实验高中高三数学11月考试卷理科数学

合集下载

利辛县实验中学2018-2019学年高三上学期11月月考数学试卷含答案

利辛县实验中学2018-2019学年高三上学期11月月考数学试卷含答案

利辛县实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下列函数中,既是奇函数又是减函数的为( )A .y=x+1B .y=﹣x 2C .D .y=﹣x|x|2. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为()A .(0,4)B .[0,4)C .(0,5]D .[0,5]3. 已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l4. 阅读下面的程序框图,则输出的S=()A .14B .20C .30D .555. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=6. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则的值是()m nA .10B .11C .12D .13班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.7. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( )A .1B .2C .3D .48. 设函数,其中,若存在唯一的整数,使得,则的()()21xf x e x ax a =--+1a <()0f t <取值范围是( )A .B .C .D .3,12e ⎡⎫-⎪⎢⎣⎭33,24e ⎡⎫-⎪⎢⎣⎭33,24e ⎡⎫⎪⎢⎣⎭3,12e ⎡⎫⎪⎢⎣⎭1111]9. 设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2C.1±或2D .2±或-110.(+)2n (n ∈N *)展开式中只有第6项系数最大,则其常数项为()A .120B .210C .252D .4511.复数z=(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限12.sin570°的值是( )A .B .﹣C .D .﹣二、填空题13.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g (x )(a >0且a ≠1),+=.若数列{}的前n 项和大于62,则n 的最小值为 .14.椭圆+=1上的点到直线l :x ﹣2y ﹣12=0的最大距离为 . 15.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .16.设满足约束条件,则的最大值是____________. ,y x 2110y xx y y ≤⎧⎪+≤⎨⎪+≥⎩3z x y =+17.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.18.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .三、解答题19.设函数f (x )=|x ﹣a|﹣2|x ﹣1|.(Ⅰ)当a=3时,解不等式f(x)≥1;(Ⅱ)若f(x)﹣|2x﹣5|≤0对任意的x∈[1,2]恒成立,求实数a的取值范围.20.已知cos(+θ)=﹣,<θ<,求的值.21.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求二面角F﹣BE﹣D的余弦值;(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.22.已知圆C的圆心在射线3x﹣y=0(x≥0)上,与直线x=4相切,且被直线3x+4y+10=0截得的弦长为.(Ⅰ)求圆C的方程;(Ⅱ)点A(1,1),B(﹣2,0),点P在圆C上运动,求|PA|2+|PB|2的最大值.23.命题p :关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立,q :函数f (x )=(3﹣2a )x 是增函数.若p ∨q 为真,p ∧q 为假.求实数a 的取值范围.24.(本小题满分12分)已知函数.21()(3)ln 2f x x a x x =+-+(1)若函数在定义域上是单调增函数,求的最小值;()f x (2)若方程在区间上有两个不同的实根,求的取值范围.21()()(4)02f x a x a x -+--=1[,]e e利辛县实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:y=x+1不是奇函数;y=﹣x2不是奇函数;是奇函数,但不是减函数;y=﹣x|x|既是奇函数又是减函数,故选:D.【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.2.【答案】B【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},∴f(x1)=f(f(x1))=0,∴f(0)=0,即f(0)=m=0,故m=0;故f(x)=x2+nx,f(f(x))=(x2+nx)(x2+nx+n)=0,当n=0时,成立;当n≠0时,0,﹣n不是x2+nx+n=0的根,故△=n2﹣4n<0,故0<n<4;综上所述,0≤n+m<4;故选B.【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.3.【答案】D【解析】解:由m⊥平面α,直线l满足l⊥m,且l⊄α,所以l∥α,又n⊥平面β,l⊥n,l⊄β,所以l∥β.由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,与m,n异面矛盾.故α与β相交,且交线平行于l.故选D.【点评】本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.4. 【答案】C【解析】解:∵S 1=0,i 1=1;S 2=1,i 2=2;S 3=5,i 3=3;S 4=14,i 4=4;S 5=30,i=5>4退出循环,故答案为C .【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题. 5. 【答案】C【解析】解:对于A ,函数y=在(﹣∞,+∞)上是减函数,∴不满足题意;对于B ,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;对于C ,函数y=lnx 在(0,+∞)上是增函数,∴满足题意;对于D ,函数y=在(0,+∞)上是减函数,∴不满足题意.故选:C .【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目. 6. 【答案】C【解析】由题意,得甲组中,解得.乙组中,78888486929095887m +++++++=3m =888992<<所以,所以,故选C .9n =12m n +=7. 【答案】B【解析】解:∵M ∩{1,2,4}={1,4},∴1,4是M 中的元素,2不是M 中的元素.∵M ⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B . 8. 【答案】D 【解析】考点:函数导数与不等式.1【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令将函数变为两个函()0f x =数,将题意中的“存在唯一整数,使得在直线的下方”,转化为()()()21,xg x e x h x ax a =-=-()g t ()h x 存在唯一的整数,使得在直线的下方.利用导数可求得函数的极值,由此可求得的取值()g t ()h x ax a =-m 范围.9. 【答案】D 【解析】试题分析:当公比1-=q 时,0524==S S ,成立.当1-≠q 时,24,S S 都不等于,所以42224==-q S S S , 2±=∴q ,故选D.考点:等比数列的性质.10.【答案】 B 【解析】【专题】二项式定理.【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n ,可求常数项.【解答】解:由已知(+)2n (n ∈N *)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5﹣=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n ,利用通项求特征项.11.【答案】C【解析】解:z====+i ,当1+m>0且1﹣m>0时,有解:﹣1<m<1;当1+m>0且1﹣m<0时,有解:m>1;当1+m<0且1﹣m>0时,有解:m<﹣1;当1+m<0且1﹣m<0时,无解;故选:C.【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.12.【答案】B【解析】解:原式=sin(720°﹣150°)=﹣sin150°=﹣.故选B【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.二、填空题13.【答案】 1 .【解析】解:∵x为实数,[x]表示不超过x的最大整数,∴如图,当x∈[0,1)时,画出函数f(x)=x﹣[x]的图象,再左右扩展知f(x)为周期函数.结合图象得到函数f(x)=x﹣[x]的最小正周期是1.故答案为:1.【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用. 14.【答案】 4 .【解析】解:由题意,设P(4cosθ,2sinθ)则P到直线的距离为d==,当sin(θ﹣)=1时,d取得最大值为4,故答案为:4.15.【答案】 {0,1} .【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用. 16.【答案】73【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点处取得最大值为.12,33A ⎛⎫⎪⎝⎭73考点:线性规划.17.【答案】 18.2 【解析】解:∵某城市近10年居民的年收入x和支出y之间的关系大致是=0.9x+0.2,∵x=20,∴y=0.9×20+0.2=18.2(亿元).故答案为:18.2.【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.18.【答案】 2 .【解析】解:∵f(x)是定义在[﹣2a,3a﹣1]上奇函数,∴定义域关于原点对称,即﹣2a+3a﹣1=0,∴a=1,∵函数为奇函数,∴f(﹣x)==﹣,即b•2x﹣1=﹣b+2x,∴b=1.即a+b=2,故答案为:2.三、解答题19.【答案】【解析】解:(Ⅰ)f(x)≥1,即|x﹣3|﹣|2x﹣2|≥1x时,3﹣x+2x﹣2≥1,∴x≥0,∴0≤x≤1;1<x<3时,3﹣x﹣2x+2≥1,∴x≤,∴1<x≤;x≥3时,x﹣3﹣2x+2≥1,∴x≤﹣2∴1<x≤,无解,…所以f(x)≥1解集为[0,].…(Ⅱ)当x∈[1,2]时,f(x)﹣|2x﹣5|≤0可化为|x﹣a|≤3,∴a﹣3≤x≤a+3,…∴,…∴﹣1≤a≤4.…20.【答案】【解析】解:∵<θ<,∴+θ∈(,),∵cos(+θ)=﹣,∴sin(+θ)=﹣=﹣,∴sin(+θ)=sinθcos+cosθsin=(cosθ+sinθ)=﹣,∴sinθ+cosθ=﹣,①cos(+θ)=cos cosθ﹣sin sinθ=(cosθ﹣cosβ)=﹣,∴cosθ﹣sinθ=﹣,②联立①②,得cosθ=﹣,sinθ=﹣,∴====.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.21.【答案】【解析】【分析】(I)由已知中DE⊥平面ABCD,ABCD是边长为3的正方形,我们可得DE⊥AC,AC⊥BD,结合线面垂直的判定定理可得AC⊥平面BDE;(Ⅱ)以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF 和平面BDE的法向量,代入向量夹角公式,即可求出二面角F﹣BE﹣D的余弦值;(Ⅲ)由已知中M是线段BD上一个动点,设M(t,t,0).根据AM∥平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置.【解答】证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC.因为ABCD是正方形,所以AC⊥BD,从而AC⊥平面BDE.…(4分)解:(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D﹣xyz如图所示.因为BE与平面ABCD所成角为600,即∠DBE=60°,所以.由AD=3,可知,.则A(3,0,0),,,B(3,3,0),C(0,3,0),所以,.设平面BEF的法向量为=(x,y,z),则,即.令,则=.因为AC⊥平面BDE,所以为平面BDE的法向量,.所以cos.因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).则.因为AM∥平面BEF,所以=0,即4(t﹣3)+2t=0,解得t=2.此时,点M坐标为(2,2,0),即当时,AM∥平面BEF.…(12分)22.【答案】【解析】解:(Ⅰ)设圆C的方程为(x﹣a)2+(y﹣b)2=r2(r>0)…圆心在射线3x﹣y=0(x≥0)上,所以3a﹣b=0…①.…圆与直线x=4相切,所以|a﹣4|=r…②…圆被直线3x+4y+10=0截得的弦长为,所以…③…将①②代入③,可得(3a+2)2+12=(a﹣4)2,化简得2a2+5a=0,解得a=0或(舍去)…所以b=0,r=4,于是,圆C的方程为x2+y2=16.…(Ⅱ)假设点P的坐标为(x0,y0),则有.…=38+2(x0﹣y0).下求x0﹣y0的最大值.…解法1:设t=x0﹣y0,即x0﹣y0﹣t=0.该直线与圆必有交点,所以,解得,等号当且仅当直线x0﹣y0﹣t=0与圆x2+y2=16相切时成立.于是t的最大值为,所以|PA|2+|PB|2的最大值为.…解法2:由可设x0=4sinα,y0=4cosα,于是,所以当时,x0﹣y0取到最大值,所以|PA|2+|PB|2的最大值为.…【点评】此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,圆的标准方程,垂径定理,勾股定理,点到直线的距离公式,以及正弦函数的定义域与值域,是一道综合性较强的题.23.【答案】【解析】解:设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+4>0对一切x∈R恒成立,∴函数g(x)的图象开口向上且与x轴没有交点,故△=4a2﹣16<0,∴﹣2<a<2.又∵函数f(x)=(3﹣2a)x是增函数,∴3﹣2a>1,得a<1.又由于p或q为真,p且q为假,可知p和q一真一假.(1)若p 真q 假,则,得1≤a <2;(2)若p 假q 真,则,得a ≤﹣2.综上可知,所求实数a 的取值范围为1≤a <2,或a ≤﹣2. 24.【答案】(1);(2).1111]01a <<【解析】则对恒成立,即对恒成立,'()0f x ≥0x >1()3a x x≥-++0x >而当时,,0x >1(3231x x-++≤-+=∴.1a ≥若函数在上递减,()f x (0,)+∞则对恒成立,即对恒成立,'()0f x ≤0x >1()3a x x≤-++0x >这是不可能的.综上,.1a ≥的最小值为1. 1(2)由,21()()(2)2ln 02f x a x a x x =-+-+=得,21((2)2ln 2a x a x x -+-=即,令,,2ln x x a x +=2ln ()x x r x x +=2331(1)2(ln )12ln '()x x x x x x x r x x x +-+--==得的根为1,12ln 0x x --=考点:1、利用导数研究函数的单调性;2、函数零点问题及不等式恒成立问题.【方法点晴】本题主要考查利用导数研究函数的单调性、函数零点问题及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(2)就是先将问题转化为不等式恒成立问题后再利用①求得的最小值的.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.。

2021年高三11月月考数学理试题 含解析

2021年高三11月月考数学理试题 含解析

开始是否2021年高三11月月考数学理试题 含解析一、选择题(本大题共10小题,每小题5分,共50分) 1、设,且为正实数,则( )2 1 0 2、已知随机变量服从正态分布,则( )A.0.21B. 0.58C. 0.42D. 0.29 3、下列命题中,真命题是( ) A. B.C.a+b=0的充要条件是=-1D.a>1,b>1是ab>1的充分条件 4、函数的零点个数为 ( )A.0B.1C.2D.3 5、等差数列的前项和为,若,则的值是( )A .B .C .D .不能确定6、已知双曲线的一条渐近线方程是y=,它的一个焦点在抛物线的准线上,则双曲线的方程为( )(A ) (B ) (C ) (D )7、标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有( )(A ) 12种 (B) 18种 (C) 36种 (D) 54种 8、的展开式中x 3的系数为10,则实数a 为( )A .-2B .-1C . 1D . 29、设是定义在上的增函数,且对任意,都有恒成立,如果实数满足不等式,那么的取值范围是( )(9,49) (13,49) (9,25) (3,7)10、已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值( )A.0B.C.1D.第II 卷(非选择题 100 分)二、填空题(本大题共25分,每小题5分。

11、12、13为必做题; 14、15、16为为选做题,考生只能选做其中的两题,三题全答的,只计算前两题的得分):11.从如图所示的长方形区域内任取一个点,则点取自阴影部分的概率为___.12程序框图(即算法流程图)如图(右)示,其输出结果是_____ 13、设x,y 满足条件若目标函数(其中)的最大值为5,则的最小值为 14.(4-1几何证明选讲选做题)如图,点是圆上的点, 且,则对应的劣弧长为 .15. (4-4坐标系与参数方程选做题)在极坐标系中,圆上的点 到直线的距离的最小值是 .16、(4-5不等式选讲选做题)不等式|2x+1|-2|x-1|>0的解集为三、解答题:(本大题共6小题,共75分)。

贵阳市实验中学2018-2019学年高三上学期11月月考数学试卷含答案

贵阳市实验中学2018-2019学年高三上学期11月月考数学试卷含答案

贵阳市实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知等差数列{a n }中,a n =4n ﹣3,则首项a 1和公差d 的值分别为( )A .1,3B .﹣3,4C .1,4D .1,22. 已知两不共线的向量,,若对非零实数m ,n 有m +n 与﹣2共线,则=()A .﹣2B .2C .﹣D .3. 设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是()A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣34. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α5. 已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]6. 下列函数在其定义域内既是奇函数又是增函数的是( )A .B .C .D .7. 已知双曲线C 的一个焦点与抛物线y 2=8x 的焦点相同,且双曲线C 过点P (﹣2,0),则双曲线C 的渐近线方程是( )A .y=±x B .y=±C .xy=±2xD .y=±x 8. 已知命题p :存在x 0>0,使2<1,则¬p 是()A .对任意x >0,都有2x ≥1B .对任意x ≤0,都有2x <1C .存在x 0>0,使2≥1D .存在x 0≤0,使2<19. 设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2项的系数是()A .﹣13B .6C .79D .3710.若命题p :∃x 0∈R ,sinx 0=1;命题q :∀x ∈R ,x 2+1<0,则下列结论正确的是()A .¬p 为假命题B .¬q 为假命题C .p ∨q 为假命题D .p ∧q 真命题11.已知三棱柱 的侧棱与底面边长都相等,在底面上的射影为的中点, 111ABC A B C 1A ABC BC 则异面直线与所成的角的余弦值为()AB 1CC 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A B D .3412.已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题的是()A .p ∧qB .¬p ∧¬qC .¬p ∧qD .p ∧¬q二、填空题13.已知函数,,则 ,的值域21,0()1,0x x f x x x ⎧-≤=⎨->⎩()21xg x =-((2))f g =[()]f g x 为.【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.14.设平面向量,满足且,则,的最大()1,2,3,i a i =u rL 1i a =u r 120a a ⋅=u r u u r 12a a +=u r u u r 123a a a ++u r u u r u u r值为.【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.15.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .16.函数y=lgx 的定义域为 .17.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .18.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .三、解答题19.已知函数f (x )=4x ﹣a •2x+1+a+1,a ∈R .(1)当a=1时,解方程f (x )﹣1=0;(2)当0<x <1时,f (x )<0恒成立,求a 的取值范围;(3)若函数f (x )有零点,求实数a 的取值范围. 20.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?21.已知f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行.(1)求函数的单调区间;(2)若x∈[1,3]时,f(x)>1﹣4c2恒成立,求实数c的取值范围.22.已知数列{a n}满足a1=,a n+1=a n+,数列{b n}满足b n=(Ⅰ)证明:b n∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n有a n.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),过点的直线交曲线于两点.C ⎩⎨⎧==ααsin cos 2y x α)0,1(P C B A 、(1)将曲线的参数方程化为普通方程;C (2)求的最值.||||PB PA ⋅24.如图,椭圆C 1:的离心率为,x 轴被曲线C 2:y=x 2﹣b 截得的线段长等于椭圆C 1的短轴长.C 2与y 轴的交点为M ,过点M 的两条互相垂直的直线l 1,l 2分别交抛物线于A 、B 两点,交椭圆于D 、E 两点,(Ⅰ)求C 1、C 2的方程;(Ⅱ)记△MAB ,△MDE 的面积分别为S 1、S 2,若,求直线AB 的方程.贵阳市实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:∵等差数列{a n}中,a n=4n﹣3,∴a1=4×1﹣3=1,a2=4×2﹣3=5.∴公差d=a2﹣a1=5﹣1=4.∴首项a1和公差d的值分别为1,4.故选:C.【点评】本题考查了等差数列的通项公式及其首项a1和公差d的求法,属于基础题.2.【答案】C【解析】解:两不共线的向量,,若对非零实数m,n有m+n与﹣2共线,∴存在非0实数k使得m+n=k(﹣2)=k﹣2k,或k(m+n)=﹣2,∴,或,则=﹣.故选:C.【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题. 3.【答案】B【解析】解:若f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,则f(0)=|m|﹣1=0,则m=1或m=﹣1,当m=1时,f(x)=|x﹣1|﹣|x﹣1|=0,此时为偶函数,不满足条件,当m=﹣1时,f(x)=|x+1|﹣|x﹣1|,此时为奇函数,满足条件,作出函数f(x)的图象如图:则函数在上为增函数,最小值为﹣2,故正确的是B,故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m的值是解决本题的关键.注意使用数形结合进行求解.4.【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.5.【答案】D【解析】解:x>0,y>0,+=1,不等式x+y≥2m﹣1恒成立,所以(x+y)(+)=10+≥10=16,当且仅当时等号成立,所以2m﹣1≤16,解得m;故m的取值范围是(﹣];故选D.6.【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性【试题解析】若函数是奇函数,则故排除A、D;对C:在(-和(上单调递增,但在定义域上不单调,故C错;故答案为:B7.【答案】A【解析】解:抛物线y2=8x的焦点(2,0),双曲线C 的一个焦点与抛物线y2=8x的焦点相同,c=2,双曲线C过点P(﹣2,0),可得a=2,所以b=2.双曲线C的渐近线方程是y=±x.故选:A.【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查.8.【答案】A【解析】解:∵命题p:存在x0>0,使2<1为特称命题,∴¬p为全称命题,即对任意x>0,都有2x≥1.故选:A9.【答案】D【解析】二项式系数的性质.【专题】二项式定理.【分析】由含x一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数.【解答】解:由于多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为(﹣2)+(﹣5)=﹣16,可得2m+5n=16 ①.再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是(﹣2)2+(﹣5)2=37,故选:D.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.10.【答案】A【解析】解:时,sinx0=1;∴∃x0∈R,sinx0=1;∴命题p是真命题;由x2+1<0得x2<﹣1,显然不成立;∴命题q是假命题;∴¬p为假命题,¬q为真命题,p∨q为真命题,p∧q为假命题;∴A正确.故选A.【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R满足x2≥0,命题¬p,p∨q,p∧q的真假和命题p,q真假的关系.11.【答案】D【解析】考点:异面直线所成的角.12.【答案】D【解析】解:p :根据指数函数的性质可知,对任意x ∈R ,总有3x >0成立,即p 为真命题,q :“x >2”是“x >4”的必要不充分条件,即q 为假命题,则p ∧¬q 为真命题,故选:D【点评】本题主要考查复合命题的真假关系的应用,先判定p ,q 的真假是解决本题的关键,比较基础 二、填空题13.【答案】,. 2[1,)-+∞【解析】14..1【解析】∵,∴,22212112221012a a a a a a +=+⋅+=++=u r u u r u r u u r u u r 12a a +=u r u u r而,222123121233123()2()21cos ,13a a a a a a a a a a a a ++=+++⋅+=+⋅<+>+≤+u r u u r u u r u r u u r u r u u r u u r u u r u r u u r u u r∴,当且仅当与.1231a a a ++≤u r u u r u u r 12a a +u u r u u r 3a u u r115.【答案】 50π 【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是:=50π.故答案为:50π. 16.【答案】 {x|x >0} .【解析】解:对数函数y=lgx的定义域为:{x|x>0}.故答案为:{x|x>0}.【点评】本题考查基本函数的定义域的求法.17.【答案】 5 .【解析】解:P(1,4)为抛物线C:y2=mx上一点,即有42=m,即m=16,抛物线的方程为y2=16x,焦点为(4,0),即有|PF|==5.故答案为:5.【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题. 18.【答案】 2 .【解析】解:由a6=a5+2a4得,a4q2=a4q+2a4,即q2﹣q﹣2=0,解得q=2或q=﹣1,又各项为正数,则q=2,故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.三、解答题19.【答案】【解析】解:(1)a=1时,f(x)=4x﹣22x+2,f(x)﹣1=(2x)2﹣2•(2x)+1=(2x﹣1)2=0,∴2x=1,解得:x=0;(2)4x﹣a•(2x+1﹣1)+1>0在(0,1)恒成立,a•(2•2x﹣1)<4x+1,∵2x+1>1,∴a>,令2x=t∈(1,2),g(t)=,则g′(t)===0,t=t0,∴g(t)在(1,t0)递减,在(t0,2)递增,而g(1)=2,g(2)=,∴a≥2;(3)若函数f(x)有零点,则a=有交点,由(2)令g(t)=0,解得:t=,故a≥.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数零点问题,是一道中档题.20.【答案】【解析】解:(1)…=…定义域是(0,7]…(2)∵,…当且仅当即x=6时取=…∴y≥80×12+1800=2760…答:当侧面长度x=6时,总造价最低为2760元.…21.【答案】【解析】解:(1)由题意:f′(x)=3x2+6ax+3b 直线6x+2y+5=0的斜率为﹣3;由已知所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所以由f′(x)=3x2﹣6x>0得心x<0或x>2;所以当x∈(0,2)时,函数单调递减;当x∈(﹣∞,0),(2,+∞)时,函数单调递增.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)由(1)知,函数在x∈(1,2)时单调递减,在x∈(2,3)时单调递增;所以函数在区间[1,3]有最小值f(2)=c﹣4要使x∈[1,3],f(x)>1﹣4c2恒成立只需1﹣4c2<c﹣4恒成立,所以c<或c>1.故c的取值范围是{c|c或c>1}﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题,综合性较强,属于中档题.22.【答案】【解析】证明:(Ⅰ)由b n =,且a n+1=a n +,得,∴,下面用数学归纳法证明:0<b n <1.①由a 1=∈(0,1),知0<b 1<1,②假设0<b k <1,则,∵0<b k <1,∴,则0<b k+1<1.综上,当n ∈N *时,b n ∈(0,1);(Ⅱ)由,可得,,∴==.故;(Ⅲ)由(Ⅱ)得:,故.由知,当n ≥2时,=.【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维能力和灵活处理问题的能力,是压轴题. 23.【答案】(1).(2)的最大值为,最小值为.1222=+y x ||||PB PA ⋅21【解析】试题解析:解:(1)曲线的参数方程为(为参数),消去参数C ⎩⎨⎧==ααsin cos 2y x αα得曲线的普通方程为 (3分)C 1222=+y x (2)由题意知,直线的参数方程为(为参数),将代入⎩⎨⎧=+=θθsin cos 1t y t x ⎩⎨⎧=+=θθsin cos 1t y t x 1222=+y x 得 (6分)01cos 2)sin 2(cos 222=-++θθθt t 设对应的参数分别为,则.B A ,21,t t ]1,21[sin 11sin 2cos 1||||||22221∈+=+==⋅θθθt t PB PA ∴的最大值为,最小值为. (10分)||||PB PA ⋅21考点:参数方程化成普通方程.24.【答案】【解析】解:(Ⅰ)∵椭圆C 1:的离心率为,∴a 2=2b 2,令x 2﹣b=0可得x=±,∵x 轴被曲线C 2:y=x 2﹣b 截得的线段长等于椭圆C 1的短轴长,∴2=2b ,∴b=1,∴C 1、C 2的方程分别为,y=x 2﹣1; …(Ⅱ)设直线MA 的斜率为k 1,直线MA 的方程为y=k 1x ﹣1与y=x 2﹣1联立得x 2﹣k 1x=0∴x=0或x=k 1,∴A (k 1,k 12﹣1)同理可得B (k 2,k 22﹣1)…∴S 1=|MA||MB|=•|k 1||k 2|…y=k1x﹣1与椭圆方程联立,可得D(),同理可得E()…∴S2=|MD||ME|=••…∴若则解得或∴直线AB的方程为或…【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键.。

广东省深圳实验学校2025届高三数学11月月考试题

广东省深圳实验学校2025届高三数学11月月考试题

广东省深圳试验学校2025届高三数学11月月考试题本试卷共6页,22小题,满分150分。

考试用时120分钟。

留意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

2.作答选择题时,选项出每小题答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如须要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必需用黑色字迹的钢笔或签字笔作答,答案必需写在答题卡各题目定区域内相应位置上;如须要改动,先划掉原来的答案,然后再写上新答案;不准运用铅笔和涂改液。

不按以上要求作答无效。

4.考生必需保证答题卡的整齐。

考试结束后,将试卷和答题卡一并交回。

一、单项选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项符合要求。

1.设集合2{|20}A x x x =+-<,{|03}B x x =<<,则A B =A .{|23}x x -<<B .{|01}x x <<C .{|13}x x -<<D .{|02}x x <<2.已知i 是虚数单位,z 是复数,若(13i)2i z +=-,则复数z 的虚部为A .7i 10B .710-C .710D .7i 10-3.在△ABC 中,“sin cos A B =”是“π2C =”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件4.函数2()ln(1)f x x kx =+-的图象不行能是A .B .C .D .5.已知圆22440x y x y a +-++=截直线40x y +-=所得弦的长度小于6,则实数a 的取值范围为A .(817,817)+B .(817,8)C .(9,)-+∞D .(9,8)-6.621(2)x x x ⎛⎫+- ⎪⎝⎭的绽开式中的常数项是A .5-B .15C .20D .25-7.已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为16,左焦点为F ,M 是双曲线C 的一条渐近线上的点,且OM MF ⊥,O 为坐标原点,若△OMF 的面积为16,则双曲线C 的离心率为A 33B 5C 35 8.已知函数1()221xf x x =+++,若不等式(41)(2)5x x f m f m ⋅++-≥对随意的0x > 恒成立,则实数m 的最小值为 A 122B 21C .212D .212-二、多项选择题:本大题共4小题,每小题5分,共20分。

2021年高三11月月考数学试题(文理合卷有解析)

2021年高三11月月考数学试题(文理合卷有解析)

2021年高三11月月考数学试题(文理合卷有解析)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|∈R|x<5-|,B={1,2,3,4},则(A)∩B等于( )A.{1,2,3,4}B.{2,3,4}C.{3,4}D.{4}2. 设抛物线的顶点在原点,其焦点F在y轴上,又抛物线上的点P(k,-2)与点F的距离为4,则k等于 ( )A.4 B.4或-4C.-2 D.-2或23.已知点M(a,b)与N关于x轴对称,点P与点N关于y轴对称,点Q与点P关于直线x+y=0对称,则点Q 的坐标为( ) A.(a,b) B.(b,a) C.(-a,-b) D.(-b,-a)4.如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A .-13 B .-3C.13D .3 5.(理) 若函数f(x)是定义在R 上的偶函数,在(-∞,0]上是减函数,且f(2)=0,则使得f(x)<0的x 的取值范围是( )A.(-∞,2)B.(2,+∞)C.(-∞-2)∪(2,+∞)D.(-2,2)(文).已知函数f(x)=ax 2+bx+c(a ≠0)是偶函数,那么g(x)=ax 3+bx 2+cx 是( ) A.奇函数 B.偶函数C.既奇且偶函数D.非奇非偶函数6.若函数f(x)的反函数为f -1(x)=2x+1,则f(1)的值为( ) A.4 B.-4 C.1 D.-17. θ是任意实数,则方程x 2+y 2cos θ=4的曲线不可能是( ) A .椭圆 B .双曲线 C .抛物线 D .圆8. 已知正整数a 、b 满足4a +b =30,则使得1a +1b 取得最小值的有序数对(a ,b )是( )A .(5,10)B .(6,6)C .(7,2)D .(10,5)9. 过椭圆x 2a 2+y 2b2=1(0<b <a )中心的直线与椭圆交于A 、B 两点,右焦点为F 2(c,0),则△ABF 2的最大面积是( )A .abB .acC .bcD .b 210. (理)已知{a n }是递增的数列,且对于任意n ∈N *,都有a n =n 2+λn 成立,则实数λ的取值范围是( )A.λ>0B.λ<0C.λ=0D.λ>-3(文)已知数列{a n }满足a n+2=-a n (n ∈N *),且a 1=1,a 2=2,则该数列前2 002项的和为( ) A.0 B.-3 C.3 D.111. (理)已知tan α和tan(-α)是方程ax 2+bx+c=0的两个根,则a 、b 、c 的关系是( )A.b=a+cB.2b=a+cC.c=b+aD.c=ab(文)已知f(x)=3sin(x+),则下列不等式中正确的是( )A.f(1)<f(2)<f(3)B.f(2)<f(1)<f(3)C.f(2)<f(3)<f(1)D.f(3)<f(2)<f(1)12.(理)已知向量|a|=1,|b|=2,c=a+b,c⊥a,则a与b的夹角大小为( )A. B.C. D.(文)已知向量a=(3,4),b=(sinα,cosα),且a∥b,则tanα等于( )A. B.-C. D.-第Ⅱ卷(非选择题共90分)二、填空题:(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上.)13.在△ABC中,已知(a+b+c)(b+c-a)=3bc,则∠A=_________________________.14. 如果双曲线-=1上一点P到它的右焦点的距离是8,那么P到它的右准线的距离是15.若不等式|3x-b|<4的解集中的整数有且仅有1,2,3,则b的取值范围为________.16.点(-2,t)在直线2x-3y+6=0的上方,则t的取值范围是_____________.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)已知集合A=B=(1)当m=3时,求A(R B);(2)若AB ,求实数m的值.18.(本小题满分12分)已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.(1)求实数m的取值范围;(2)求该圆半径r的取值范围;(3)求圆心的轨迹方程.19.(本小题满分12分)已知向量:a=(2sin x,2 sin x),b=(sin x,cos x).为常数)(理, 文)(1)若,求的最小正周期;(理, 文)(2)若在[上最大值与最小值之和为5,求t的值;(理)(3)在(2)条件下先按平移后(︱︱最小)再经过伸缩变换后得到求.20.(本小题满分12分)已知函数满足且对于任意, 恒有成立.(1)求实数的值;(2)解不等式.21.(本小题满分12分)在数列中,,当时,其前项和满足.(理, 文)(1)求;(理, 文)(2)设,求数列的前项和.(理)(3)求;22.(本小题满分12分)已知点分别是椭圆长轴的左、右端点,点是椭圆的右焦点.点在椭圆上,且位于轴的上方,.(1)求点的坐标;(2)设椭圆长轴上的一点, 到直线的距离等于,求椭圆上的点到点的距离的最小值.六盘水市第二中学xx届11月月考数学试题(文理合卷)时间:120分钟分值:150分(祝考生考试成功)第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|∈R|x<5-|,B={1,2,3,4},则(A)∩B 等于( ) A.{1,2,3,4} B.{2,3,4} C.{3,4} D.{4}解析: A={x∈R |x≥5-},而5-∈(3,4),∴(A)∩B={4}.答案:D2. 设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点P (k ,-2)与点F 的距离为4,则k 等于( )A .4B .4或-4C .-2D .-2或2 答案 B解析 由题意可设抛物线的方程为x 2=-2py (p >0).则抛物线的准线方程为y =p2,由抛物线的定义知|PF |=p 2-(-2)=p2+2=4,所以p =4,抛物线方程为x 2=-8y ,将y =-2代入,得x 2=16,∴k =x =±4.3.已知点M(a,b)与N 关于x 轴对称,点P 与点N 关于y 轴对称,点Q 与点P 关 于直线x+y=0对称,则点Q 的坐标为( )A.(a,b)B.(b,a)C.(-a,-b)D.(-b,-a) 解析:N(a,-b),P(-a,-b),则Q(b,a)答案:B4.如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A .-13B .-3 C.13D .3解析:设直线方程为y =kx +b ,由向左平移三个单位,向上平移1个单位,可得直线方程y =k (x +3)+b +1=kx +b +3k +1.由两直线重合即有3k +1=0⇒k =-13.答案:A5.(理) 若函数f(x)是定义在R 上的偶函数,在(-∞,0]上是减函数,且f(2)=0,则使得f(x)<0的x 的取值范围是( )A.(-∞,2)B.(2,+∞)C.(-∞-2)∪(2,+∞)D.(-2,2) 解析:由图象法可解,由函数的性质可画出其图象如图所示. 显然f(x)<0的解集为{x|-2<x<2},故选D.答案:D(文).已知函数f(x)=ax 2+bx+c(a ≠0)是偶函数,那么g(x)=ax 3+bx 2+cx 是( ) A.奇函数 B.偶函数 C.既奇且偶函数 D.非奇非偶函数解析:由f(x)为偶函数,知b=0,有g(x)=ax 3+cx(a ≠0)为奇函数.答案:A6.若函数f(x)的反函数为f -1(x)=2x+1,则f(1)的值为( ) A.4 B.-4 C.1 D.-1解析:令2x+1=1x=-1,∴f(1)=-1.故选D.答案:D7. θ是任意实数,则方程x 2+y 2cos θ=4的曲线不可能是( )A .椭圆B .双曲线C .抛物线D .圆 答案 C 解析 由于没有x 或y 的一次项,方程不可能是抛物线,故选C.8. 已知正整数a 、b 满足4a +b =30,则使得1a +1b取得最小值的有序数对(a ,b )是( )A .(5,10)B .(6,6)C .(7,2)D .(10,5)答案:A解析:依题意得1a +1b =130⎝⎛⎭⎫1a +1b (4a +b )=130(4+b a +4a b +1)≥310,当且仅当b a =4ab时取最小值,即b =2a ,再由4a +b =30,解得⎩⎪⎨⎪⎧a =5b =10.9. 过椭圆x 2a 2+y 2b2=1(0<b <a )中心的直线与椭圆交于A 、B 两点,右焦点为F 2(c,0),则△ABF 2的最大面积是( )A .abB .acC .bcD .b 2 答案 C 解析 S △ABF 2=S △OAF 2+S △OBF 2 =12c ·|y 1|+12c ·|y 2|(y 1、y 2分别为A 、B 两点的纵坐标),∴S △ABF 2=12c |y 1-y 2|≤12c ·2b =bc . 10. (理)已知{a n }是递增的数列,且对于任意n ∈N *,都有a n =n 2+λn 成立,则实数λ的取值范围是( )A.λ>0B.λ<0C.λ=0D.λ>-3 解析:由题意知a n <a n+1恒成立,即2n+1+λ>0恒成立,得λ>-3.答案:D(文)已知数列{a n }满足a n+2=-a n (n ∈N *),且a 1=1,a 2=2,则该数列前2 002项的和为( ) A.0 B.-3 C.3 D.1 解析:由题意,我们发现:a 1=1,a 2=2,a 3=-a 1=-1,a 4=-a 2=-2,a 5=-a 3=1,a 6=-a 4=2,…,a 2 001=-a 1 999=1,a 2 002=-a 2 000=2,a 1+a 2 +a 3+a 4=0.∴a 1+a 2+a 3+…+a 2 002=a xx +a 2 002=a 1+a 2=1+2=3.答案:C11. (理)已知tan α和tan(-α)是方程ax 2+bx+c=0的两个根,则a 、b 、c 的关系是( ) A.b=a+c B.2b=a+c C.c=b+a D.c=ab 解析: ∴tan==1. ∴-=1-,-b=a-c.∴c=a+b.答案:C(文)已知f(x)=3sin(x+),则下列不等式中正确的是( ) A.f(1)<f(2)<f(3) B.f(2)<f(1)<f(3) C.f(2)<f(3)<f(1) D.f(3)<f(2)<f(1) 解析:f(x)=3sin(x+),则f(1)=3sin(+)=,f(2)=3sin(π+)=-,f(3)=-3cos=-,∴f(1)>f(3)>f(2),故选C.答案:C 12. (理)已知向量|a|=1,|b|=2,c=a+b,c ⊥a,则a 与b 的夹角大小为( ) A. B. C. D.解析:c ⊥a,则c ·a=0,即(a+b)·a=0,即a 2=-a ·b.∴a ·b=-a 2=-1,即|a||b|cos θ=-1.∴cos θ=-=-.∴θ=. 答案:D(文)已知向量a=(3,4),b=(sin α,cos α),且a ∥b,则tan α等于( ) A. B.- C. D.- 解析:由a ∥b,∴3cos α=4sin α.∴tan α=.答案:A第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上.) 13. 在△ABC 中,已知(a+b+c)(b+c-a)=3bc,则∠A=_________________________. 解析:由已知得(b+c)2-a 2=3bc,∴b 2+c 2-a 2=bc.∴=.∴∠A=.答案:14. 如果双曲线-=1上一点P 到它的右焦点的距离是8,那么P 到它的右准线的距离是 解析:利用双曲线的第二定义知P 到右准线的距离为=8×=.15.若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为________.解析:不等式|3x -b |<4⇒-4<3x -b <4⇒b -43<x <b +43,若不等式的整数解只有1,2,3,则b 应满足0≤b -43<1且3<b +43≤4,即4≤b <7且5<b ≤8,即5<b <7.答案:(5,7)16.点(-2,t )在直线2x-3y+6=0的上方,则t 的取值范围是_____________.解析:(-2,t )在2x-3y+6=0的上方,则2×(-2)-3t+6<0,解得t >. 答案:t >三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)已知集合A=B=(1)当m=3时,求A(R B); (2)若AB ,求实数m 的值. 解 由得∴-1<x ≤5,∴A=. 2分 (1)当m=3时,B=, 3分 则R B=, 4分 ∴A (R B )=. 6分(2)∵A=∴有42-2×4-m=0,解得m=8. 8分 此时B=,符合题意, 9分故实数m 的值为8. 10分18.(本小题满分12分)已知方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示一个圆. (1)求实数m 的取值范围; (2)求该圆半径r 的取值范围; (3)求圆心的轨迹方程.解析:(1)将圆方程配方得,[x -(m +3)]2+[y -(4m 2-1)]2=-7m 2+6m +1,由-7m 2+6m +1>0,得m 的取值范围是-17<m <1. 4分(2)由于r =-7⎝⎛⎭⎫m -372+167≤477,∴0<r ≤477. 8分 (3)设圆心为(x ,y ),则⎩⎪⎨⎪⎧x =m +3,y =4m 2-1,消m ,得y =4(x -3)2-1,由于-17<m <1,∴207<x <4.故所求的轨迹方程为y =4(x -3)2-1⎝⎛⎭⎫207<x <4. 12分 19.(本小题满分12分)已知向量:a =(2sin x,2 sin x ),b =(sin x ,cos x ).为常数) (理, 文)(1)若,求的最小正周期; (理, 文)(2)若在[上最大值与最小值之和为5,求t 的值; (理)(3)在(2)条件下先按平移后(︱︱最小)再经过伸缩变换后得到求. 解:t x t x x x f +-=-++-=)62sin(212sin 32cos 1)(π2分3分(1)最小正周期 4分6分 (2)]6,65[62]3,32[2]6,3[πππππππ-∈-⇒-∈⇒-∈x x x 5分8分6分10分即 8分12分(3) 10分12分 20.(本小题满分12分)已知函数满足且对于任意, 恒有成立.(1)求实数的值; (2)解不等式. 解:(1) 由知, …① 1分∴…② 2分 又恒成立, 有恒成立,故. 4分 将①式代入上式得:,即故. 6分 即, 代入② 得,. 7分 (2)即∴ 9分解得: , 11分 ∴不等式的解集为. 12分 21.(本小题满分12分) 在数列中,,当时,其前项和满足. (理, 文)(1)求; (理, 文)(2)设,求数列的前项和. (理)(3)求;解:(1)当时,,∴22111111()()222n n n n n n n n n S S S S S S S S S ---=--=--+, 1分2分∴,∴,即数列为等差数列, 2分3分,∴,∴, 4分6分 (2)=, 6分9分 ∴111111[(1)()()]23352121n T n n =-+-++--+。

高三数学11月月考期中试题 理含解析 试题

高三数学11月月考期中试题 理含解析 试题

B.
C.
D.
8.假设正实数 满足
A.
B. C.
,那么 的最小值为 D.
9.定积分
A.
B.
的值是
C.
D.
10.在矩形
中,
,
,点 为 的中点,点 在 上,假设

那么
的值是
A.
B.
C.
D.
11.函数 内恰好获得一次最大值 2,那么 的取值范围是
在区间
上单调,且在区间
A.
B.
C.
D.
2022 年元月元日
12.函数
一、单项选择题
1.复数
,假设
A. B.
C.
D.5
2.集合 A.
,
B.
C.
,那么
,那么 D.
3.向量 满足


,那么
A.
B.
C.
D.2
4.在等差数列 中,假设前 项的和
A. B.
C. D.
5.下面命题正确的选项是

,那么
A.“ 〞 是“ 〞 的充分必要条件.
B.命题“ 假设
,那么 〞 的否命题是“ 假设
19.在 中, , 分别为 , 的中点,
为折痕将
点 到达点 的位置,如图 2.
且 折起,使
如图 1
如图 2
〔1〕证明:平面
平面 ;
〔2〕假设平面
平面 ,求直线 与平面 所成角的正弦值。
20.在数列 中,
,且数列 的前 项和 满足
,
.
〔1〕证明数列 是等比数列;
〔2〕设数列
的前 项和为 ,假设不等式
立, 务实数 的取值范围.

欣宜市实验学校二零二一学年度高三数学理科11月月考试卷试题

欣宜市实验学校二零二一学年度高三数学理科11月月考试卷试题

黔西北州欣宜市实验学校二零二一学年度严桥中学2021-2021学年度高三数学理科11月月考试卷一、 选择题:〔每一小题5分,一共60分〕1.设集合{}0≥+=m x x M ,{}0822<--=x x x N ,假设R U =,且〔M C u 〕∩N =φ,那么实数m 的取值范围是〔〕 A 、2<mB 、2≥mC 、2≤mD 、2≤m 或者4≥m2.假设函数123)(-+=x x f 的反函数的图象过P 点,那么P 点坐标可能是〔〕A 、〔2,5〕B 、〔1,3〕C 、〔5,2〕D 、〔3,1〕3.复数z 满足〔3+3i 〕z =3i ,那么z =〔〕A .3322i - B.3344i - C.3322i + D.3344i + 4.假设a 0,b 0,那么不等式-b 1xa 等价于〔〕A .1b-x 0或者0x1a B.-1a x1b-1a 或者x 1b1b -或者x 1a5.直线1-=kx y 与曲线2)2(1---=x y 有公一共点,那么k 的取值范围是〔〕A 、⎥⎦⎤⎢⎣⎡34,0 B 、⎥⎦⎤⎢⎣⎡34,31 C 、⎥⎦⎤⎢⎣⎡21,D 、[]1,06.对于R 上可导的任意函数f 〔x 〕,假设满足〔x -1〕f x '()0,那么必有〔〕A . f 〔0〕+f 〔2〕2f 〔1〕B.f 〔0〕+f 〔2〕2f 〔1〕C.f 〔0〕+f 〔2〕2f 〔1〕D.f 〔0〕+f 〔2〕2f 〔1〕7.)(x f 是定义在区间[-c ,c]上的奇函数,其图象如下列图:令b x af x g +=)()(,那么以下关于函数)(x g 的表达正确的选项是 〔〕A 、 假设0<a ,那么函数)(x g 的图象关于原点对称B 、假设02,1<<--=b a ,那么方程0)(=x g 有大于2的实根C 、假设2,0=≠b a ,那么方程0)(=x g 有两个实根D 、2,1<≥b a ,那么方程0)(=x g 有三个实根8.集合A =⎭⎬⎫⎩⎨⎧∈=Z ,3πsin |n n x x ,且B ⊆A ,那么集合B 的个数为〔〕 A .3个 B .4个C .8个D .16个9.设数列{}n a 是等差数列,且6,682=-=a a ,n S 是数列{}n a 的前n 项和,那么〔〕A54S S <B 54S S =C S6<S 5D56S S =10.(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是()〔A 〕(0,1)〔B 〕1(0,)3〔C 〕11[,)73〔D 〕1[,1)711.定义在R 上的函数)(x f 既是偶函数又是周期函数,假设)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,那么)35(πf 的值是() A21- B21C 23-D 2312.把数列{2n+1}依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数,…循环分为〔3〕,〔5,7〕,〔9,11,13〕,〔15,17,19,21〕,〔23〕,〔25,27〕,〔29,31,33〕,〔35,37,39,41〕,〔43〕…那么第104个括号内各数之和为〔〕A .2036B 2048C 2060D 2072二.填空题〔每一小题4分,一共16分〕13.假设1,n a ==则常数.14.设0,1a a >≠,函数2lg(23)()xx f x a -+=有最大值,那么不等式()2log 570a x x -+>的解集为.15.曲线1y x=和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积是. 16.假设数列)(}{*N n a n ∈是等差数列,那么有数列)(*21N n na a ab nn ∈+++=也为等差数列,类比上述性质,相应地:假设数列}{n c 是等比数列,且0>n c )(*N n ∈那么有=n d )(*N n ∈也是等比数列。

2021年高三数学11月月考试题 理(含解析)新人教A版

2021年高三数学11月月考试题 理(含解析)新人教A版

2021年高三数学11月月考试题理(含解析)新人教A版满分150分,考试时间120 分钟。

注意事项:1.答题前,考生务必先认真按要求填写、填涂本人姓名、学号、班级在答题卡的相应位置上;2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号;3.答题时,必须使用0.5毫米黑色签字笔,将答案规范、整洁地书写在答题卡规定的位置上;4.所有题目必须在答题卡上作答,在试题卷上答题无效;5.考试结束后将答题卡交回,不得折叠、损毁答题卡。

一、选择题(本大题10个小题,每题5分,共50分,请将答案涂在答题卷上)1.已知为虚数单位,,若为纯虚数,则复数的模等于()A. B. C. D.【知识点】复数的有关概念;复数运算. L4【答案】【解析】D 解析:由是纯虚数得,所以=,所以z的模等于,故选D.【思路点拨】由为纯虚数得,所以z=,所以z的模等于.2.如图所示的程序框图的输入值,则输出值的取值范围为()A. B. C. D.【知识点】对程序框图描述意义的理解. L1【答案】【解析】B 解析:由程序框图可知,输出的y值是函数在时的值域,所以输出值的取值范围为,故选B.【思路点拨】由框图得其描述的意义,从而得到输出值的取值范围.3.某几何体正视图与侧视图相同,其正视图与俯视图如图所示,且图中的四边形都是边长为2的正方形,正视图中两条虚线互相垂直,则该几何体的体积是()A.B.6 C.4 D.【知识点】几何体的三视图;几何体的结构. G1 G2【答案】【解析】A解析:由三视图可知此几何体是正方体,挖去一个以正方体上底面为底面,正方体的中心为顶点的四棱锥,所以其体积为,故选A.【思路点拨】由三视图得该几何体的结构,从而求得该几何体的体积.【题文】4.下列命题正确的个数是()①“在三角形中,若,则”的逆命题是真命题;②命题或,命题则是的必要不充分条件;③“”的否定是“”;④若随机变量,则A.1 B.2 C.3 D.4【知识点】命题及其关系;充分条件;必要条件;含量词的命题的否定;抽样方法. A2 A3 I1【答案】【解析】C 解析:①分A 、B 是锐角且,和A 是钝角且讨论两种情况,得命题①正确;②利用“若p 则q ”的逆否命题中,条件与结论的关系判定②正确;③“”的否定是“”,所以③不正确;显然④按随机变量的分布列可知正确.故选C.【思路点拨】利用命题及其关系,充分条、,必要条件的意义,含量词的命题的否定方法,各种抽样方法的意义及其适用的总体特征,逐一分析各命题的正误即可..【题文】5.已知等比数列的前n 项和为,且,,则( )A .B .C .D .【知识点】等比数列. D3【答案】【解析】D 解析:由,得,所以,故选D.【思路点拨】根据等比数列的通项公式,前n 项和公式求解.【题文】6.若函数的图像向右平移个单位后与原函数的图像关于轴对称,则的最小正值是( )A .B .1C .2D .3【知识点】平移变换;函数的图与性质. C4【答案】【解析】D 解析:函数的图像向右平移个单位得,sin sin 333y x x πππωπωω⎡⎤-⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,这时图像关于x 轴对称,所以 ,所以的最小正值是3.故选D. 【思路点拨】根据平移变换法则得平移后的函数解析式,再由平移后的对称性得关于的方程,进而得到的最小正值.【题文】7.若正实数,满足,则的最大值是( )A .2B .3C .4D .5【知识点】基本不等式.E6【答案】【解析】C 解析:由,可得240,0542x yx y x y x y x y x y +>>∴≥++=++≥=++⎛⎫ ⎪⎝⎭,当且仅当时取等号,所以的最大值为4.【思路点拨】本题可两次利用不等式即可求出结果.【题文】8.某校周四下午第三、四两节是选修课时间,现有甲、乙、丙、丁四位教师可开课。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中山实验高中2013-2014高三11月阶段考试理 科 数 学试时间:120分钟;满分:150分;第一部分 选择题一、选择题:本大题共有8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把它选出后在答题卡规定的位置上用铅笔涂黑。

1.设集合{}{}{},2,1,2,2,1,2,1,0,1,2=--=B A U }{}()()2,1,0,1,2,1,22,1,2,U U A A C B =--==--⋃则等( )A.{}1B.{}1,2C.{}2D.{}0,1,22.复数32(1)i i += ( ) A .2B .-2C .2iD . 2i -3.如图所示,该程序运行后输出的结果为 ( ) A .14 B .16 C .18 D .644.函数f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,cos x ,0≤x ≤π2的图象与x 轴所围成的封闭图形的面积为( )A.32 B .1 C .2 D.12 5.已知||||||b a b a -==,则a 与b 的夹角为 ( ) A.6π B .4π C .3π D.2π 6.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n .若b 3=-2,b 10=12,则a 8=( ) A .0 B .3 C .8 D .11 7.如图所示,直线PA 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面PAC 的距离等于线段BC 的长. 其中正确的是( )A .①②B .①②③C .①D .②③8.已知B A ,是圆O :122=+y x 上的两个点,P 是AB 线段上的动点,当AOB ∆的面积最大时,则2AP AP AO -∙的最大值是( ) A.-1 B. 0 C.81 D. 21第二部分 非选择题二、填空题:本大题共6小题,每小题5分,满分30分.9.某社区有600个家庭,其中高收入家庭150户,中等收入家庭360户,低收入家庭90户,为了调查购买力的某项指标,用分层抽样的方法从中抽取一个容量为80的样本,则中等收入家庭应抽取的户数是 .10.一个空间几何体的三视图如右图所示,其中主视图和侧视图 都是半径为1的圆,且这个几何体是球体的一部分,则这个几何 体的表面积为________________.11.曲线y =e 2x在点(0,1)处的切线方程为________________. 12.下列命题中所有真命题的序号是________________. ①“a >b ”是“a 2>b 2”的充分条件; ②“|a |>|b |”是“a 2>b 2”的必要条件; ③“a >b ”是“a +c >b +c ”的充要条件. 13.在ABC ∆中,120,5,7,A AB BC ===则sin sin BC的值为______________. 14.已知数列{a n }的前n 项和为S n ,且 则 ______________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分12分)设()ln -4f x a x x =+,其中a R ∈,曲线()y f x =在点(1,(1))f 处的切线垂直于y 轴. (Ⅰ) 求a 的值;(Ⅱ) 求函数()f x 的极值.12-⋅=n n n a =n S如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AC BC ⊥,D 为侧棱PC 上一点, 它的正(主)视图和侧(左)视图如图所示. (Ⅰ)证明:AD ⊥平面PBC ;(Ⅱ)在ACB ∠的平分线上确定一点Q ,使得PQ ∥平面ABD ,并求此时PQ 的长.侧(左)视图正(主)视图PDCBA22222244417.(本小题满分14分)已知向量)1,(sin ),31cos ,3(x b x a =-=,函数b a x f ∙=)(.将函数()y f x =的图象上各点的纵坐标保持不变,横坐标先缩短到原来的12,把所得到的图象再向左平移3π个单位,得到函数()y g x =的图象.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若b a⊥,求()y g x = 的值。

在三棱锥ABC P -中,侧棱长均为297,底边32,2,4===BC AB AC ,E D 、分别为BC PC 、的中点.(Ⅰ)求三棱锥ABC P -的体积; (Ⅱ)求二面角E DA C --的平面角.19.(本小题满分14分)已知数列{}n a ,{}n b ,11=a ,112--+=n n n a a ,111+-+=n n n n a a a b ,n S 为数列{}n b 的前n 项和,n T 为数列{}n S 的前n 项和.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n b 的前n 项和n S ; (Ⅲ)求证:312->n T n .20.(本小题满分14分)已知函数bx ax e x f ex f ==-)(,)(21.(Ⅰ)若)()()()(221x bf x f x f x f --+=,是否存在R b a ∈,,使)(x f y =为偶函数,如果存在,请举例并证明你的结论,如果不存在,请说明理由;(Ⅱ)若1,2==b a ,求)()()(21x f x f x g +=在R 上的单调区间;(Ⅲ)已知[)2ln ,0∈b ,[][]1,01,00∈∀∈∃x x 对,有1)()(021<-x f x f 成立,求a 的取值范围。

EDCBAP班级___________ 座号 ___________ 姓名 ___________装订线内请勿答题中山实验高中高三11月中段考试理科数学答卷得分:一、选择题:请涂在答题卡上。

二、填空题:本大题共6小题,每小题5分,满分30分.9、 。

10、 。

11、 。

12、 。

13、 。

14、 。

三、解答题:(共6小题,共80分,解答题写出文字说明,以及必要的证明过程或演算过程)15、16、 侧(左)视图正(主)视图PDCBA22222244417、18、 EDCBAP班级___________ 座号 ___________ 姓名 ___________装订线内请勿答题19、20、OQABC DP 汕头市聿怀中学2013-2014高三11月阶段考试理科数学参考答案一、选择题(40分)题号 1 2 3 4 5 6 7 8 答案 D AAACBBC二、填空题(30分)9. 48 10. 11. y =2x +1. 12.②③ 13.35; 三、解答题(80分)15.解:(Ⅰ) ()ln -4f x a x x =+, ∴/()1af x x=- …………………2分 由于曲线()y f x =在点()()1,1f 处的切线垂直于y 轴,故该切线斜率为0,即()10f '=,5分∴1a =……………………………………………………………………………6分(Ⅱ)由(Ⅰ)知,()ln -4(0)f x x x x =+>,/11()1=xf x x x-=- …………7分令/()0(0)01f x x x >>⇒<<故()f x 在()0,1上为增函数;………………8分 令/()0(0)1f x x x <>⇒>,故()f x 在()1,+∞上为减函数;………………11分故()f x 在1x =处取得极大值()13f =。

……………………………………12分16.解:(Ⅰ)因为PA ⊥平面ABC ,所以PA BC ⊥, ……………………1分 又AC BC ⊥,所以BC ⊥平面PAC ,所以BC AD ⊥. ……………………3分 由三视图得,在PAC ∆中,4PA AC ==,D 为PC 中点,所以AD PC ⊥,∴AD ⊥平面PBC 5分(Ⅱ)取AB 的中点O ,连接CO 并延长至Q ,使得2CQ CO =,点Q 即为所求.………6分因为O 为CQ 中点,所以PQ OD ∥,……………………7分因为PQ ⊄平面ABD ,OD ⊂平面ABD ,所以PQ ∥平面ABD ……9分 连接AQ ,BQ ,四边形ACBQ 的对角线互相平分,……………10分 所以ACBQ 为平行四边形,所以4AQ =, …………………11分又PA ⊥平面ABC ,所以在直角PAD ∆中,2242PQ AP AQ =+=.12分 17.(原创题) 解:(Ⅰ)31cos sin 3)(-+=∙=x x b a x f=31)6sin(2-+πx …3分)(22622Z k k x k ∈+≤+≤-∴πππππ解得:32322ππππ+≤≤-k x k )(x f ∴的单调递增区间为)(32,322Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ6分 (Ⅱ)b a ⊥,0=∙∴b a 由(1)得031)6sin(2=-+πx 61)6sin(=+∴πx …7分π412)1(.14+-=nn n S=)(x f 31)6sin(2-+πx ,将函数()y f x =的图象上各点的纵坐标保持不变,横坐标先缩短到原来的12,得:=y 31)62sin(2-+πx再向左平移3π个单位,=)(x g 316)3(2sin 2-⎥⎦⎤⎢⎣⎡++ππx ……………………10分 得=)(x g 316)3(2sin 2-⎥⎦⎤⎢⎣⎡++ππx =31)652sin(2-+πx =312)6(2sin 2-⎥⎦⎤⎢⎣⎡++ππx =31)6(2cos 2-+πx =31)6(sin 2122-⎥⎦⎤⎢⎣⎡+-πx =91431)1811(2=--………14分18. (原创题) 解:证明:(Ⅰ)取AC 的中点O ,连接OB OP ,,1分易得:AC OP ⊥,29449722=-=-=OC CP OP ……2分 32,2,4===BC AB AC ,2,,222==∴∆∆∴+=∴OC OB Rt ABC BC AB AC 为.OB OP OP OB PB ⊥∴+=∴,222. ………………4分又ABC OB AC O BO AC 面、且⊂= OP ∴⊥平面ABC ………………5分332131=⨯⨯=-BC AB OP V ABC P ………………6分(Ⅱ)法一:作EG ⊥AC ,GH ⊥DF 于H G 、点,连接EHOP ⊥平面ABC ,⊂EG 平面ABC ,OP EG ⊥∴ ………………7分又PAC OP AC O OP AC 面、且⊂= EG ∴⊥平面PAC . ∵PAC DA 平面⊂, ∴EG DA ⊥ ………………8分 又EGH GH EG G GH EG 面、且⊂= DA ∴⊥平面EGH ……9分 ∵EGH EH 平面⊂,∴DA EH ⊥………………10分 ∴EHG ∠为二面角E DF C --的平面角. ………………11分 ∵2330sin 0==CE EG ,23300==CECOS CG ,25=AG由(Ⅰ)知29=OP ,41591681)43()21(22=+=+=∴AC OP AD . ∴DA GH AG OP S DAG ⨯⨯=⨯⨯=∆212121,23=∴GHOCBAPG HEDCBAP∴33tan =∠EHG ,∴6π=∠EHG ………………14分 法二:以O 为原点,以OP OC 、为z y 、轴建系,则)0,21,23(),49,1,0(E D ,)0,2,0(-A ,8分 设),,1(z y n =为平面DEA 的法向量,则有⎪⎪⎩⎪⎪⎨⎧=--=--⋅=⋅=--=--⋅=⋅0493)49,3,0(),,1(0492123)49,21,23(),,1(z y z y DA n z y z y DE n ………………11分 ∴1534,53=-=z y ………………12分 又∵)0,0,29(=OP 为平面DEA 的法向量,∴23751625312929||||||cos =++⋅=⋅⋅=n OP n OP θ,二面角E DA C --的平面角为6π.…14分 19. (原创题)解:(Ⅰ)法一:112--+=n n n a a 112211)()()(a a a a a a a a n n n n n +-++-+-=∴--- …3分122121122221-=--=++++=--n n n n ………………5分法二:)12(211221111-=-∴+=----n n nn n n n a a a a ………………3分 21121-=-a又 .212112为公比的等比数列为首项,以是以数列-⎭⎬⎫⎩⎨⎧-∴nn a ……4分 12)21()21(21121-=∴-=-=-∴-n n nn n n a a ………………5分(Ⅱ)[])121121(21)12)(12()12()12(21)12)(12(211111111---=-----=--=+=++++-+-n n n n n n n n n n n n n a a a b …7分 n n b b b S +++= 21⎥⎦⎤⎢⎣⎡---++---+---=+)121121()121121()121121(211322n n 9分 1212)121121(2111--=---=++n n n …………10分(Ⅲ)证明:kk k k k k k S 2131212223121)12(2121121211⋅-≥-+⋅-=--=--=++ ……12分312)211(312)212121(312221->--=+++-≥+++=∴n n n S S S T n n n n ;……14分 20. (原创题)解:(Ⅰ)存在1,0-==b a 使)(x f y =为偶函数,证明如下:…………1分此时:x xxe ee xf ++=-)(, )()(x f e e ex f x x x=++=-∴--,)(x f y =∴为偶函数。

相关文档
最新文档