浙江省嘉兴市2015届高三上学期期末考试数学(文)试卷 扫描版缺答案

合集下载

高考第一学期嘉兴市高三期末教学质量检测.docx

高考第一学期嘉兴市高三期末教学质量检测.docx

高中数学学习材料鼎尚图文*整理制作2015-2016学年度第一学期嘉兴市高三期末教学质量检测(数学理科) (2016年1月)本试卷分第Ⅰ卷和第Ⅱ卷两部分.考试时间120分钟.试卷总分为150分.请考生按规定用笔将所有试题的答案涂、写在答题纸上. 参考公式:球的表面积公式 柱体的体积公式S =4πR 2V =Sh球的体积公式 其中S 表示柱体的底面积,h 表示柱体的高 V =34πR 3 台体的体积公式其中R 表示球的半径 V =31h (S 1+21S S +S 2) 锥体的体积公式 其中S 1, S 2分别表示台体的上、下底面积, V =31Sh h 表示台体的高其中S 表示锥体的底面积,h 表示 如果事件A ,B 互斥,那么 锥体的高 P (A +B )=P (A )+P (B )第I 卷(选择题部分,共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集=U R ,集合}1)21(|{≤=x x A ,}086|{2≤+-=x x x B ,则图中阴影部分所表示的集合为A .}0|{≤x xB .}42|{≤≤x xC .{}420|≥≤<x x x 或D .}420|{><≤x x x 或 2.设βα,是两个不同的平面,m 是直线,且α⊂m ,则 “β⊥m ”是“βα⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A BU(第1题图)3.为了得到函数)12sin(+=x y 的图象,只需把函数x y 2sin =的图象上所有的点A .向左平移1个单位长度B .向右平移1个单位长度C .向左平移21个单位长度D .向右平移21个单位长度4.某几何体的三视图如图所示,则该几何体的体积是A .34πB .35πC .322π+D .324π+ 5.设{}n a 是等比数列,下列结论中正确的是 A .若021>+a a ,则032>+a a B .若031<+a a ,则021<+a a C .若210a a <<,则3122a a a +< D .若01<a ,则0))((3212>--a a a a6.已知圆心在原点,半径为R 的圆与ABC ∆的边有公共点,其中)4,2(),8,6(),0,4(C B A ,则R 的取值范围是 A .]10,558[B .]10,4[C .]10,52[D .]10,556[ 7.设函数⎩⎨⎧≥<+=1,31,12)(x x x x f x ,则满足)(3))((m f m f f =的实数m 的取值范围是A .⎭⎬⎫⎩⎨⎧--∞21]0,( B .]1,0[ C .⎭⎬⎫⎩⎨⎧-∞+21),0[ D .),1[∞+ 8.设)4(,,,21≥n A A A n 为集合{}n S ,,2,1 =的n 个不同子集,为了表示这些子集,作n 行n 列的数阵,规定第i 行第j 列的数为:⎪⎩⎪⎨⎧∈∉=j jij A i A i a ,1,0.则下列说法中,错误的是A .数阵中第一列的数全是0当且仅当φ=1AB .数阵中第n 列的数全是1当且仅当S A n =C .数阵中第j 行的数字和表明集合j A 含有几个元素D .数阵中所有的2n 个数字之和不超过12+-n n非选择题部分(共110分)(第4题图)侧视图俯视图正视图2112nnn n n na a a a a a a a a ,,,,,,,,,212222111211二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9.双曲线C :1422=-y x 的离心率是 ▲ ,焦距是 ▲ .10.已知ABC ∆满足1,3,1===CA BC AB ,则=⋅BC AB ▲ ,又设D 是BC 边中线AM 上一动点,则=⋅BC BD ▲ .11.设不等式组⎪⎩⎪⎨⎧≥≤+≤-140x y x y x 表示的平面区域为M ,点),(y x P 是平面区域内的动点,则y x z -=2的最大值是 ▲ ,若直线l :)2(+=x k y 上存在区域M 内的点,则k 的取值范围是 ▲ . 12.已知函数)2sin(sin 3sin )(2x x x x f ωπωω+⋅+=,)0(>ω的最小正周期是π,则=ω____▲__ _,)(x f 在]2,4[ππ上的最小值是 ▲ .13.长方体1111D C B A ABCD -中,1,21==AA AB ,若二面角A BD A --1的大小为6π,则1BD 与面BD A 1所成角的正弦值为 ▲ .14.已知实数y x ,满足0>>y x 且1=+y x ,则yx y x -++132的最小值是 ▲ . 15.在平面直角坐标系中,定义点),(11y x P 与),(22y x Q 之间的“直角距离”为2121),(y y x x Q P d -+-=.某市有3个特色小镇,在直角坐标系中的坐标分别为)8,3(),9,6(),3,2(---C B A ,现该市打算建造一个物流中心,如果该中心到3个特色小镇的直角距离相等,则物流中心对应的坐标为 ▲ .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.(本题满分14分)ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且B A C B A sin sin 3)sin sin (sin 2222=-+.(Ⅰ)求2sin 2BA +的值; (Ⅱ)若2=c ,求ABC ∆面积的最大值.17.(本题满分15分)边长为2的正方形ABCD 所在的平面与CDE ∆所在的平面交于CD ,且⊥AE 平面CDE ,1=AE . (Ⅰ)求证:平面⊥ABCD 平面ADE ;(Ⅱ)设点F 是棱BC 上一点,若二面角F DE A --的ABCEF余弦值为1010,试确定点F 在BC 上的位置.18.(本题满分15分)已知等比数列{}n a 中31=a ,其前n 项和n S 满足231-⋅=+n n a p S (p 为非零实数). (Ⅰ)求p 值及数列{}n a 的通项公式;(Ⅱ)设{}n b 是公差为3的等差数列,11=b .现将数列{}n a 中的 n b b b a a a ,,,21抽去,余下项按原有顺序组成一新数列{}n c ,试求数列{}n c 的前n 项和n T .19.(本题满分15分)已知中心在原点O ,焦点在x 轴上的椭圆的一个顶点为)1,0(B ,B 到焦点的距离为2. (Ⅰ)求椭圆的标准方程;(Ⅱ)设Q P ,是椭圆上异于点B 的任意两点,且BQ BP ⊥,线段PQ 的中垂线l 与x 轴的交点为)0,(0x ,求0x 的取值范围.(第19题图)xy BQPOl20.(本题满分15分)已知函数c bx x x f ++-=2)(2,设函数)()(x f x g =在区间]1,1[-上的最大值为M . (Ⅰ)若2=b ,求M 的值;(Ⅱ)若k M ≥对任意的c b ,恒成立,试求k 的最大值.嘉兴市2015—2016学年第一学期期末检测高三理科数学 参考答案一.选择题(本大题有8小题,每小题5分,共40分)1~4 DACB ;5~8 CACC ;8.解析:数阵中第一列的数全是0,当且仅当111,,2,1A n A A ∉∉∉ ,∴A 正确;数阵中第n列的数全是1当且仅当n n n A n A A ∈∈∈,,2,1 ,∴B 正确;当n A A A ,,,21 中一个为S 本身,其余1-n 个子集为S 互不相同的1-n 元子集时,数阵中所有的2n 个数字之和最大,且为1)1(22+-=-+n n n n ,∴D 正确;数阵中第j 行的数字和表明元素j 属于几个子集,∴C 错误.二.填空题(本大题有7小题,共36分,请将答案写在答题卷上)9.25, 52; 10.23-, 23;11.2, ]1,31[;12.1, 1 ; 13.3451; 14.2223+; 15.)0,5(-.15.解析:设物流中心为),(y x D 由条件:⎪⎩⎪⎨⎧+++=-++-++=-+-)2(8396)1(9632 y x y x y x y x ,易知:98,2<<-<y x ,∴由(2)得:8396+++=-++y x y x ,∴41)3()6(1362=++-+≤++-+=x x x x y ,∴2≤y , ∴由(1)得:y x y x -++=-+-9632, ∴546-=⇒--=+x x x ,∴0)136(21=++-+=x x y ∴)0,5(-D .三、解答题:(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤) 16.解:(Ⅰ)由正弦定理得:ab c b a 3)(2222=-+,....................(2分)∴由余弦定理得:432c o s 222=-+=ab c b a C ,.................(4 分)∴872c o s 12c o s 2s i n 22=+==+C C B A .......................(7分)(Ⅱ)若2=c ,则由(Ⅰ)知:ab ab ab ab b a =-≥-+=343)(2822,..(9分) 又47s i n =C ,...........................................(11分)∴747821sin 21=⨯⨯≤=∆C ab S ABC , 即ABC ∆面积的最大值为7..............................(14分)17.解:(Ⅰ)∵⊥AE 平面CDE ,∴CD AE ⊥,...........................................(2 分) 又∵CD AD ⊥,A AD AE = ,∴⊥CD 面A D E ,.......................................(4分) 又⊂CD 面ABCD ,∴平面⊥A B C D 平面A D E...............................(6分)(Ⅱ)∵DE CD ⊥,∴如图,建立空间直角坐标系xyz D -, 则:)0,0,3(),0,2,0(),0,0,0(E C D , ∴)0,2,0(==DC AB ,∴)1,2,3(B ,..............(8分) 设)1,0,3(λλ==CB CF ,]1,0[∈λ 则:),2,3(λλF ...........(10分)设平面FDE 的法向量为),,(z y x n =,则⎪⎩⎪⎨⎧==⋅=++=⋅03023x DE n z y x DF n λλ,∴取)2,,0(-=λn ,.......(12分) 又平面ADE 的法向量为)0,1,0(=m , ∴10104,cos 2=+=⋅>=<λλnm n m n m ,∴32=λ,.........(14分) 故当点F 满足CB CF 32=时,二面角F DE A --的余弦值为1010...(15分)18.解:(Ⅰ)∵231-⋅=+n n a p S ,323211=-==∴pa a S ,∴p a 292=,又∵231-⋅=+n n a p S ,∴)2(,231≥-⋅=-n a p S n n ,相减得:)2(11≥+=+n pp a a n n ,∵{}n a 是等比数列,.........(3分) ∴p p p 231=+,∴21=p ,312==∴a a q 又31=a ,∴n n a 3=,..................................(6分)所以n n a p 3,21==.....................................(7分)(Ⅱ)23)1(1-=-+=n d n b b n ,...............................(8分)抽去的项为 ,,,,,23741-k a a a aCB AEDxzyF数列{}n c 为 ,,,,,,,,313986532k k a a a a a a a a - ,.............(10分) (1) 当m n 2=时,)()()(3136532m m n a a a a a a T ++++++=-L133133133433---⋅=+=+k k k k k a a ,23332334+++⋅=+k k k a a (),3,2,1 =k{}k k a a 313+∴-是以36为首项,27为公比的等比数列,∴)127(1318271)271(3622-=--=nnn T .........................(12分)(2)当12-=m n 时,)()()(133386532--+++++++=m m n a a a a a a a T L , 331333133331033-----⋅=+=+k k k k k a a ,k k k k k a a 323323331033⋅=+=+++, {}233++∴k k a a 是以270为首项,27为公比的等比数列, 13182713135271)271(27092121-⋅=--+=∴--n n n T .................(15分)19.解:(Ⅰ)由条件:2,1==a b ,∴椭圆的标准方程为:1422=+y x ...(4分)(Ⅱ)①当直线PQ 斜率0=k 时,线段PQ 的中垂线l 在x 轴上的截距为0; ②设PQ :)0(,≠+=k m kx y ,则:0448)41(4422222=-+++⇒⎩⎨⎧=++=m k m x x k y x mkx y ,...........(6分) 设),(),,(2211y x Q y x P ,则⎪⎪⎩⎪⎪⎨⎧+-=+-=+22212214144418k m x x k km x x ,∵BQ BP ⊥, ∴0)1)(1(2121=--+=⋅y y x x BQ BP ,....................(8分)∴ 0)1())(1()1(221212=-++-++m x x m k x x k0)1(418)1(4144)1(22222=-++⋅--+-⋅+m k kmm k km k∴03252=--m m 53-=⇒m 或1=m (舍去),............(10分)∴PQ 为:53-=kx y , ∴)41(5122221k k x x x M +=+=,)41(532k y M +-=, ∴线段PQ 的中垂线l 为:))41(512(1)41(5322k kx k k y +--=++, ∴在x 轴上截距)41(5920k k x +=,.........................(12分)∴209459)41(5920=⨯≤+=kk k k x , ∴2092090≤≤-x 且00≠x , 综合①②得:线段PQ 的中垂线l 在x 轴上的截距的取值范围是]209,209[-. .............................(15分)20.解:(Ⅰ)当2=b 时,c bx x x f ++-=2)(2在区间]1,1[-上是增函数,则{})1(),1(max g g M -=,.............................(2分)又c g c g +=+-=-3)1(,5)1(,∴⎪⎩⎪⎨⎧>+≤+-=1,31,5c c c c M ...............................(5分)(Ⅱ)c b b x x f x g ++--==22)()()(,(1)当1>b 时,)(x f 在区间]1,1[-上是单调函数,则{})1(),1(max g g M -=, 而c b g c b g ++-=+--=-21)1(,21)1(,∴442121)1()1(2>≥++-++--=+-≥b c b c b g g M ,∴2>M ........................................(8分)(2)当1≤b 时,)(x g 的对称轴b x =在区间]1,1[-内,则{})(),1(),1(max b g g g M -=,又c b b g +=2)(, ①当01≤≤-b 时,有)()1()1(b f f f ≤-≤,则{}21)1(21)1()(21))1()((21)(),1(max 2≥-=-≥+≥=b f b f g b g b g g M , ..................(11分)②当10≤<b 时,有)()1()1(b f f f ≤≤-,则{}21)1(21)1()(21))1()((21)(),1(max 2≥+=--≥-+≥-=b f b f g b g b g g M 综上可知,对任意的c b ,都有21≥M .................(14分) 而当21,0==c b 时,21)(2+-=x x g 在区间]1,1[-上的最大值21=M ,故k M ≥对任意的c b ,恒成立的k 的最大值为21..........(15分)。

【VIP专享】浙江省嘉兴一中2015届高三第一次模拟试卷数学(文)清晰扫描版含word答案

【VIP专享】浙江省嘉兴一中2015届高三第一次模拟试卷数学(文)清晰扫描版含word答案
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。

2015届浙江省嘉兴市第一中学等五校高三上学期第一次联考数学(文)试题

2015届浙江省嘉兴市第一中学等五校高三上学期第一次联考数学(文)试题

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集为R ,集合{}{}221,680xA xB x x x =≥=-+≤,则R AC B =( )A. {}0x x ≤B. {}24x x ≤≤C.{}024x x x ≤<>或 D.{}024x x x ≤<≥或2. 在等差数列{}n a 中,563,2a a ==-,则348a a a ++等于( )A. 1B. 2C. 3D. 4 3. 设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A. 若l m ⊥,m α⊂,则l α⊥ B. 若l α⊥,l m //,则m α⊥ C. 若l α//,m α⊂,则l m // D. 若l α//,m α//,则l m // 4. 设,a b 是实数,则“1a b >>”是“11a b a b+>+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分又不必要条件5. 已知函数()y f x x =+是偶函数,且(2)1f =,则(2)f -=( ) A. 1- B. 1 C. 5- D. 56. 已知函数()cos (,0)4f x x x πωω⎛⎫=+∈> ⎪⎝⎭R 的最小正周期为π,为了得到函数()sin g x x ω=的图象,只要将()y f x =的图象( )A. 向左平移34π个单位长度 B. 向右平移34π个单位长度 C. 向左平移38π个单位长度 D. 向右平移38π个单位长度 7. 设实数y x ,满足⎪⎩⎪⎨⎧≤+≥-≥,4,,2x y x y x y 则4||z y x =-的取值范围是( )A. []6,8--B. ]4,8[-C. ]0,8[-D.[]0,6- 8. 如图,在正四棱锥ABCD S -中,N M E ,,分别是SC CD BC ,,的中点,动点P 在线段MN 上运动时,下列四个结论:①AC EP ⊥;②//EP BD ;③SBD EP 面//;④SAC EP 面⊥.中恒成立的为( )A. ①③B. ③④C. ①②D. ②③④9. 设()f x 是定义在R 上的恒不为零的函数,对任意实数,x y R ∈,都有()()()f x f y f x y ⋅=+,若()()11,2n a a f n n N *==∈,则数列{}n a 的前n 项和n S 的取值范围是( )A. 1,22⎡⎫⎪⎢⎣⎭B. 1,22⎡⎤⎢⎥⎣⎦C. 1,12⎡⎫⎪⎢⎣⎭D. 1,12⎡⎤⎢⎥⎣⎦10 已知函数=)(x f 221,0,2,0,x x x x -⎧-≥⎨+<⎩ =)(x g 22,0,1,0.x x x x x⎧-≥⎪⎨<⎪⎩则函数)]([x g f 的所有零点之和是( )A. 321+-B. 321+C.231+- D. 231+非选择题部分 (共100分)二、 填空题: 本大题共7小题, 每小题4分, 共28分. 11. 函数)2(log 1)(2-=x x f 的定义域为 ▲ .12. 已知1sin()43πθ+=,2πθπ<<,则cos θ= ▲ . 13. 已知某几何体的三视图如图所示, 则该几何体的 体积为 ▲ .14. 已知偶函数()y f x =的图象关于直线1x =对称, 且[]0,1x ∈时,()1f x x =-,则32f ⎛⎫-⎪⎝⎭= ▲ . 15. 设12n ⋅⋅⋅⋅⋅⋅a ,a ,,a ,是按先后顺序排列的一列向量,若1(2014,13)=-a , 且1(1,1)n n --=a a ,则其中模最小的一个向量的序号n = ▲ .16. 设∈b a ,R ,关于x 的方程0)1)(1(22=+-+-bx x ax x 的四个实根构成以q 为公比的等比数列,若]2,31[∈q ,则ab 的取值范围是 ▲ . 17. 已知正四棱锥V ABCD -可绕着AB 任意旋转,//平面CD α.若2AB =,VA =,则正四棱锥V ABCD -在面α内的投影面积的取值范围是 ▲ .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()2cos 2sin .2C B A -= (Ⅰ)求sin sin A B 的值;(Ⅱ)若3,2a b ==,求ABC ∆的面积.19. (本题满分14分)如图所示,正方形ABCD 所在的平面与等腰ABE ∆所在的平面 互相垂直,其中顶120BAE ∠=,4AE AB ==,F 为线段AE 的中点. (Ⅰ)若H 是线段BD 上的中点,求证:FH // 平面CDE ;(Ⅱ)若H 是线段BD 上的一个动点,设直线FH 与平面ABCD 所成角的大小为θ,求tan θ的最大值.20. (本题满分15分)已知数列{}n a 的前n 项和n S 满足(1)(2),n n t S t a -=-(,01)为常数且t t t ≠≠.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1n n b S =-,且数列{}n b 为等比数列.① 求t 的值;② 若()()3log n n n c a b =-⋅-,求数列{}n c 的前n 和n T .21. (本题满分14分)设向量2(2,2)λλα=+a ,(,sin cos )2mm αα+b =,其中,,m λα为实数. (Ⅰ)若12πα=,且,⊥a b 求m 的取值范围;(Ⅱ)若2,=a b 求mλ的取值范围.22. (本题满分15分) 已知函数()()1.f x x x a x R =--+∈(Ⅰ)当1a =时,求使()f x x =成立的x 的值;(Ⅱ)当()0,3a ∈,求函数()y f x =在[]1,2x ∈上的最大值;(Ⅲ)对于给定的正数a ,有一个最大的正数()M a ,使()0,x M a ∈⎡⎤⎣⎦时,都有()2f x ≤,试求出这个正数()M a ,并求它的取值范围.2014学年浙江省第一次五校联考数学(文科)答案说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容制订相应的评分细则.二、对计算题,当考生的题答在某一步出现错误时,如果后续部分的解答未改变该题的内容与难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.(Ⅱ)sin 3sin 2A aB b ==,又1sin sin 2A B =,解得:sin A B ==,因为是锐角三角形,1cos ,cos 2A B ∴==,()sin sin sin cos cos sin C A B A B A B =+=+=11sin 3222S ab C ∆==⨯⨯⨯=…………14分 (19)(Ⅰ)方法1:连接ACABCD 是正方形,H ∴是AC 的中点,有F 是AE 的中点,FH ACE ∴∆是的中位线,,CDE CE CED FH CDE.FH CE ∴⊄⊂而FH 面,面,从而面…………6分方法2:取AD 的中点G ,通过证明GFH CDE FH CDE.面面,从而面(略)(20)解:(Ⅰ)由(1)(2)n n t S t a -=-,及11(1)(2)n n t S t a ++-=-,作差得1n n a ta +=,即数列{}n a 成等比,11n n a a t -=,∵12a t =,故2n n a t =…………5分(Ⅱ)①∵数列{}n b 为等比数列,∴2213b b b =代入得2223(221)(21)(2221)t t t t t t +-=-++- 整理得3262t t =解得13t=或0t =(舍) 故13t = 当13t =时,113n n n b S =-=- 显然数列{}n b 为等比数列…………10分 ②()()32log 3n n n n nc a b =-⋅-=∴12324623333nn n T =++++则23411246233333n n nT +=++++作差得 23111222222122311333333333n n n n n n n n n T ++++=++++-=--=- 故323223n nn T +=-⋅…………15分(22)解:(Ⅰ)1x =…………3分(Ⅱ)当()()()2211x ax x a f x x ax x a ⎧-++≥⎪=⎨-+<⎪⎩,作出示意图,注意到几个关键点的值:2()2(0)()=1,()124a a f x f f a f ===-, 最大值在()()(1),2,f f f a 中取.当()[]()()max 01,1,21a f x f x f a <≤==时在上递减,故;当()[][]()()max 12,1,,21a f x a a f x f a <<==时在上递增,上递减,故;。

浙江省嘉兴市2015年度第一学期高三期末教学质量检测(数学文科) 试题(含详细答案)

浙江省嘉兴市2015年度第一学期高三期末教学质量检测(数学文科) 试题(含详细答案)

浙江省嘉兴市2015年度第一学期高三期末教学质量检测(数学文科)试题(2016年1月)本试卷分第Ⅰ卷和第Ⅱ卷两部分.考试时间120分钟.试卷总分为150分.请考生按规定用笔将所有试题的答案涂、写在答题纸上.参考公式:球的表面积公式 柱体的体积公式S =4πR 2 V =Sh球的体积公式 其中S 表示柱体的底面积,h 表示柱体的高 V =34πR 3 台体的体积公式其中R 表示球的半径V =31h (S 1+21S S +S 2) 锥体的体积公式 其中S 1, S 2分别表示台体的上、下底面积,V =31Sh h 表示台体的高 其中S 表示锥体的底面积,h 表示锥体的高第I 卷(选择题部分,共40分) 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集=U R ,集合}1)21(|{≤=x x A ,}086|{2≤+-=x x x B ,则B A ⋂为 A .}0|{≤x x B .}42|{≤≤x xC .20|{≤<x x 或}4≥xD .20|{<≤x x 或}4>x2.下列函数中,既是奇函数又在区间),0(+∞上为增函数的是A .x y ln =B . 3x y =C .2x y =D .x y sin =3.设βα,是两个不同的平面,m 是直线,且α⊂m ,则“β⊥m ”是“βα⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知平面内三点C B A ,,满足1==CA AB ,3=BC ,则BC AB ⋅为A .23 B .23- C .23 D .23-5.已知函数)2,0)(sin()(πϕωϕω<>+=x A x f 的部分图象如图所示,则=)(πfA .3B .0C .2-D . 16.设{}n a 是等比数列,下列结论中正确的是 A .若021>+a a ,则032>+a a B .若031<+a a ,则021<+a aC .若210a a <<,则3122a a a +<D .若01<a ,则0))((3212>--a a a a7.已知21,F F 分别是椭圆)0(12222>>=+b a by a x 的左右焦点,点A 是椭圆的右顶点,O 为坐标原点,若椭圆上的一点M 满足MO MA MF MF =⊥,21,则椭圆的离心率为A .510 B .32 C .22 D .772 8.若平面点集M 满足:任意点M y x ∈),(,存在),0(+∞∈t ,都有M ty tx ∈),(,则称该点集M 是“t 阶聚合”点集.现有四个命题:①若}2|),({x y y x M ==,则存在正数t ,使得M 是“t 阶聚合”点集;②若}|),({2x y y x M ==,则M 是“21阶聚合”点集; ③若}042|),({22=+++=y x y x y x M ,则M 是“2阶聚合”点集;④若}1|),({22≤+=y x y x M 是“t 阶聚合”点集,则t 的取值范围是]1,0(.其中正确命题的序号为A .①②B .②③C .①④D .③④第Ⅱ卷 非选择题部分 共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.函数x x x f cos sin 3)(⋅=的最小正周期为 ▲ ,)(x f 的最小值是 ▲ .10.已知等差数列}{n a 是递增数列,n S 是}{n a 的前n 项和,若51,a a 是方程09102=+-x x的两个根,则公差=d ▲ ,=5S ▲ .x 125π12π-2xO 2-(第5题图)11.设不等式组⎪⎩⎪⎨⎧≥≤+≤-140x y x y x 表示的平面区域为M ,则平面区域M 的面积为 ▲ ;若点),(y x P 是平面区域内M 的动点,则y x z -=2的最大值是 ▲ .12.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积是 ▲ ,表面积是 ▲ . 13.已知实数y x ,满足13422=++xy y x ,则y x +2的 最大值为 ▲ .14.已知圆心在原点,半径为R 的圆与ABC ∆的边有公共点,其中)4,2(),8,6(),0,4(C B A ,则R 的取值范围是 ▲ .15.在正方体1111D C B A ABCD -中,Q P ,分别是棱11,D A AB 上的动点,若AC PQ ⊥,则PQ与1BD 所成角的余弦值的取值范围是 ▲ .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分14分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且ab c b a 23222=-+. (Ⅰ)求2cosC 的值; (Ⅱ)若2=c ,求ABC ∆面积的最大值.17.(本小题满分15分) 已知数列}{n a 中31=a ,其前n 项和n S 满足23211-=+n n a S . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设}{n b 是公差为3的等差数列,11=b .现将数列}{n a 中的 n b b b a a a ,,,21抽出,按原有顺序组成一新数列}{n c ,试求数列}{n c 的前n 项和n T .(第12题图)1 1 1 正视图 侧视图俯视图3。

2015嘉兴二模 浙江省嘉兴市2015届高三下学期教学测试(二)数学(文)试题 Word版含答案

2015嘉兴二模 浙江省嘉兴市2015届高三下学期教学测试(二)数学(文)试题 Word版含答案

2015年高三教学测试(二)文科数学 试题卷注意事项:1.本科考试分试题卷和答题纸,考生须在答题纸上作答.答题前,请在答题纸的密封线内填写学校、班级、学号、姓名.2.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式:①棱柱的体积公式:Sh V =;②棱锥的体积公式:Sh V 31=;③棱台的体积公式:)(312211S S S S h V ++=;④球的体积公式:334R V π=;⑤球的表面积公式:24R S π=;其中S ,21,S S 表示几何体的底面积,h 表示几何体的高,R 表示球的半径.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若55cos -=θ,]π,0[∈θ,则=θtan A . 21 B .21-C .2-D .22.计算:=⋅2log 3log 94A .41 B .61C .4D .63.一个几何体的三视图如图,则该几何体的体积为A . πB .2πC .3π D .6π4.已知实数y x ,满足:⎪⎩⎪⎨⎧-≥≤+≥)3(231x y y x x ,则y x z +=2的最小值为(第3题)侧视图正视图俯视图A .6B .4C .2-D .4-5.在△ABC 中,“B A cos sin >”是“△ABC 为锐角三角形”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.函数)3π2sin(-=x y 的图象可由函数x y 2cos =的图象 A .向左平移125π而得到 B .向右平移125π而得到 C .向左平移12π而得到D .向右平移12π而得到 7.设1F 、2F 分别为双曲线C :12222=-by a x 0(>a ,)0>b 的左、右焦点,A 为双曲线的左顶点,以21F F 为直径的圆交双曲线一条渐近线于M 、N 两点,且满足︒=∠120MAN ,则该双曲线的离心率为 A .321B .319 C .35D .38.已知函数⎩⎨⎧<-+-≥-+=)0()3(4)0()1()(222x a x x x a k x x f ,其中R ∈a . 若对任意的非零实数1x ,存在唯一的非零实数)(212x x x ≠,使得)()(21x f x f =成立,则k 的取值范围为 A .0≤kB .8≥kC .80≤≤kD .0≤k 或8≥k第Ⅱ卷二、填空题(本大题共7小题,第9-12题每题6分,第13-15题每题4分,共36分) 9.已知全集R =U ,集合}11{≤≤-=x x A ,}02{2≥-=x x x B ,则=B A ▲ ;( A ∨=)B U ▲ .10.若向量与满足2||,2||==b a ,a b a ⊥-)(.则向量与的夹角等于 ▲ ;(第7题)=+||b a ▲ .11.已知函数⎩⎨⎧<+-≥-=)0(2)0(12)(2x x x x x f x ,则=)2(f ▲ ;若1)(=a f ,则=a ▲ .12.若实数0>y ,x 且1=xy ,则y x 2+的最小值是 ▲ ,yx y x 2422++的最小值是 ▲ .13.已知圆05422=--+x y x 的弦AB 的中点为)1,3(M ,则直线AB 的方程为 ▲ . 14.已知数列}{n a 的首项11=a ,且满足)2(11≥=---n a a a a n n n n ,则=+++201520143221a a a a a a ▲ .15.长方体1111D C B A ABCD -中,已知2==AD AB ,31=AA ,棱AD 在平面α内,则长方体在平面α内的射影所构成的图形面积的取值范围是 ▲ .三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤) 16.(本题满分14分)三角形ABC 中,已知C B A B A 222sin sin sin sin sin =++,其中,角C B A 、、所对的边分别为c b a 、、.(Ⅰ)求角C 的大小; (Ⅱ)求+a bc的取值范围.17.(本题满分15分)已知数列}{n a 是等比数列,且满足3652=+a a ,12843=⋅a a . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若数列}{n a 是递增数列,且*)N (log 2∈+=n a a b n n n ,求数列}{n b 的前n 项和n S .18.(本题满分15分)如图,在三棱锥ABC P -中,⊥PA 平面ABC ,22==PC AC ,BC AC ⊥,D 、E 、F 分别为AC 、AB 、AP 的中点,M 、N 分别为线段PC 、PB 上的动点,且有BC MN //.(Ⅰ)求证:⊥MN 面PAC ;(Ⅱ)探究:是否存在这样的动点M ,使得二面角F MN E --为直二面角?若存在,求CM 的长度;若不存在,说明理由.19.(本题满分15分)(第18题)ADPBCFEM N已知抛物线)0(22>=p px y 焦点为F ,抛物线上横坐标为21的点到抛物线顶点的距离与其到准线的距离相等.(Ⅰ)求抛物线的方程;(Ⅱ)设过点)(0,6P 的直线l 与抛物线交于B A ,两点,若以AB 为直径的圆过点F ,求直线l 的方程.20.(本题满分15分)已知函数|1|)(2+-=ax x x f ,R ∈a .(Ⅰ)若2-=a ,且存在互不相同的实数4321,,,x x x x 满足m x f i =)()4,3,2,1(=i ,求实数m 的取值范围;(Ⅱ)若函数)(x f 在]2,1[上单调递增,求实数a 的取值范围.(第19题)2015年高三教学测试(二)文科数学 参考答案一.选择题(本大题有8小题,每小题5分,共40分)1.C ; 2.A ; 3.D ; 4.C ; 5.B; 6.B; 7.A; 8.D .8.【解析】由题意,对任意的非零实数1x ,都存在唯一的非零实数)(212x x x ≠,使得)()(21x f x f =成立,也即函数图象除0=x 外,其余均是一个函数值对应两个自变量,结合图象可知:22)3()1(a a k -=-,即096)1(2=-+-+k a a k 当R a ∈时始终有解, 因此0)9)(1(436≥-+-=∆k k , 082≥-k k ,因此0≤k 或8≥k .二、填空题(本大题共7小题,第9-12题每空3分,第13-15题每空4分,共36分)9.]0,1[-,)2,1[- 10.4π,10 11.3,1 12. 22,213.04=-+y x 14.2015201415. ]132,4[ 15.【解析】四边形ABCD 和11A ADD 的面积分别为4和6,长方体在平面α内的射影可由这两个四边形在平面α内的射影组合而成. 显然,4min =S . 若记平面ABCD 与平面α所成角为θ,则平面11A ADD 与平面α所成角为θπ-2. 它们在平面α内的射影分别为θcos 4和θθπsin 6)2cos(6=-,所以,)sin(132sin 6cos 4ϕθθθ+=+=S (其中,32tan =ϕ),因此,132max =S ,当且仅当ϕπθ-=2时取到. 因此,1324≤≤S .三、解答题:(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤) 16.(本题满分14分)三角形ABC 中,已知C B A B A 222sin sin sin sin sin =++,其中,角C B A 、、所对的边分别为c b a 、、.(Ⅰ)求角C 的大小;(Ⅱ)求+a bc的取值范围. 16.【解析】(Ⅰ)由正弦定理得:ab c b a -=-+222,∴由余弦定理得:212c o s 222-=-+=ab c b a C ,∴32π=C . …6分(Ⅱ)由正弦定理得:)s i n (s i n 332s i n s i n s i n B A C B A c b a +=+=+又3π=+B A ,∴A B -=3π,∴)3s i n ()3s i n (s i n s i n s i n ππ+=-+=+A A A B A ,而30π<<A ,∴3233πππ<+<A , ∴]1,23(s i n s i n∈+B A ,∴]332,1(∈+c b a . …14分17.(本题满分15分)已知数列}{n a 是等比数列,且满足3652=+a a ,12843=⋅a a . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若数列}{n a 是递增数列,且*)N (log 2∈+=n a a b n n n ,求数列}{n b 的前n 项和n S . 17.【解析】(Ⅰ)因为}{n a 是等比数列,所以1285243=⋅=⋅a a a a ,又3652=+a a因此2a ,5a 是方程0128362=+-x x ,可解得:⎩⎨⎧==32452a a ,或⎩⎨⎧==43252a a ,因此⎩⎨⎧==221q a ,或⎪⎩⎪⎨⎧==21641q a所以,nn a 2=或n n n a --=⎪⎭⎫ ⎝⎛⨯=7122164…9分(Ⅱ)数列}{n a 是递增数列,所以n n a 2=,n a a b n n n n +=+=2log 22)1(22)21()222(121++-=+++++++=+n n n S n n n …15分18.(本题满分15分)如图,在三棱锥ABC P -中,⊥PA 平面ABC ,22==PC AC ,BC AC ⊥,D 、E 、F 分别为AC 、AB 、AP 的中点,M 、N 分别为线段PC 、PB 上的动点,且有BC MN //.(Ⅰ)求证:⊥MN 面PAC ;(Ⅱ)探究:是否存在这样的动点M ,使得二面角F MN E --为直二面角?若存在,求CM 的长度;若不存在,说明理由. 18.【解析】(Ⅰ)∵⊥PA 平面ABC ,∴BC PA ⊥,又BC AC ⊥,∴⊥BC 面PAC ; 又∵BC MN //,∴⊥MN 面PAC .…6分(Ⅱ) 由条件可得,FMD ∠即为二面角F MN E --的平面角;若二面角F MN E --为直二面角,则︒=∠90FMD .在直角三角形PCA 中,设)20(,≤≤=t t CM ,则t PM -=2, 在MDC ∆中,由余弦定理可得, t t CD CM CD CM DM 214160cos 22222-+=︒⋅-+=; 同理可得,)2(2343)2(30cos 22222t t PF PM PF PM FM --+-=︒⋅-+=; 又由222MD FM FD +=,得01322=+-t t ,解得1=t 或21=t .∴存在直二面角F MN E --,且CM 的长度为1或21. …15分19.(本题满分15分)已知抛物线)0(22>=p px y 焦点为F ,抛物线上横坐标为21的点到抛物线顶点的距离与其到准线的距离相等.(Ⅰ)求抛物线的方程;(Ⅱ)设过点)(0,6P 的直线l 与抛物线交于B A ,两点,若以AB 为直径的圆过点F ,求直线l 的方程.19.【解析】(Ⅰ)抛物线的方程为:x y 42=.…6分(Ⅱ)由题意可知,直线l 不垂直于y 轴可设直线6:+=m y x l ,(第18题)ADPBCFEMN(第19题)则由⎩⎨⎧+==642m y x x y 可得,02442=--m y y ,设),(),,(2211y x B y x A ,则⎩⎨⎧-==+2442121y y my y ,因为以AB 为直径的圆过点F ,所以FB FA ⊥,即0=⋅FB FA 可得:0)1)(1(2121=+--y y x x∴25)(5)1()1)(1(212122121++++=+--y y m y y m y y x x02520)1(2422=+++-=m m ,解得:21±=m ,∴直线621:+±=y x l ,即0122:=-±y x l . …15分20.(本题满分15分)已知函数|1|)(2+-=ax x x f ,R ∈a .(Ⅰ)若2-=a ,且存在互不相同的实数4321,,,x x x x 满足m x f i =)()4,3,2,1(=i ,求实数m 的取值范围;(Ⅱ)若函数)(x f 在]2,1[上单调递增,求实数a 的取值范围. 20.【解析】(Ⅰ)若2-=a ,则⎪⎪⎩⎪⎪⎨⎧>+-≤-+=+--=)21(12)21(12|12|)(222x x x x x x x x x f ,, 当21≤x 时,2)1()(min -=-=f x f ;当21>x 时,)(x f 41)21(=f ,此时,)(x f 的图像如图所示 要使得有四个不相等的实数根满足m x f =)(, 即函数m y =与)(x f y =的图像有四个不同的交点,因此m 的取值范围为)41,0(.…6分(Ⅱ)(1)若0=a ,则1)(2-=x x f ,在]2,1[上单调递增,满足条件;(2)若0>a ,则⎪⎪⎩⎪⎪⎨⎧-<++-≥--=)1(,1)1(,1)(22a x ax x ax ax x x f ,只需考虑a x 1-≥的时候此时)(x f 的对称轴为2a x =,因此,只需12≤a,即:20≤<a (3)若0<a ,则⎪⎪⎩⎪⎪⎨⎧->++-≤--=)1(,1)1(,1)(22a x ax x ax ax x x f结合函数图像,有以下情况:○1a a 12-≤-,即02<≤-a 时,此时)(x f 在),2[+∞a内单调递增,因此在]2,1[ 内也单调递增,满足条件;○2aa 12->-,即2-<a 时, )(x f 在]1,2[a a -和),2[+∞-a如图所示,只需21≥-a 或12≤-a,解得:22-<≤-a ;由○1○2可得,a 的取值范围为:2<≤-a 由(1)、(2)、(3)得,实数a 的取值范围为:22≤≤-a …15分命题人沈勤龙、黄海平、吴旻玲、刘 舸吴明华、张启源、徐连根、沈顺良、李富强、吴林华2015年3月。

浙江省嘉兴市2015届高三下学期教学测试(一)数学(文)试题 含解析

浙江省嘉兴市2015届高三下学期教学测试(一)数学(文)试题 含解析

浙江省嘉兴市2015届高三下学期教学测试(一)数学(文)试题第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1。

已知集合},3,1{m A =,},1{m B =,A B A = ,则=mA .0或3B .0或3C .1或3D .1或3【答案】B考点:集合间的基本关系.2.已知角θ的终边过点)3,4(-,则=-)cos(θπA .53B .53-C .54D .54-【答案】D 【解析】试题分析:因为角θ的终边过点)3,4(-,则54cos =θ,所以=-)cos(θπ54cos -=-θ,故应选D 。

考点:任意角的三角函数值。

3.三条不重合的直线c b a ,,及三个不重合的平面γβα,,,下列命题正确的是A .若n m n ⊥=⊥,,βαβα ,则α⊥mB .若m n m ,,βα⊂⊂∥n ,则α∥βC .若m ∥n ,α∥n m ⊥,β,则βα⊥D .若ββα⊥⊥⊥m n n ,,,则α⊥m【答案】D 【解析】试题分析:A .若n m n ⊥=⊥,,βαβα ,则α⊥m 或α⊂m 或α,m 是不垂直的相交;B .若m n m ,,βα⊂⊂∥n ,则α∥β或相交;C .若m ∥n ,α∥n m ⊥,β,则βα⊥或βα//或βα,是不垂直的相交. 考点:空间几何元素的位置关系. 4。

命题① “b a >”是“22bc ac >"的充要条件;②x x y --=22是奇函数;③“q p ∨"为真,则“q p ∧”为真;④若集合A B A = ,则B A ⊆,其中真命题的个数有 A .1个 B . 2个 C .3个 D .4个【答案】B 【解析】试题分析:①当0=c 时,b a >⇒/22bc ac>所以错误;②()()()x f x f x x x x -=--=-=---2222所以正确;③“q p ∨"为真,q p ,有可能是一真一假所以错误;④若集合A B A = ,则B A ⊆正确. 考点:命题真假的判断。

高考第一学期嘉兴市高三期末教学质量检测.docx

高考第一学期嘉兴市高三期末教学质量检测.docx

高中数学学习材料马鸣风萧萧*整理制作2015-2016学年度第一学期嘉兴市高三期末教学质量检测(数学理科) (2016年1月)本试卷分第Ⅰ卷和第Ⅱ卷两部分.考试时间120分钟.试卷总分为150分.请考生按规定用笔将所有试题的答案涂、写在答题纸上. 参考公式:球的表面积公式 柱体的体积公式S =4πR 2V =Sh球的体积公式 其中S 表示柱体的底面积,h 表示柱体的高 V =34πR 3 台体的体积公式其中R 表示球的半径 V =31h (S 1+21S S +S 2) 锥体的体积公式 其中S 1, S 2分别表示台体的上、下底面积, V =31Sh h 表示台体的高其中S 表示锥体的底面积,h 表示 如果事件A ,B 互斥,那么 锥体的高 P (A +B )=P (A )+P (B )第I 卷(选择题部分,共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集=U R ,集合}1)21(|{≤=x x A ,}086|{2≤+-=x x x B ,则图中阴影部分所表示的集合为A .}0|{≤x xB .}42|{≤≤x xC .{}420|≥≤<x x x 或D .}420|{><≤x x x 或 2.设βα,是两个不同的平面,m 是直线,且α⊂m ,则 “β⊥m ”是“βα⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A BU(第1题图)3.为了得到函数)12sin(+=x y 的图象,只需把函数x y 2sin =的图象上所有的点A .向左平移1个单位长度B .向右平移1个单位长度C .向左平移21个单位长度D .向右平移21个单位长度4.某几何体的三视图如图所示,则该几何体的体积是A .34πB .35πC .322π+D .324π+ 5.设{}n a 是等比数列,下列结论中正确的是 A .若021>+a a ,则032>+a a B .若031<+a a ,则021<+a a C .若210a a <<,则3122a a a +< D .若01<a ,则0))((3212>--a a a a6.已知圆心在原点,半径为R 的圆与ABC ∆的边有公共点,其中)4,2(),8,6(),0,4(C B A ,则R 的取值范围是 A .]10,558[B .]10,4[C .]10,52[D .]10,556[ 7.设函数⎩⎨⎧≥<+=1,31,12)(x x x x f x ,则满足)(3))((m f m f f =的实数m 的取值范围是A .⎭⎬⎫⎩⎨⎧--∞21]0,( B .]1,0[ C .⎭⎬⎫⎩⎨⎧-∞+21),0[ D .),1[∞+ 8.设)4(,,,21≥n A A A n 为集合{}n S ,,2,1 =的n 个不同子集,为了表示这些子集,作n 行n 列的数阵,规定第i 行第j 列的数为:⎪⎩⎪⎨⎧∈∉=j jij A i A i a ,1,0.则下列说法中,错误的是A .数阵中第一列的数全是0当且仅当φ=1AB .数阵中第n 列的数全是1当且仅当S A n =C .数阵中第j 行的数字和表明集合j A 含有几个元素D .数阵中所有的2n 个数字之和不超过12+-n n非选择题部分(共110分)(第4题图)侧视图俯视图正视图2112nnn n n na a a a a a a a a ,,,,,,,,,212222111211二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9.双曲线C :1422=-y x 的离心率是 ▲ ,焦距是 ▲ .10.已知ABC ∆满足1,3,1===CA BC AB ,则=⋅BC AB ▲ ,又设D 是BC 边中线AM 上一动点,则=⋅BC BD ▲ .11.设不等式组⎪⎩⎪⎨⎧≥≤+≤-140x y x y x 表示的平面区域为M ,点),(y x P 是平面区域内的动点,则y x z -=2的最大值是 ▲ ,若直线l :)2(+=x k y 上存在区域M 内的点,则k 的取值范围是 ▲ . 12.已知函数)2sin(sin 3sin )(2x x x x f ωπωω+⋅+=,)0(>ω的最小正周期是π,则=ω____▲__ _,)(x f 在]2,4[ππ上的最小值是 ▲ .13.长方体1111D C B A ABCD -中,1,21==AA AB ,若二面角A BD A --1的大小为6π,则1BD 与面BD A 1所成角的正弦值为 ▲ .14.已知实数y x ,满足0>>y x 且1=+y x ,则yx y x -++132的最小值是 ▲ . 15.在平面直角坐标系中,定义点),(11y x P 与),(22y x Q 之间的“直角距离”为2121),(y y x x Q P d -+-=.某市有3个特色小镇,在直角坐标系中的坐标分别为)8,3(),9,6(),3,2(---C B A ,现该市打算建造一个物流中心,如果该中心到3个特色小镇的直角距离相等,则物流中心对应的坐标为 ▲ .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.(本题满分14分)ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且B A C B A sin sin 3)sin sin (sin 2222=-+.(Ⅰ)求2sin 2BA +的值; (Ⅱ)若2=c ,求ABC ∆面积的最大值.17.(本题满分15分)边长为2的正方形ABCD 所在的平面与CDE ∆所在的平面交于CD ,且⊥AE 平面CDE ,1=AE . (Ⅰ)求证:平面⊥ABCD 平面ADE ;(Ⅱ)设点F 是棱BC 上一点,若二面角F DE A --的ABF余弦值为1010,试确定点F 在BC 上的位置.18.(本题满分15分)已知等比数列{}n a 中31=a ,其前n 项和n S 满足231-⋅=+n n a p S (p 为非零实数). (Ⅰ)求p 值及数列{}n a 的通项公式;(Ⅱ)设{}n b 是公差为3的等差数列,11=b .现将数列{}n a 中的 n b b b a a a ,,,21抽去,余下项按原有顺序组成一新数列{}n c ,试求数列{}n c 的前n 项和n T .19.(本题满分15分)已知中心在原点O ,焦点在x 轴上的椭圆的一个顶点为)1,0(B ,B 到焦点的距离为2. (Ⅰ)求椭圆的标准方程;(Ⅱ)设Q P ,是椭圆上异于点B 的任意两点,且BQ BP ⊥,线段PQ 的中垂线l 与x 轴的交点为)0,(0x ,求0x 的取值范围.xy BQPOl20.(本题满分15分)已知函数c bx x x f ++-=2)(2,设函数)()(x f x g =在区间]1,1[-上的最大值为M . (Ⅰ)若2=b ,求M 的值;(Ⅱ)若k M ≥对任意的c b ,恒成立,试求k 的最大值.嘉兴市2015—2016学年第一学期期末检测高三理科数学 参考答案一.选择题(本大题有8小题,每小题5分,共40分)1~4 DACB ;5~8 CACC ;8.解析:数阵中第一列的数全是0,当且仅当111,,2,1A n A A ∉∉∉ ,∴A 正确;数阵中第n列的数全是1当且仅当n n n A n A A ∈∈∈,,2,1 ,∴B 正确;当n A A A ,,,21 中一个为S 本身,其余1-n 个子集为S 互不相同的1-n 元子集时,数阵中所有的2n 个数字之和最大,且为1)1(22+-=-+n n n n ,∴D 正确;数阵中第j 行的数字和表明元素j 属于几个子集,∴C 错误.二.填空题(本大题有7小题,共36分,请将答案写在答题卷上)9.25, 52; 10.23-, 23;11.2, ]1,31[;12.1, 1 ; 13.3451; 14.2223+; 15.)0,5(-.15.解析:设物流中心为),(y x D 由条件:⎪⎩⎪⎨⎧+++=-++-++=-+-)2(8396)1(9632 y x y x y x y x ,易知:98,2<<-<y x ,∴由(2)得:8396+++=-++y x y x ,∴41)3()6(1362=++-+≤++-+=x x x x y ,∴2≤y , ∴由(1)得:y x y x -++=-+-9632, ∴546-=⇒--=+x x x ,∴0)136(21=++-+=x x y ∴)0,5(-D .三、解答题:(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤) 16.解:(Ⅰ)由正弦定理得:ab c b a 3)(2222=-+,....................(2分)∴由余弦定理得:432c o s 222=-+=ab c b a C ,.................(4 分)∴872c o s 12c o s 2s i n 22=+==+C C B A .......................(7分)(Ⅱ)若2=c ,则由(Ⅰ)知:ab ab ab ab b a =-≥-+=343)(2822,..(9分) 又47s i n =C ,...........................................(11分)∴747821sin 21=⨯⨯≤=∆C ab S ABC , 即ABC ∆面积的最大值为7..............................(14分)17.解:(Ⅰ)∵⊥AE 平面CDE ,∴CD AE ⊥,...........................................(2 分) 又∵CD AD ⊥,A AD AE = ,∴⊥CD 面A D E ,.......................................(4分) 又⊂CD 面ABCD ,∴平面⊥A B C D 平面A D E...............................(6分)(Ⅱ)∵DE CD ⊥,∴如图,建立空间直角坐标系xyz D -, 则:)0,0,3(),0,2,0(),0,0,0(E C D , ∴)0,2,0(==DC AB ,∴)1,2,3(B ,..............(8分) 设)1,0,3(λλ==CB CF ,]1,0[∈λ 则:),2,3(λλF ...........(10分)设平面FDE 的法向量为),,(z y x n =,则⎪⎩⎪⎨⎧==⋅=++=⋅03023x DE n z y x DF n λλ,∴取)2,,0(-=λn ,.......(12分) 又平面ADE 的法向量为)0,1,0(=m , ∴10104,cos 2=+=⋅>=<λλnm n m n m ,∴32=λ,.........(14分) 故当点F 满足CB CF 32=时,二面角F DE A --的余弦值为1010...(15分)18.解:(Ⅰ)∵231-⋅=+n n a p S ,323211=-==∴pa a S ,∴p a 292=,又∵231-⋅=+n n a p S ,∴)2(,231≥-⋅=-n a p S n n ,相减得:)2(11≥+=+n pp a a n n ,∵{}n a 是等比数列,.........(3分) ∴p p p 231=+,∴21=p ,312==∴a a q 又31=a ,∴n n a 3=,..................................(6分)所以n n a p 3,21==.....................................(7分)(Ⅱ)23)1(1-=-+=n d n b b n ,...............................(8分)抽去的项为 ,,,,,23741-k a a a aCB AEDxzyF数列{}n c 为 ,,,,,,,,313986532k k a a a a a a a a - ,.............(10分) (1) 当m n 2=时,)()()(3136532m m n a a a a a a T ++++++=-L133133133433---⋅=+=+k k k k k a a ,23332334+++⋅=+k k k a a (),3,2,1 =k{}k k a a 313+∴-是以36为首项,27为公比的等比数列,∴)127(1318271)271(3622-=--=nnn T .........................(12分)(2)当12-=m n 时,)()()(133386532--+++++++=m m n a a a a a a a T L , 331333133331033-----⋅=+=+k k k k k a a ,k k k k k a a 323323331033⋅=+=+++, {}233++∴k k a a 是以270为首项,27为公比的等比数列, 13182713135271)271(27092121-⋅=--+=∴--n n n T .................(15分)19.解:(Ⅰ)由条件:2,1==a b ,∴椭圆的标准方程为:1422=+y x ...(4分)(Ⅱ)①当直线PQ 斜率0=k 时,线段PQ 的中垂线l 在x 轴上的截距为0; ②设PQ :)0(,≠+=k m kx y ,则:0448)41(4422222=-+++⇒⎩⎨⎧=++=m k m x x k y x mkx y ,...........(6分) 设),(),,(2211y x Q y x P ,则⎪⎪⎩⎪⎪⎨⎧+-=+-=+22212214144418k m x x k km x x ,∵BQ BP ⊥, ∴0)1)(1(2121=--+=⋅y y x x BQ BP ,....................(8分)∴ 0)1())(1()1(221212=-++-++m x x m k x x k0)1(418)1(4144)1(22222=-++⋅--+-⋅+m k kmm k km k∴03252=--m m 53-=⇒m 或1=m (舍去),............(10分)∴PQ 为:53-=kx y , ∴)41(5122221k k x x x M +=+=,)41(532k y M +-=, ∴线段PQ 的中垂线l 为:))41(512(1)41(5322k kx k k y +--=++, ∴在x 轴上截距)41(5920k k x +=,.........................(12分)∴209459)41(5920=⨯≤+=kk k k x , ∴2092090≤≤-x 且00≠x , 综合①②得:线段PQ 的中垂线l 在x 轴上的截距的取值范围是]209,209[-. .............................(15分)20.解:(Ⅰ)当2=b 时,c bx x x f ++-=2)(2在区间]1,1[-上是增函数,则{})1(),1(max g g M -=,.............................(2分)又c g c g +=+-=-3)1(,5)1(,∴⎪⎩⎪⎨⎧>+≤+-=1,31,5c c c c M ...............................(5分)(Ⅱ)c b b x x f x g ++--==22)()()(,(1)当1>b 时,)(x f 在区间]1,1[-上是单调函数,则{})1(),1(max g g M -=, 而c b g c b g ++-=+--=-21)1(,21)1(,∴442121)1()1(2>≥++-++--=+-≥b c b c b g g M ,∴2>M ........................................(8分)(2)当1≤b 时,)(x g 的对称轴b x =在区间]1,1[-内,则{})(),1(),1(max b g g g M -=,又c b b g +=2)(, ①当01≤≤-b 时,有)()1()1(b f f f ≤-≤,则{}21)1(21)1()(21))1()((21)(),1(max 2≥-=-≥+≥=b f b f g b g b g g M , ..................(11分)②当10≤<b 时,有)()1()1(b f f f ≤≤-,则{}21)1(21)1()(21))1()((21)(),1(max 2≥+=--≥-+≥-=b f b f g b g b g g M 综上可知,对任意的c b ,都有21≥M .................(14分) 而当21,0==c b 时,21)(2+-=x x g 在区间]1,1[-上的最大值21=M ,故k M ≥对任意的c b ,恒成立的k 的最大值为21..........(15分)。

2014-2015年浙江省嘉兴市高三上学期期末数学试卷(文科)和答案

2014-2015年浙江省嘉兴市高三上学期期末数学试卷(文科)和答案

第 1 页(共 22 页)
所示,则 ω,φ 的值分别为( A.2,﹣ B.2,﹣
) C.4,﹣ D.4,
7. (5 分)已知{an}为等差数列,其公差为﹣2,且 a7 是 a3 与 a9 的等比中项,Sn 为{an}的前 n 项和,n∈N*,则 S10 的值为( A.﹣110 B.﹣90 C.90 ) D.110
M, 问: 是否存在点 P 使得△PQA 和△PAM 的面积满足 S△PQA=2S△PAM?若存在, 求出点 P 的坐标;若不存在,说明理由.
第 4 页(共 22 页)
2014-2015 学年浙江省嘉兴市高三 (上) 期末数学试卷 (文 科)
参考答案与试题解析
一、选择题(本大题共 10 小题,每小题 5 分,满分 50 分.在每小题给出的四个 选项中,只有一项是符合题目要求的) 1. (5 分)设集合 M={x|x2﹣2x﹣3<0},N={x|2x<2},则 M∩∁RN 等于( A.[﹣1,1] B. (﹣1,0) C.[1,3) D. (0,1) )
,AD⊥PB,
(Ⅰ)若 M 是侧棱 PB 中点,求证:CM∥平面 PAD; (Ⅱ)求直线 PB 与平面 PCD 所成角的正弦值. 21. (15 分)设 a 为实数,函数 f(x)=2x2+(x﹣a)|x﹣a|. (Ⅰ)若 f(1)≥3,求 a 的取值范围; (Ⅱ)求 f(x)的最小值. 22. (15 分)在平面直角坐标系 xOy 中,已知点 A(﹣1,1) ,P 是动点,且三角 形 POA 的三边所在直线的斜率满足 kOP+kOA=kPA. (Ⅰ)求点 P 的轨迹 C 的方程; (Ⅱ)若 Q 是轨迹 C 上异于点 P 的一个点,且 ,直线 OP 与 QA 交于点
三、解答题(本大题共 5 小题,满分 72 分,解答应写出文字说明、证明过程或 演算步骤) 18. (14 分)已知函数 f(x)=cos2ωx+ (1)求 f(x)的单调递增区间; (2)在△ABC 中,a、b、c 分别是角 A、B、C 的对边,若 f(A)=1,b=1,△ABC 的面积为 ,求 a 的值. sinωxcosωx(ω>0)的最小正周期为 π.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档