基坑监测报告

合集下载

深基坑监测报告

深基坑监测报告

深基坑监测报告1. 概述本文档为深基坑监测报告,旨在对深基坑施工过程中的监测情况进行综合分析和总结。

深基坑是指在地下挖掘的较大规模工程,主要用于承载建筑物或其他重型结构的地下部分。

深基坑监测的目的是为了确保基坑施工过程中的安全和稳定。

2. 监测方法为了全面了解深基坑施工过程中的变形和变化情况,采用了以下监测方法:1.测量法:通过在基坑周围设置测量点,使用测距仪、水准仪等设备对基坑周边地面和结构物进行定期测量,以获取基坑变形参数,如位移、倾斜等数据。

2.应力监测:在深基坑内部设置应力监测点,利用应变计进行连续监测,以获取基坑周边土体的变形状态。

3.水位监测:安装水位监测设备,对基坑中的地下水位和孔隙水压进行实时监测,以确保基坑施工过程中的排水措施的有效性。

3. 监测结果通过对深基坑的监测数据进行分析,得到以下结果:1.位移和倾斜:监测数据显示,基坑周边的地面和结构物在挖掘过程中发生了一定的位移和倾斜,但均未超出安全范围。

这表明基坑施工过程中,地面和结构物的变化较小,具有较好的稳定性。

2.孔隙水压:水位监测数据显示,基坑周边地下水位在施工过程中有所变化,但在排水措施的有效管理下,孔隙水压得到了有效控制,保证了基坑周边土体的稳定性。

3.应力状态:应力监测数据显示,基坑周边土体的应力状态相对稳定,变形较小,符合设计要求。

在基坑施工过程中,土体的变形主要集中在基坑边界附近,较小的变形对周边建筑物和结构无影响。

4. 监测结论基于以上监测结果的分析,总结如下:1.基于测量和监测数据的分析,深基坑的施工过程中表现出较好的稳定性。

2.水位监测数据显示,排水系统的设计和施工是有效的,确保了基坑周边土体的稳定性。

3.出现的位移和倾斜在允许范围内,不会对周边建筑物和结构造成重大影响。

4.基坑施工过程中的应力状态符合设计要求,土体的变形主要集中在基坑边界附近。

基于以上结论,可以确认深基坑的施工过程中,监测结果显示基坑具备较好的安全性和稳定性。

深基坑监测总结报告内容

深基坑监测总结报告内容

深基坑监测总结报告内容1. 简介深基坑工程是指在城市建设中需要修建的较深的地下结构,常见于高层建筑、地下车库等工程项目中。

由于深基坑在施工过程中具有较大的工程风险,因此需要进行监测以确保工程的安全进行。

本报告总结了某深基坑监测项目的监测过程、结果分析和改进建议。

2. 监测过程2.1 监测目标本次监测的目标为对深基坑工程的变形、应力、裂缝等进行实时监测,以及传感器数据的采集和处理。

2.2 监测方法本次监测采用了传感器监测和现场观察相结合的方法。

传感器监测主要包括水位传感器、内力传感器、位移传感器等。

现场观察主要由专业技术人员进行,观察变形情况、裂缝状况等。

2.3 监测结果在监测期间,通过传感器采集到了大量的监测数据,并经过处理得出了以下结果:- 变形:深基坑的变形主要表现为周边土壤的沉降和深基坑本身的位移。

监测结果显示,深基坑的沉降速度逐渐减小,位移整体稳定。

- 应力:监测结果显示,深基坑的应力分布均匀,未出现明显的应力集中现象。

- 裂缝:观察结果显示,深基坑周边土体出现了一些细微的裂缝,但未出现明显的裂缝扩展。

3. 结果分析3.1 变形分析深基坑的变形主要受土壤本身性质和周边环境的影响。

通过监测结果可以看出,深基坑的变形速度逐渐减小是正常现象,表明土壤基本稳定。

然而,变形仍然存在一定的风险,需要继续进行监测和分析。

3.2 应力分析深基坑的应力分布均匀表明施工过程中没有明显的超载现象,但不排除可能存在局部应力异常的情况。

应力异常可能导致结构的破坏,因此需要继续关注应力变化并及时采取相应的措施。

3.3 裂缝分析深基坑周边土体的细微裂缝可能是由于土壤固结引起的,一般属于正常现象。

然而,如果裂缝扩展较大,可能会对结构产生不利影响。

因此,需要持续观察裂缝的变化情况,并及时采取适当的补强措施。

4. 改进建议根据本次监测的结果分析,提出以下改进建议:- 继续进行深基坑的实时监测,以更全面地了解深基坑的变形、应力和裂缝情况。

基坑水平位移监测报告

基坑水平位移监测报告

基坑水平位移监测报告一、引言基坑工程是建筑工程或地下设施建设的重要组成部分,通过对基坑的水平位移进行监测能够对基坑的稳定性进行评估。

本报告旨在对基坑工程的水平位移监测进行分析和评估。

二、监测方案1.监测目标:本次监测的目标是对基坑工程的水平位移进行实时监测,评估基坑的变形情况,确保基坑的稳定性。

2.监测方法:本次监测采用全站仪进行监测,通过对基坑周边的固定点进行连续观测,并记录监测数据。

3.监测时间:监测时间为从基坑开挖开始至基坑边坡稳定后的一段时间,共计3个月。

4.监测频率:每天进行连续观测,每次观测时间为30分钟。

5.监测点的选择:共选择了10个监测点,分布在基坑周边的固定墙面上,并采用固定螺栓进行固定。

三、监测结果1.监测数据的处理:对每次观测得到的数据进行整理和分析,并计算出每个监测点的水平位移。

2.监测数据的结果表格如下所示:监测点编号,监测日期,初始水平位移(mm),第1次观测水平位移(mm),第2次观测水平位移(mm),…… ,第90次观测水平位移(mm)-----------,----------,-------------------,----------------------,----------------------,-----,-----------------------1,2024.1.1,0,2,4,……,82,2024.1.1,0,1,3,……,7……,……,……,……,……,……,……10,2024.1.1,0,3,5,……,9(插入监测结果图)四、分析与评估1.初始水平位移分析:通过对初始水平位移数据进行分析,可以发现在基坑开挖之前,各个监测点的水平位移均为0,说明基坑围护结构的初期稳定性良好。

2.观测水平位移变化分析:通过对观测水平位移数据的变化进行分析,可以发现水平位移在观测期间呈逐渐增加的趋势,但增加速度逐渐减缓。

这说明基坑在开挖过程中发生了一定的变形,但整体变形趋于稳定。

深基坑监测报告

深基坑监测报告

深基坑监测报告1. 引言深基坑工程是指在建筑施工中挖掘深度较大的大型坑洞,用于地下建筑或地下结构的建造。

由于深基坑施工对周围环境和地下水位会产生较大的影响,因此需要进行监测和评估,以确保施工安全和项目顺利进行。

本报告旨在对某深基坑工程的监测结果进行分析和总结。

2. 监测目标和方法2.1 监测目标本次深基坑监测主要关注以下几个方面: - 坑壁位移:监测坑壁的水平和垂直位移,以评估土体的稳定性。

- 地下水位:监测地下水位的变化,以确保施工期间地下水的控制。

- 周边建筑物变形:监测周边建筑物的变形,以避免对周围环境造成不可逆的损害。

2.2 监测方法 - 坑壁位移监测:采用测斜仪对深基坑周边的地表进行定期监测,以获取土体位移的数据。

- 地下水位监测:在深基坑周围设置水位监测井,通过定期测量水位来评估地下水的变化情况。

- 建筑物变形监测:采用全站仪对周边建筑物进行定期测量,以获取建筑物变形的数据。

3. 监测结果分析3.1 坑壁位移根据测斜仪的监测数据分析,深基坑的坑壁水平位移整体趋势较小,变化范围在正负1毫米之间。

垂直位移方面,坑壁在施工初期有一定的下沉,但施工后逐渐趋于稳定。

整体而言,坑壁的位移变化在可接受范围内,土体稳定性较好。

3.2 地下水位通过水位监测井的数据分析,地下水位在深基坑施工期间有一定的上升趋势,但在合理控制范围内。

通过采取相应的降水措施,地下水位得到了有效控制。

在施工结束后,地下水位逐渐恢复到原有水平。

3.3 建筑物变形通过全站仪的测量数据分析,周边建筑物的变形情况较小,变化范围在正负2毫米之间。

建筑物的变形主要受到深基坑施工活动的影响,但没有出现明显的破坏性变形。

施工过程中,根据监测结果及时采取了相应的补偿措施,确保了周边建筑物的稳定性。

4. 结论与建议4.1 结论根据本次深基坑监测的结果分析,可以得出以下结论: - 深基坑的土体位移变化在可接受范围内,土体稳定性较好。

- 地下水位在施工期间得到了有效控制,未对周围环境造成不可逆的影响。

基坑监测总结报告

基坑监测总结报告

基坑监测总结报告一、引言基坑监测是在建筑施工中非常重要的一项工作,其目的是为了及时掌握基坑的变形情况,保证施工的安全性和稳定性。

本报告总结了一次基坑监测的过程和结果,并对监测数据进行了分析和评价。

二、监测目标和方法本次基坑监测的目标是掌握基坑的变形情况,特别是地下水位的变化和基坑的沉降情况。

监测方法主要包括以下几方面:1.地下水位监测:利用水位计定时定点采集地下水位数据,并进行记录和分析。

2.基坑侧壁变形监测:采用全站仪进行基坑的侧壁变形监测,包括侧壁的位移和倾斜情况。

3.基坑底部沉降监测:利用测量水准仪定时测量基坑底部的沉降情况,并记录和分析数据。

三、监测结果根据监测数据的统计和分析,得出以下结果:1.地下水位变化较为稳定,在施工过程中水位基本保持不变。

这说明基坑附近的地下水状况相对稳定,对施工没有明显的影响。

2.基坑侧壁的变形情况较小,位移和倾斜均在设计范围内。

说明基坑的支护结构和施工工艺是合理的,满足了安全性和稳定性的要求。

3.基坑底部存在一定的沉降,但变化趋势平稳。

这可能是由于地下水位的变化和基坑开挖引起的。

然而,沉降量在合理范围内,不会对施工造成太大的影响。

四、评价和建议根据本次监测的结果,可以对施工进行评价和提出建议:1.施工工艺和支护结构的设计是合理的,能够满足基坑的安全性和稳定性要求。

因此,在后续的施工过程中可以继续使用相同的工艺和结构。

2.地下水位变化较小,对施工没有明显的影响。

因此,在后续施工中可以继续进行相同的地下水处理和排水工作。

3.基坑底部的沉降量在合理范围内,但仍需要继续监测和控制。

建议定期进行测量,并根据监测数据及时采取相应的措施。

4.在基坑施工过程中,需要加强施工人员的安全意识和培训,确保他们具备监测数据的正确使用和分析能力。

五、结论基坑监测是保证建筑施工安全性和稳定性的重要环节。

通过本次监测,我们得出了一些重要的结论和建议。

在后续的施工过程中,我们将继续对基坑进行监测,并根据监测数据调整和优化施工措施,以确保施工的顺利进行。

基坑监测报告

基坑监测报告

基坑监测报告基坑是指建筑施工中挖掘的坑洞。

因为基坑施工涉及到土体的挖掘和支护,不可避免地会对周边环境和其他建筑物产生一定的影响。

为了确保施工的安全和环保,需要对基坑的监测进行及时、准确的报告,下面就基坑监测报告进行说明。

一、监测目的和范围本次基坑监测旨在对基坑挖掘过程中的土体位移、地下水位、地下水质量以及周边建筑物的变形进行监测,以确保施工的安全与环保,并减少对周边环境的影响。

二、监测方法和设备本次监测采用了多种监测方法和设备,包括但不限于:1.土体位移监测:采用测量仪器对基坑周边的地表位移进行实时监测,以了解土体的变形情况。

2.地下水位监测:采用水位计和水文测量仪器对基坑周边的地下水位进行实时监测,以评估基坑挖掘对地下水位的影响。

3.地下水质量监测:采集地下水样品进行实验室化验,以监测基坑挖掘对地下水质量的影响。

4.建筑物变形监测:采用位移传感器对周边建筑物进行实时监测,以评估基坑挖掘对建筑物变形的影响。

三、监测结果及分析1.土体位移:根据监测数据显示,基坑挖掘过程中土体的位移呈现逐渐增加的趋势,但总体来说位移范围在安全范围内。

2.地下水位:地下水位随着基坑挖掘的深入而逐渐下降,但在设计的控制范围内,未导致周边地区的地下水严重下降。

3.地下水质量:实验室化验结果显示基坑挖掘对地下水质量影响不大,水质基本稳定。

4.建筑物变形:周边建筑物的变形量在允许范围内,未出现明显的沉降或倾斜情况。

四、处理措施和建议根据监测结果,结合现场施工情况,提出了以下建议和处理措施:1.加强土体支护:根据土体位移监测结果,加强对基坑周边土体的支护,以确保施工的安全和稳定。

2.控制地下水位:根据地下水位监测结果,合理安排抽水工程,控制地下水位,避免对周边地区的地下水资源造成过大的影响。

3.加强环境保护措施:定期监测地下水质量,加强对施工过程中产生的污水的处理和排放,避免对地下水质量的影响。

4.加强建筑物监测:继续对周边建筑物进行实时监测,发现异常情况及时处理。

基坑监测报告

基坑监测报告

报告编号:第页共页受控编号:工程质量检测报告工程名称:检测代码及项目:检测单位名称委托单位:建设单位:勘察单位:设计单位:施工单位:监理单位:检测单位:声明1、本报告无检验检测报告专用章及其骑缝章无效;2、本报告无检测、审核、批准人签名无效;3、本报告涂改、增删无效;4、报告复印页数不全、未加盖检验检测报告专用章无效;5、对本报告若有异议,应于收到报告之日起十五日内向本检测单位提出。

检测单位资质证书编号:检测单位地址:邮政编码:电话:目录1工程概况 (4)2监测概述 (4)3监测结果 (7)4监测结论 (7)附表1支护结构顶部水平位移观测成果表 (8)附表2支护结构顶部竖向位移观测成果表 (9)附表3周边建筑物沉降观测成果表 (10)附表4锚索内力监测成果表 (11)附表5水位观测成果表 (12)附表6深层水平位移监测成果表 (13)附图1支护结构顶部位移监测点时间-累计位移值关系曲线图16附图2基准点及监测点平面位置示意图 (17)附图3现场检测影像资料(注1、项目大门照片;2、现场各监测内容监测照片) (17)附件工程质量现场检测见证确认表报告编号: 第页共页1工程概况1.1工程名称:建设地点:基坑深度、面积:支护形式:基坑支护侧壁安全等级:周边环境描述:工程形象进度:2监测概述2.1监测目的、方法及精度2.1.1监测目的在基坑施工过程中,只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,以确保工程的顺利进行,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计参数。

基坑监测的目的如下:1)检验设计所采取的各种假设和参数的正确性,指导基坑开挖和支护结构的施工。

2)确保基坑支护结构和相邻建筑物的安全。

3)积累工程经验,为提高基坑工程的设计和施工的整体水平提供依据。

2.1.2监测方法及精度1)支护结构水平位移观测方法及精度采用全站仪,按自由测站法或极坐标法对埋设于基坑支护结构上的水平位移标志进行观测,每次观测所得的各个观测点坐标与基坑开挖前进行的初始观测相比较,所得的坐标差即为该观测点在本观测周期内的累计位移值。

基坑监测报告

基坑监测报告

基坑监测报告随着城市建设的不断发展,越来越多的基坑项目在各地展开。

然而,基坑在施工过程中存在着诸多的安全隐患,需要进行及时、准确的监测,以确保工程的安全与顺利进行。

因此,本篇文章将从基坑监测的意义、监测内容以及最新的监测技术等方面进行论述。

一. 基坑监测的意义基坑作为城市建设中重要的施工环节,其安全性直接关系到建设者和周边居民的生命财产安全。

基坑施工过程中,地下水、地表沉降和裂缝、地下管线的变形等问题经常出现。

而这些问题如果不及时监测和处理,很可能会导致严重的后果,如建筑倒塌、人员伤亡等。

因此,通过对基坑进行监测,可以及早发现并解决问题,确保工程的稳定性和安全性。

二. 基坑监测的内容1. 地下水位监测地下水位是基坑监测中的重要指标之一。

地下水位的过高或过低都可能会对基坑的稳定性产生不利影响。

因此,在基坑施工过程中,需要通过安装水位测量设备来监测地下水位的变化情况,及时采取相应的排水措施。

2. 地表沉降和裂缝监测地表沉降和裂缝是基坑施工过程中经常出现的问题,它们与土壤的变形和沉降有关。

通过使用测量仪器对基坑周边地表进行监测,可以及时掌握地表的沉降和裂缝情况,进而采取相应的措施来防止或修补。

3. 地下管线变形监测地下管线变形是基坑施工中常见的问题之一。

施工过程中如果不注意对地下管线进行监测和保护,很可能会导致管线破裂或漏水。

因此,需要通过监测设备对地下管线进行实时监测,一旦发现问题及时处理。

三. 最新的监测技术为了更准确地监测基坑的变化情况,现代技术不断地提供了更多的监测手段和设备。

1. GPS技术GPS技术已经被广泛运用到基坑监测中。

通过在基坑边缘设置GPS监测点,可以实时测量基坑周边地表的沉降情况,为及时采取措施提供参考。

2. 自动化监测系统自动化监测系统通过安装在基坑周边的传感器和数据采集仪器,实时采集并汇总基坑的监测数据。

通过系统软件的分析处理,可以得到基坑变形的趋势图和实时曲线,方便及时判断基坑的安全状况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XXX市XXXX 基坑工程监测报告XXXXXX(单位)2012年X月XXX市XXXXX基坑工程监测报告工程名称:XXX市XXXXX基坑工程监测容:基坑支护结构及周边建(构)建筑物安全工程地点:XXXXX监测日期:2010年X月X日~2012年X月X日XXXXXXXXXXXXX2012年X月委托单位:建设单位:勘察单位:设计单位:施工单位:监理单位:监测单位:项目负责人:试验人员:报告编写:审核:审定:报告总页数:x页目录一、工程概况 (1)二、监测依据 (1)三、监测容...................................................................................... 1 四、监测点布置和监测方法.............................................................. 2 五、监测工序和测点保护.................................................................. 4 六、报警值.......................................................................................... 5 七、监测时长和频率.......................................................................... 5 八、监测成果及分析.......................................................................... 6 九、附表、附图 (11)一、工程概况XX市XXXX工程位于XXX市旧城区核心商业区,南西面邻XX商场,东面邻XX市百货大楼,东南面为XX街,北西面为XX路。

广场长约162 m,宽约35 m,占地面积约4943.96㎡,建筑占地面积约3052.0㎡,总建筑面积约40260.0㎡,拟建建筑物主楼高9~10层,骑楼1~4层,底层架空,地面以下三层,地下室底板标高约63.4 m,靠近XXX路一侧深约10 m,靠近XX街一侧深约14.5 m(场地现状呈西北低南东高的缓坡状);上部结构采用框架结构,设计室±0.00标高为78.00 m。

基础采用钻孔灌注桩基础,桩端进入砂质泥岩层不少于2.0m。

基坑支护结构采用钢筋混凝土地下连续墙,深约20m,完成基坑支护作用后作为地下室外墙,建筑设计使用年限:50年,基坑工程安全等级为一级。

基坑开挖及地下室施工采取分三幅进行,第一幅于2011年X月X日完成地下室主体结构施工,第二幅于2011年X月X日完成地下室主体结构施工,第三幅于2012年X月X日完成地下室主体结构施工。

二、监测依据(1)《建筑基坑工程监测技术规》(GB 50497-2009);(2)《建筑地基基础设计规》(GB 50007-2002);(3)《建筑变形测量规》(JGJ 8-2007);(4)《工程测量规》(GB 50026-2007);(5)《建筑基坑支护技术规程》(JGJ 120-99);(6)《混凝土结构试验方法标准》(GB 50152-92);(7) 委托方提供的相关设计图纸。

三、监测容根据《建筑基坑工程监测技术规》(GB 50497-2009)的要求及xxx工程的实际情况,具体监测容如下:(1)地下连续墙墙顶沉降监测;(2)地下连续墙深层水平位移(测斜)监测;(3)地下连续墙纵筋应力监测;(4)水平支撑力监测;(5)基坑外地下水位监测;(6)周边建(构)筑物变形监测。

四、监测点布置和监测方法1.周边建筑物沉降(1)测点布置按规规定,从基坑边缘以外1~3倍开挖深度围需要保护的建(构)筑物、地下管线等均应作为监控对象。

本工程需要保护的建筑有:xxx百货大楼、xx大厦、xxx行、xxxx商场、xxxx商厦。

现有有效测点34个,具体测点布置见附图1所示。

(2)监测方法在周边建筑物的测点部位将L型测钉打入或埋入待测结构,测点头部磨成凸球型,测钉与待测结构结合要可靠,不允许松动,并用(红色)油漆标明点号和保护标记,随时检查,保证测点在施工期间绝对不遭到破坏。

用水准仪观测设在建筑物上的测点的高程变化情况。

2.地下连续墙墙顶沉降监测(1)测点布置围护墙顶部沉降监测点埋设于连续墙圈梁上,连续墙墙顶中部、阳角处布置监测点。

本工程现有有效测点11个,具体埋设位置见附图2。

(2)监测方法在连续墙墙顶监测点部位将膨胀钉埋入圈梁,测点头部磨成凸球型,测钉与待测结构结合要可靠,不允许松动,并用(红色)油漆标明点号和保护标记,随时检查,保证测点在施工期间绝对不遭到破坏。

用水准仪观测设在墙顶各监测测点的高程变化情况。

3.地下连续墙深层水平位移(测斜)监测(1)测点布置测点布置在沿基坑地下连续墙围护体上的重要位置,共布设10个测点,每个测点深度约为20m。

其中Q1-44槽段埋设的测斜管在连续墙施工过程中遭到损坏,Q3-49槽段埋设的测斜管在基坑土方开挖过程中遭到损坏,不能用于监测。

具体测点布置见附图2。

(2)监测方法本项监测是深入到围护体部,用测斜仪自下而上测量预先埋设在围护体的测斜管的变形情况,以了解基坑开挖施工过程中,围护体因相应位置土体的挖除对其整体水平位移的影响程度,分析围护体在各深度上的稳定情况。

测斜管为外径70mm、径66mm壁有十字滑槽的PVC管,管长与相应桩等深,固定在钢筋笼上随之一起埋入地下。

安装测斜管时,其一对槽口必须与基坑边线垂直,上下管口用盖子密封,安装完成后立即灌注清水,防止泥浆渗入管。

测斜管管口设可靠的保护装置。

4.地下连续墙纵筋应力监测(1)测点布置按设计要求共监测10个断面,每个断面在不同深度的位置分别布设4个应力计,共埋设40个钢筋应力计。

现有有效测点共计19个测点。

具体测点布置见附图2。

(2)监测方法将钢筋应力计与连续墙的纵向主钢筋焊接(或对焊,螺栓连接)在一起,然后将应力计的导线逐段用软绳绑扎固定在主筋上,在墙顶用钢管保护,引出地面,接入接线盒保护,采用频率计对连续墙纵筋的应力变化情况进行监测。

5.地下连续墙外地下水位监测(1)测点布置根据本工程的实际情况,结合相似工程的相关经验,基坑外地下水位监测点沿基坑周边、监测点间距约为20~50 m,布置在地下连续墙的外侧约2 m处,水位监测管的埋置深度(管底标高)在控制地下水位之下3~5m。

由于6#水位孔在基坑施工过程中被埋,无法观测,现有效测点为5个。

具体测点布置见附图2。

(2)监测方法地下水位采用电测水位仪进行观测,基坑开挖降水之前,所有降水井、观测井应在同一时间联测静止水位。

在基坑降水前测得各水位孔孔口标高及各孔水位深度,孔口标高减水位深度即得水位标高,初始水位为连续二次测试的平均值,每次测得水位标高与初始水位标高的差即为水位累计变化量。

4 6. 水平支撑力监测(1)测点布置按规规定,基坑开挖期间对水平支撑进行力监测,监测点宜设置在支撑力较大或在整个支撑系统中起控制作用的杆件上;钢支撑的监测截面宜选择在两支点间1/3部位或支撑的端头,混凝土支撑的监测截面宜选择在两支点间1/3部位,并避开节点位置,各层支撑的监测点位置在竖向上宜保持一致。

按规要求,本工程每层选取18道钢支撑、2道钢筋混凝土支撑进行监测,共2层(其中一道受监测下层支撑未安装),每道钢支撑取3个测试截面,每道混凝土支撑取1个测试截面,共计xx个监测截面。

支撑力监测点布置见附图3。

(2)监测方法对于钢筋混凝土支撑,宜采用钢筋应力计(钢筋计)进行量测,将钢筋应力计与钢筋混凝土支撑的受力主筋焊接(或对焊,螺栓连接)在一起,然后将应力计的导线引至方便测量的地方,接入接线盒保护,采用频率计对应力计变化情况进行监测;对于钢结构支撑,采用应变计进行量测,将应变计焊接于钢支撑表面,然后将应变计的导线引至方便测量的地方,接入接线盒保护,采用频率计对应变计变化情况进行监测。

五、监测工序和测点保护 1.监测工序各监测容所需的监测仪器、监测点的安装、埋设以及测读的时间应随基坑工程施工工序而展开:(1)根据各道工序施工需要,先期布设建筑物沉降点。

(2)地下连续墙围护结构施工时,同步安装围护墙体测斜管。

(3)围护墙顶的圈梁浇筑时,同步埋设墙顶位移测点,做好测斜管口的保护工作。

(4)基坑开挖之前,应建立测量控制网,将所有已埋设测点测读三次初始值。

2.测点保护测点安装、埋设好后应作好醒目标记,设置保护设施,施工单位应平时加强测点保护工作,尽量避免人为沉降和偏移,确保测点成活率及其正常使用,以及监测数据的准确性、连续性。

为保证工程质量,测量工作中使用的基准点、监测点用醒目标志标识的5 同时,需要用钢管对接出地面部分的线缆进行保护,若发现已遭破坏,应立即对可以复原的测点进行重新连接或埋设。

8 表9 连续墙纵筋应力最大变化值槽段号深度(m)应力计编号变化最大值(Mpa) 槽段号深度(m)应力计编号变化最大值(Mpa) Q1-1 -7.50 402964 7.3 Q1-30 -7.50 413061 -12.9 -12.00 418627 无读数 -12.00 418625 -5.3 -15.00 418040 无读数-15.00 418026 无读数-18.50 414592 无读数 -18.50 418035 49.0 Q1-4 -7.50 416143 15.9 Q1-39 -7.50 418621 -13.6 -12.00 418064 -11.8 -12.00 418046 无读数-15.00 418028 -38.0 -15.00 418031 16.0 -18.50 418042 21.5 -18.50418024 无读数 Q1-9 -7.50 418061 10.4 Q1-44 -7.50 418051 20.1-12.00 416616 6.0 -12.00 418062 -22.2 -15.00 418025 -10.4 -15.00 418029 25.4 -18.50 418034 无读数 -18.50 413075 56.4 Q2-20 -7.50 418629 -12.4 Q3-49 -7.50 416130 -6.2 -12.00 418622 -14.3 -12.00 418047 无读数 -15.00 418037 -17.2 -15.00 414581 -13.9 -18.50 413073 -42.3 -18.50 413062 8.9 Q2-23 -7.50 418623 无读数 Q3-52-7.50 418045 无读数 -12.00 418058 -37.0 -12.00 418056 -5.9 -15.00 418027 无读数 -15.00 418039 -6.5 -18.50 418032 -16.6 -18.50 418053 -15.6 (5)地下连续墙外地下水位监测自2011年x月x日进行第一次观测,至2012年x月x日进行最后一次观测,在此期间共进行x次地下连续墙外地下水位监测,各监测点水位变化曲线见附图12。

相关文档
最新文档