重点,旨在提升反应堆燃料系统的可靠性与安全性。

锆合金包壳表面涂层技术是事故容错燃料研发的短期目标之一,其中,Cr涂层锆合金包壳为当前的主要技术路线。

围绕涂层制备工艺、微观组织以及关键服役性能三方面,对Cr 涂层锆合金的相关研究进展进行了综述。

首先,对比介绍了锆合金表面金属Cr涂层制备工艺及其特点,涵盖了物理气相沉积、冷喷涂和3D激光熔覆等技术,同步介绍了国际核电巨头所采用的制备工艺及相关研发进展。

其次,简单阐述了Cr涂层微观组织特征,重点阐述了正常运行工况下Cr涂层锆合金高温高压水腐蚀性能、高温高压水微动磨蚀性能、高温力学行为和辐照行为,以及事故工况下该材料体系高温内压爆破行为、高温蒸气氧化-淬火行为等,并同步针对其微观辐照机制、高温氧化/腐蚀机制等进行了归纳和深入分析。

最后,对当前研究所存在的问题和未来发展方向进行了归纳分析。

关键词:事故容错燃料;Cr涂层锆合金;腐蚀;氧化;力学性能中图分类号:TG174.4 文献标识码:A 文章编号:1001-3660(2023)12-0206-19DOI:10.16490/ki.issn.1001-3660.2023.12.019Review on Cr-coated Zirconium Alloy Cladding for Accident Tolerant FuelYAN Jun, LIAO Ye-hong, PENG Zhen-xun, WANG Zhan-wei,LI Si-gong, MA Hai-bin, XUE Jia-xiang, REN Qi-sen(Institute of Nuclear Fuel and Materials, China Nuclear Power Technology Research Institute,Guangdong Shenzhen 518000, China)ABSTRACT: After the Fukushima nuclear accident in Japan in 2011, accident tolerant fuels (ATF) have become the research focus of nuclear power enterprises and related scientific research institutions, which aims to improve the reliability and safety of the nuclear reactors. The surface-modified Zr alloy cladding is a short-term goal for research and development of ATF and the Cr-coated Zr alloy cladding has become the current main technical route. Focusing on the preparation techniques, microstructural characteristics, and critical service performance, the related research of Cr-coated Zr alloy cladding was reviewed. Firstly, the various preparation techniques and characteristics of Cr coating on zirconium alloy surface were compared and introduced, including physical vapor deposition, cold spraying, and 3D laser and the preparation techniques and related research and development progress adopted by international nuclear power giants were introduced at the same time. Secondly, the microstructure of Cr coating was described and the corrosion performance, fretting and abrasion performance, high temperature收稿日期:2022-11-24;修订日期:2023-03-21Received:2022-11-24;Revised:2023-03-21基金项目:国家重点研发计划(2017YFB0702404)Fund:National Key Research and Development Program (2017YFB0702404)引文格式:严俊, 廖业宏, 彭振驯, 等. Cr涂层锆合金事故容错燃料包壳材料研究进展[J]. 表面技术, 2023, 52(12): 206-224.YAN Jun, LIAO Ye-hong, PENG Zhen-xun, et al. Review on Cr-coated Zirconium Alloy Cladding for Accident Tolerant Fuel[J]. Surface第52卷第12期严俊,等:Cr涂层锆合金事故容错燃料包壳材料研究进展·207·mechanical behavior and irradiation behavior of Cr-coated Zr alloy under normal operating conditions were emphatically expounded. Moreover, the internal pressure creep and burst behavior at high temperature, high-temperature steam oxidation and quenching behavior the Cr-coated Zr alloy cladding were elaborated. In addition, the mechanisms related with irradiation, oxidation, and corrosion were summarized and analyzed in depth. Finally, the existing problems and the future development directions for the current research were thoroughly summarized and prospected.KEY WORDS: ATF; Cr-coated Zr alloy; corrosion; oxidation; mechanical properties锆合金因具备热中子吸收截面小、耐高温水腐蚀性能优异、力学性能良好等特有的综合性能,被广泛用作反应堆核燃料包壳材料[1-10]。

等原子比高熵合金

等原子比高熵合金

等原子比高熵合金概述等原子比高熵合金(Equal Atomic Ratio High Entropy Alloys,EARHEA)是一种新型的合金材料,具有非常特殊的组成和结构。

它由多种元素按照等原子比混合而成,形成均匀的固溶体结构,具有高度的混乱度和无序性。

这种特殊的结构赋予了等原子比高熵合金出色的力学性能、耐腐蚀性能和高温稳定性,在材料科学领域引起了广泛关注。

起源与发展等原子比高熵合金最早由台湾清华大学教授鲍振华团队于2004年提出。

他们将传统合金中通常只含有少量添加元素的概念推广到了多元体系,并将不同元素以等原子比混合,制备出了第一批等原子比高熵合金样品。

随后,这个新颖的材料概念迅速引起了全球范围内科学家们的兴趣和探索。

经过近二十年的发展,研究人员已经成功制备出了许多不同成分、不同组织结构和不同性能的等原子比高熵合金。

目前,已经有越来越多的学者和工程师开始关注等原子比高熵合金在材料科学、航空航天、能源等领域的应用潜力。

组成与结构等原子比高熵合金的最显著特点是其组成和结构的多样性。

传统合金通常由主要元素和少量添加元素组成,而等原子比高熵合金则由多种元素按照等原子比混合而成。

这种均匀混合使得每个原子都能找到相对稳定的位置,形成一个具有高度无序性和混乱度的固溶体结构。

以五元高熵合金为例,假设其由元素A、B、C、D和E组成,那么每个元素在合金中所占比例都是1/5。

这种均匀分布使得合金中不存在主要相或晶粒边界,从而提高了材料的强度和韧性。

此外,等原子比高熵合金还可以通过调节不同元素之间的含量来调控其性能。

例如,在含有两种不同晶体结构的等原子比高熵合金中,可以通过调节不同晶体结构之间的相互作用来实现优化材料性能。

性能与应用等原子比高熵合金具有出色的力学性能、耐腐蚀性能和高温稳定性,使其在多个领域具有广泛的应用潜力。

力学性能等原子比高熵合金的均匀混合结构赋予了其出色的力学性能。

相比于传统合金,等原子比高熵合金表现出更高的强度、硬度和韧性。

压力对CrSi2弹性及弹性各向异性影响的研究

压力对CrSi2弹性及弹性各向异性影响的研究

压力对 CrSi2弹性及弹性各向异性影响的研究摘要:本文采用密度泛函理论计算了压力下CrSi2的声子谱、电子结构、弹性常数和弹性各向异性。

结果表明,CrSi2的晶体结构参数随着压力的增加而减小。

声子色散曲线在不同外加压力下没有出现虚频,说明它们都是动力稳定的。

弹性常数也符合Born准则,表明机械学稳定性。

CrSi2的弹性常数、体积模量、剪切模量、杨氏模量、泊松比和B/G都随压力的增加而增加,表明适当的外界压力可以加强CrSi2的延展性,从而让其在工业应用上有望成为具有良好前景的可塑性金属合金的备选材料。

热容量随着压力的增大而轻微的减小。

关键词:密度泛函理论;弹性性能;各向异性1.引言随着科技的发展,现代工业对材料的强度与延展性的要求逐步提升,过渡金属铬化物因其熔化温度高、化学稳定性良好、热导率高、优益的耐高温抗氧化的性能以及相对较低的密度,令其有望作用于高温结构[1-3],这也是近几年的研究热点之一。

CrSi2可采用自蔓延高温合成法[4]和水冷铜模激光炉制备[5]。

CrSi2在室温下具有较低的断裂韧性,在高温(>1200℃)下强度和蠕变抗力有限,但是压力对于弹性各向异性的影响力尚不清楚[6]。

弹性性能与材料的热容量、热膨胀系数等基本性能有着密切的联系。

这些特征可以通过第一性原理[7]方法得到。

在以往的文献中,许多研究者在运用实验测量和密度泛函理论计算相互使用的方法来研究CrSi2的晶体结构、力学性能、电子结构、光学性质[6,7,8,9]。

为更好地理解压力下CrSi2 的弹性各向异性从而在高压环境中应用是极为重要的。

本文系统地研究了CrSi2在高压下的结构、声子谱、弹性性能及弹性各向异性,以期探索外界压力对CrSi2弹性性能及弹性各向异性的影响,从而开发设计出具有抗压力的高温合金材料。

2计算方法本文基于密度泛函理论中的赝势平面波的第一性原理方法,采用剑桥系列总能量包(CASTEP)代码[10-14]进行模拟计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Microstructure and oxidation behavior of NiCoCrAl/YSZ microlaminates produced by EB –PVDGuodong Shi a ,⁎,Zhi Wang a ,Mincong Liu a ,Jun Liang b ,Zhanjun Wu aa State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024,China bCenter for Composite Materials,Harbin Institute of Technology,Harbin,150001,ChinaA R T I C L E D A T AA B S T R A C TArticle history:Received 24May 2011Received in revised form 21July 2011Accepted 30July 2011Two NiCoCrAl/ZrO 2–Y 2O 3microlaminates (A and B)were fabricated by electron beam physical vapor deposition,which were different in layer number and metal-layer thickness.The layer number was 20and 26,respectively.And the metal-layer thickness was 35and 14μm,respectively.The microstructure and isothermal oxidation behavior were investigated.During the exposure in air at 1000°C for 100h,the t to m phase transformation occurred in the ceramic layers,and oxide scales formed at the surfaces of not only the outer metal-layers but also the internal metal-layers for the microlaminates.The oxidation rate of microlaminate B was greater than that of microlaminate A.Their overall mass gains were significantly dependent on the number and thickness of the metal-layers.The oxidation products were also influenced by metal-layer thickness.Oxide scales of the 35μm thick metal-layer microlaminate (A)consisted mainly of α-Al 2O 3and θ-Al 2O 3,while the oxidation products of the 14μm thick metal-layer microlaminate (B)were the mixture of α-Al 2O 3,θ-Al 2O 3and Cr 2O 3.It was also found that the growth of the oxide scale adjacent to the top YSZ layer was controlled by the oxygen diffusion,and that the growth of the oxide scale adjacent to the internal YSZ layer was controlled by the metal ionic diffusion.©2011Elsevier Inc.All rights reserved.Keywords:Microstructure OxidationMetal/ceramic laminates Physical vapor deposition1.IntroductionLaminated structures are increasingly being considered for various applications because of the improving capability to tailor the fabrication of these structures to meet specific property needs [1].Especially for the microlaminate with micron layer thickness,the small size scales lead to increases in the material strength due to various strengthening mechanisms [2].Metal/ceramic microlaminates possess superior high tem-perature creep resistance compared to metals;simultaneously they have better toughness and structural integrity compared to monolithic ceramics [3].Therefore,metal/ceramic microlami-nates have been investigated as potential structural materials for high temperature applications in the aerospace industry [1].In the applications these materials would be exposed not only to severe mechanical stresses,but also to aggressive gasses resulting in oxidation and corrosion.Many researchers have reported the mechanical properties of the ductile/brittle micro-laminates,such as deformation and fracture process [4–8].However,a detailed investigation into the high-temperature oxidation behavior of these materials has not been publicly reported.In the present work,the isothermal oxidation of two NiCoCrAl/ZrO 2–Y 2O 3(YSZ)microlaminates was carried out at 1000°C for 100h.The effects of the number and thickness as well as position of the metal layers on the oxidation behavior were discussed.Furthermore,the oxidation mechanism of the microlaminates was investigated.2.ExperimentalTwo microlaminates (microlaminate A and B)with alternating layers of NiCoCrAl and YSZ were produced by electron beam physical vapor deposition (EB –PVD).The ingots of ZrO 2–8Y 2O 3M A T E R I A L S C H A R A C T E R I Z A T I O N 62(2011)1066–1070⁎Corresponding author.Tel./fax:+8641184706791.E-mail address:gdshi@ (G.Shi).1044-5803/$–see front matter ©2011Elsevier Inc.All rights reserved.doi:10.1016/j.matchar.2011.07.018a v a i l ab l e a t w w w.sc i e n c ed i re c t.c o mw w w.e l s e v i e r.c o m /l o c a t e /m a t c h a r(mol%)and Ni –20Co –12Cr –4Al (wt.%)were evaporated alter-nately to produce the microlaminates and the layer-thicknesses were controlled by their deposition time.Following deposition the microlaminates were removed from the substrates.Micro-laminate A had 10NiCoCrAl layers with thickness of 35μm and 10YSZ layers.Among the YSZ ceramic layers,the top YSZ layer was 6μm thick,and the other 9internal YSZ layers were 1μm thick.Microlaminate B consisted of 13NiCoCrAl layers with thickness of 14μm,12internal YSZ layers having thickness of 1μm and a top YSZ layer.But the top YSZ layer of microlaminate B was only 0.3μm thick due to an accidental trouble of the EB –PVD equipment.Rectangular coupons of 10×10mm 2were cut by linear cutting machine.The isothermal oxidation tests were performed in an electrical resistance furnace at 1000°C in dry air up to 100h.After isothermal oxidation,the specimens were left to cool down out of the furnace and,then,weighed.Character-ization of the composition and structure of the oxide scales was performed by scanning electron microscopy equipped with an energy dispersive X-ray microanalysis system.Phase identifi-cation of the oxidation products was performed by X-ray diffraction.3.ResultsFig.1shows the oxidation kinetics curves for the microlami-nates at 1000°C.The mass gain of microlaminate B was higher than that of microlaminate A.And the gap of the mass gain between the microlaminates increased with the increasing oxidation time.After 100h of oxidation,the oxidation mass gain of microlaminate B was 4times higher than that of microlaminate A.The thinner top YSZ layer having the lower diffusion resistance of oxygen was one of the factors resulting in the higher mass gain of microlaminate B.Fig.2shows the X-ray diffraction patterns for the as-deposited microlaminate samples and the samples suffering 100h isothermal exposure in air at 1000°C.For the as-deposited microlaminates,the YSZ layers were mostly composed of metastable tetragonal phase.After 100h exposure in air at 1000°C,the t to m transformation in the YSZ layers was observed.According to the formula of Toraya et al.[9],the volume fraction of the m -ZrO 2(V m )was calculated by measuringthe intensities of (111)and 111ÀÁreflections of the monoclinic phase and of the (111)reflection of the tetragonal phase:V m =1:311X m 1+0:311X mð1ÞX m =I m 111ðÞ+I m 111ÀÁI m 111ðÞ+I m ÀÁ+I t 111ðÞð2Þwhere X m is the integrated intensity ratio,I m and I t are the peak intensities of the m -ZrO 2and t -ZrO 2,respectively.The volume fractions of m phase were 0.30and 0.36for the microlaminates A and B,respectively.It was reported that the t to m transforma-tion was affected not only by the component,but also by the grain size and the residual stress for YSZ layers [10,11].Since the grain size and the residual stress depended mostly on the layer thickness of the microlaminates,the difference in the m phase fraction should be attributed to the difference in the layer thickness between the two microlaminates.For the NiCoCrAl layers,the different oxidation products were formed during 100h exposure in air at 1000°C,which were related to the layer-thickness,as shown in Fig.2.Oxide scales of the 35μm thick metal-layer microlaminate (microlaminate A)consisted mainly of α-Al 2O 3andθ-Al 2O 3,while the oxidation products of the 14μm thick metal-layer microlaminate (microlaminate B)wereFig.1–Oxidation kinetics curves of the microlaminates at 1000°C.Fig.2–XRD patterns for:a)microlaminate A and b)microlaminate B.1067M A T E R I A L S C H A R A C T E R I Z A T I O N 62(2011)1066–1070the mixture of α-Al 2O 3,θ-Al 2O 3and Cr 2O 3.This indicated that the metal-layer thickness of the microlaminates had an effect on their selective oxidation behavior.Fig.3shows cross-sectional SEM micrographs of the microlaminates suffering 100h isothermal exposure in air at 1000°C.The several microns thick oxide scales,the thermally grown oxides (TGO),were observed at the in-terfaces between the top YSZ layers and the NiCoCrAl layers.But the oxide scales were not obvious at the interfaces between the internal YSZ/NiCoCrAl layers.However,EDX results suggested that the surfaces of the internal metal-layers of the microlaminates were also oxidized,as shown in Fig.4.This indicated that the oxidation rate was a function of the layer-interface number of the microlaminates.At the same time,EDX results further confirmed the oxidation products identified by XRD.For specimen A,only Al participated in oxidation reaction during 100h oxidation.For specimen B,Cr was also oxidized besides Al after 5h oxidation,but on other elements except Al and Cr partici-pated in oxidation reaction during 100h oxidation.After 100h oxidation,Al contents in the internal unox-idized zones of the metal-layers of microlaminates A and B were determined by EDX.The Al content for microlaminate B was about 0.36wt.%,much less than the one (2.70wt.%)for microlaminate A.This indicated that Al in the metal layers of microlaminate B was more easily depleted than that of microlaminate A during oxidation due to the relatively low total amount of Al element in the relatively thin individual metal layer.4.DiscussionIn general,the oxidation of bulk materials occurs on the surfaces.However,it was found from the present work that oxidation also occurred at the interfaces between the internal NiCoCrAl/YSZ layers for the microlaminates at 1000°C.This indicated that oxygen could easily diffuse through the ceramic layers to the surfaces of the internal metal layers.Two mechanisms have been proposed for transferring oxygen through zirconia coat-ings:ionic diffusion from the crystalline structure of ZrO 2and gas penetration through short circuit paths like grain bound-aries,pores and microcracks,which the latter plays a major role [12–14].The YSZ layers produced by EB –PVD had segmented columnar structures,as shown in Fig.5.As a result,oxygen could easily diffuse into the YSZ layers and penetrate along the intercolumnar gaps up to the ceramic/metal interfaces,oxidiz-ing the metal layers.Oxygen diffused not only into the top YSZ layers from the edges and surfaces of the specimens,but also into the internal YSZ-layers from the edges of the specimens.Therefore,the total oxidized surface areas and oxidation rates of the specimens increased with the increasing layer number.This was one of the reasons why the oxidation rate of the microlaminate B was higher than that of microlaminate A.As shown in Fig.4a,the Al peaks spanned the internal ceramic layers,indicating the existence of oxidation products of metal layers in the internal YSZ layers.However,the metal oxidation products were not found in the top YSZ layers.This was believed to be a result of the different growing direction of the oxide scales between the outer metal-layers and the internal metal-layers during the high temperature oxidation.In general,the growth rate of TGO is dominated by the diffusion of the negative and positive ions.When TGO grew outward under the condition of thermodynamic equilibrium,the diffusion law for the metal ions can be described by [15]:C W Mdh o=D M C ′M −C W M ð3Þwhere D M is the diffusion coefficient of the metal ions in theTGO,h is the thickness of TGO,t is the time of TGO growth,C ′Mand C ″Mare the concentration of the metal ions at oxide –metal interface and gas –oxide interface,respectively.Let k o =D MC ′M −C W M C WMð4ÞThus,the outward growth rate of the TGO can be expressed as:dh o dt =k ohð5Þwhere k o is the outward growth rate constant for the TGO.Likewise,the inward growth rate of the TGO can be expressed as:dh i dt =ki h ð6Þk i =D OC W O −C ′O C′Oð7Þwhere k i is the inward growth rate constant for the TGO,D O isthe diffusion coefficient of the oxygen ions in the TGO,C ′Oand Fig.3–Cross-sectional micrographs of a)microlaminate A andb)microlaminate B after exposure in air at 1000°C for 100h.1068M A T E R I A L S C H A R A C T E R I Z A T I O N 62(2011)1066–1070C ″Oare the oxygen concentration at oxide –metal interface and gas –oxide interface,respectively.When k i was larger much than k o ,the inward growth was dominant for the TGO.When k i was smaller much than k o ,the TGO grew outward mainly.For the outer metal-layer and the internal metal-layer,initial concentration of the metal ions was equal;however,the concentration of oxygen arriving at the gas –oxide interfaces was different.Due to the larger cross sectional area and smaller length of oxygen diffusion path,the oxygen diffused more easily in the top YSZ layer.As a result,the oxygen concentration was greater at the interface between the top YSZ layer and the adjacent TGO,and k i was larger.Thus,the TGO adjacent to the top YSZ layer grew mainly toward the NiCoCrAl layer.However,the oxygen concentra-tion was lower at the interfaces between the internal YSZ layers and the adjacent TGO layers,and k i was smaller,because of the smaller cross sectional area and larger length of oxygen diffusion paths in the internal YSZ layers.As a result,the TGO layers adjacent to the internal YSZ layers grew mainly toward the YSZ layers.The results suggested that the oxide growth was controlled by the oxygen diffusion for TGO adjacent to the top YSZ layer,and was controlled by themetal ionic diffusion for TGO adjacent to the internal YSZ layer.Thus it was reasonable to deduce that the oxidation rate of the outer metal-layer adjacent to the top YSZ layer was greater than that of the internal metal-layer.Furthermore,the oxidation products were different for the two microlaminates.The Al 2O 3layer was easiest to form during oxidation of the NiCoCrAl alloy due to selective oxidation.The selective oxidation of Al in NiCoCrAl alloys could be described by Wanger's theory [16].In order to keep Al 2O 3layers stable,the following condition must be satisfied:J Al ≥J ′A 1ð8Þwhere J Al is the flux of aluminum ions transported from theNiCoCrAl alloy to the interface of oxide scale/alloy;and J ′Alis the flux of aluminum ions transported outward in the oxide scale.If there is no sufficient aluminum transported to theinterface of oxide scale/alloy (namely J Al <J ′Al),Al 2O 3layer will be not protective,and other elements will be oxidized in the NiCoCrAl alloy.When the metal-layers of the microlaminates were thin-ner,Al in the metal layers was more easily depleted,aluminum transported to the interface of oxide scale/alloy was easier to become insufficient,and the single and dense Al 2O 3layers were harder to form during high-temperature oxidation.This agreed with the results obtained from the present work:microlaminate A with relatively thicker metal-layers formed only Al 2O 3oxide scales,while microlaminate B with relatively thinner metal-layers formed the oxide scales consisting of Al 2O 3and Cr 2O 3.In general,Al 2O 3layers were very dense and able to prevent oxygen ion and metal ion from diffusing,decreasing the oxidation rates of the alloys.While the oxide layers of Cr or Ni (Co)were relatively loose and easy to crack,resulting in the decreasing oxidation resistance of the alloys [17].Therefore,the unstable Al 2O 3layers and the oxidation of Cr element arising from the lower thickness of the NiCoCrAl layers was also one of the reasons causing the greater oxidation rate for microlaminateB.Fig.4–Element distribution of cross-sections of a)microlaminate A after exposure in air at 1000°C for 100h,of b)and c)microlaminate B after exposure in air at 1000°C for 5h and for 100h,respectively.Fig.5–Cross-sectional microstructure of the EB –PVD YSZ layer.1069M A T E R I A L S C H A R A C T E R I Z A T I O N 62(2011)1066–10705.ConclusionDuring exposure in air at1000°C,the t to m phase transforma-tion occurred in the YSZ layers.After100h high-temperature exposure,the volume fractions of m phase reached0.30and0.36 for the microlaminates A and B,respectively.The segmented columnar structures of the YSZ layers resulted in that oxygen could easily diffuse into the YSZ layers from the edges of the microlaminate specimens and could penetrate along the ceramic layers.As a result,oxide scales formed at the surfaces of not only the outer metal-layers but also the internal metal-layers.The oxidation products of the two microlaminates were different,which was related to the thickness of the NiCoCrAl layer.The oxide scales of microlaminate A with35μm thick metal-layers consisted mainly ofα-Al2O3andθ-Al2O3,while the oxidation products of microlaminate B with14μm thick metal-layers were the mixture ofα-Al2O3,θ-Al2O3and Cr2O3.Therefore, the number and thickness of metal-layers were the important factors influencing the oxidation behavior for the microlami-nates.And the microlaminate having more layers and less metal-layer thickness had the greater oxidation rate.Further-more,it was also found that the growth of the oxide scale adjacent to the top YSZ layer was controlled by the oxygen diffusion,and that the growth of the oxide scale adjacent to the internal YSZ layer was controlled by the metal ionic diffusion.AcknowledgmentsFinancial support was from the National Natural Science Foundation of China(NSFC,project grant51002019)and the Fundamental Research Funds for the Central Universities.R E F E R E N C E S[1]Was GS,Foecke T.Deformation and fracture inmicrolaminates.Thin Solid Films1996;286:1–31.[2]Heathcote J,Odette GR,Lucas GE,Rowe RG,Skelly DW.On themicromechanics of low temperature strength and toughness of intermetallic/metallic microlaminate composites.ActaMater1996;44(2):4289–99.[3]Agrawa P,Sun CT.Fracture in metal–ceramic composites.Compos Sci Technol2004;64:1167–78.[4]Huang Y,Zhang HW.The role of metal plasticity andinterfacial strength in the cracking of metal/ceramiclaminates.Acta Metall Mater1995;43(4):1523–30.[5]Shaw MC,Clyne TW,Cocks ACF,Fleck NA,Pateras SK.Cracking patterns in metal–ceramic laminates:effects ofplasticity.J Mech Phys Solids1996;44(5):801–21.[6]Price RD,Jiang FC,Kulin RM,Vecchio KS.Effects of ductilephase volume fraction on the mechanical properties ofTi–Al3Ti metal-intermetallic laminate(MIL)composites.Mater Sci Eng A2011;528:3134–46.[7]Markaki AE,Clyne TW.Energy absorption during failure oflayered metal foam/ceramic composites.Mater Sci Eng A2002;323:260–9.[8]Fiscina JE,Gonzalez-Oliver CJR,Esparza DA.The sinteringkinetics of Ag–Y1Ba2Cu3O7-δlaminates and the interfacialmetal–ceramic reaction.Appl Supercond1995;3(5):277–87. [9]Toraya H,Yoshimura M,Somiya S.Calibration curve forquantitative analysis of the monoclinic-tetragonal ZrO2system by X-ray diffraction.J Am Ceram Soc1984;67:111–9.[10]Lange FF.Transformation toughening;part3:experimentalobservations in the ZrO2–Y2O3system.J Mater Sci1982;17:240–6.[11]Matsui M,Soma T,Oda I.Stress induced transformation andplastic deformation of Y2O3-containing tetragonal zirconiapolycrystals.Adv Ceram1984;12:198–202.[12]Mohsen S,Abbas A,Akira K.Microstructural analysis of YSZand YSZ/Al2O3plasma sprayed thermal barrier coatings after high temperature oxidation.Surf Coat Technol2008;202:3233–8.[13]Park JH,Kim JS,Lee KH,Song YS,Kang MC.Effects of the lasertreatment and thermal oxidation behavior ofCoNiCrAlY/ZrO2–8wt.%Y2O3thermal barrier coating.J Mater Process Technol2008;201:331–5.[14]Thomas KGS,Hertter M.Improved oxidation resistance ofthermal barrier coatings.Surf Coat Technol1999;120–121:84–8.[15]Stott FH.The protective action of oxide scales in gaseousenvironments at high temperatures.Rep Prog Phys1987;50: 861–913.[16]Schulz U,Menzebach M,Leyens C,Yang YQ.Influence ofsubstrate material on oxidation behavior and cyclic lifetime of EB–PVD TBC systems.Surf Coat Technol2001;146–147:117–23.[17]Lee EY,Biedrman RR,Sisson RD.Diffusional interactions andreactions between a partially stabilized zirconia thermalbarrier coating and the NiCrAlY bond coat.Mater Sci Eng A 1989;121:467–73.1070M A T E R I A L S C H A R A C T E R I Z A T I O N62(2011)1066–1070。

相关文档
最新文档