第8章 一元一次不等式(组)测试卷(4)(含答案)

合集下载

第8章一元一次不等式单元测试卷

第8章一元一次不等式单元测试卷

第8章一元一次不等式单元测试卷姓名_________班级_________学号_________一、选择题:(每小题3分,共42分)1、下列式子(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y ;(5)x+y ;(6)x+3≤7中,不等式的个数有 A .2个 B .3个 C .4个 D .5个2、如果a >b ,那么下列不等式中不成立的是 A 、 a ―3>b ―3 B 、 ―3a >―3b C 、3a >3bD 、 ―a <―b 3、已知一个不等式组的解集在数轴上如图表示,那么这个不等式组的解集为A 、x ≥-1B 、x >1C 、-3<x ≤-1D 、x >-3 4、下列各式中,一元一次不等式是A 、x ≥5xB 、2x>1-x 2C 、x+2y<1D 、2x+1≤3x5、“x 的2倍与3的差不大于8”列出的不等式是A 、2x -3≤8B 、2x -3≥8C 、2x -3<8D 、2x -3>86、如右图,天平右盘中每个砝码的重量都是1g ,则图中显示出某药品A质量(g )的范围是A 、大于2gB 、大于2g 且小于3gC 、小于3gD 、大于2g 或小于3g 7、在数轴上表示不等式x ≥-2的解集,正确的是A B C D8、若不等式(a―5)x<1的解集是x>51a ,则a的取值范围是 A、a >5 B、a <5 C、a ≠5 D、以上都不对 9、若一元一次不等式mx-1>0的解集为x<1m,则m 的取值范围是 A .m ≥0 B .m ≤0 C .m >0 D .m <010、有理数a 、b 、c 在数轴上的对应点的位置如图所示,下列式子中正确的是A 、b+c >0B 、a -b >a -cC 、a c >bcD 、a b >a c11、不等式7215>-x 的正整数解的个数为A 、3个B 、4个C 、5个D 、6个 11、若方程5 x -2a =8的解是非负数,则a 的取值是A 、a >-4B 、a <-4C 、a ≥-4D 、a ≤-4 12、若a <b ,则不等式组⎩⎨⎧><bx ax 的解集是A 、x <aB 、x >bC 、b <x <aD 、无解13、不等式组21040x x -≥⎧⎨->⎩的解集是A .21≤x ≤4 B .21<x ≤4 C .21<x <4 D .21≤x <4 14、满足不等式组217107m m +≥⎧⎨->⎩的整数解m 的值有( )A .1个B .2个C .3个D .4个二、填空题:(每小题4分,共16分)15、用不等式表示:①、x 与2的和不大于5____________.②、a 与b 的差是非负数___________.16、若x <y ,则x -2 y -2;若93ba -<-,则b 3a 。

(完整版)一元一次不等式测试卷

(完整版)一元一次不等式测试卷

第8章 一元一次不等式测试卷(满分100分,时间45分钟) 班级 学号 姓名 成绩 一、填空题:(每题4分,共28分)1.不等式2x ≥x +3的解集是 。

2.不等式组⎩⎨⎧≥++<x x x x 14,43 的解集是 。

3.方程432-=-x x α的解是正数,则α的取值范围是 。

4.已知关于x 的不等式52->-m x 的解集如图所示,则m 的值为 。

5.不等式312<-x 的正整数解是 。

6.若不等式组⎩⎨⎧->+<12,1m x m x 无解,则m 的取值范围是 。

7.一次班级知识竞赛共60道题,规定答对一道题得2分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或90分以上,)则小明至少答对 道题。

二、选择题(每题6分,共24分)1.若0<-b a ,则下列各式中一定正确的是( )(A )b a > (B)0>ab (C )0<ba (D )b a ->- 2.不等式组⎪⎩⎪⎨⎧≥-≤-03021x x 的整数解的个数是( )(A )1个 (B)2个 (C )3个 (D )4个3.不等式组⎩⎨⎧>+≤02,12x x 的解集在数轴上如图表示为( )4.若关于x 的不等式组⎩⎨⎧<<+a x x ,1123 的解集是x<3,则下列结论正确的是( ) (A)3≤a (B )3<a (C )3>a (D)3≥a三、解答题(共48分)1.(10分)解不等式312643-≤-x x ,并把它的解集在数抽上表示出来。

2.(10分)小芳准备用26元钱买圆珠笔和笔记本,已知一支圆珠笔2.5元,一本笔记本1.8元,她买了8本笔记本,则她最多还可以买多少支圆珠笔?3.(14分)学校为家远的同学安排住宿,现每个房间住5人,则还有9人安排不下,若每间住6人,则有一间房至少还余4个床位,问学校可能有几间房可以安排同学住宿?住宿的同学可以安排多少人?4.(14分)某校计划在署假组织优秀学生参加夏令营,人数不少于30人,由校长一人带队,甲、乙旅行社的服务质量相同;且价格都是每人500元,学校联系时,甲旅行社还表示“如果校长买全票一张,学生则享受半价优惠”,乙旅行社表示“包括校长在内全部按6折优惠”,请你帮学校设计一种方案,使其支付的总费用最省.答案:一、填空题:1、3≥x 2、31-x ≤<2 3、α〈4 4、m>1 5、1 6、2≥m 7、50二、选择题:1、D 2、C 3、B 4、D三、解答题:1、2-≥x 画图略,2、解:设圆珠笔买x 支.2688.15.2≤⨯+x 64.4≤∴x∴最多可以买4支圆珠笔。

2022年最新青岛版八年级数学下册第8章一元一次不等式单元测试试题(含答案及详细解析)

2022年最新青岛版八年级数学下册第8章一元一次不等式单元测试试题(含答案及详细解析)

八年级数学下册第8章一元一次不等式单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若x y >,则下列不等式一定成立的是( )A .x y ->-B .22x y <C .66x y <D .44x y +>+2、等腰三角形的周长为16,且边长为整数,则腰与底边分别为( )A .5,6B .6,4C .7,2D .以上三种情况都有可能3、某市最高气温是33℃,最低气温是24℃,则该市气温t (℃)的变化范围是( )A .t >33B .t ≤24C .24<t <33D .24≤t ≤334、如图,A 、B 、M 、N 四人去公园玩跷跷板.设M 和N 两人的体重分别为m 、n ,则m 、n 的大小关系为( )A .m <nB .m >nC .m =nD .无法确定5、不等式组1224x x x+>⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A . B .C .D .6、甲在集市上先买了3只羊,平均每只a 元,稍后又买了2只,平均每只羊b 元,后来他以每只2a b + 元的价格把羊全卖给了乙,结果甲发现赚了钱,赚钱的原因是( )A .a b =B .a b >C .a b <D .与a b 、大小无关 7、若a b >,则下列式子一定成立的是( )A .12a b +<+B .22a b ->-C .22a b ->-D .33a b < 8、若不等式组3x a x >⎧⎨≥-⎩的解集为x a >,则下列各式正确的是( ) A .3a < B .3a ≤ C .a >-3 D .3a ≥-9、若a b >,则下列式子中一定成立的是( )A .22a b ->-B .22a b >C .11a b -<-D .11a b> 10、已知8x +1<-2x ,则下列各式中正确的是( )A .10x +1>0B .10x +1<0C .8x -1>2xD .10x >-1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知正整数a ,b ,c 均小于5,存在整数m 满足20221000222a b c m +=++,则()m a b c ++的值为______.2、给出下列不等式:①23x +1>x -x 2;②y -1>3;③x +2x≥2;④x ≤0;⑤3x -y <5,其中属于一元一次不等式的是:___.(只填序号)3、一元一次不等式的概念:2x -6>0,3x -24<4+x 这些不等式的左右两边都是______,只含有______,并且未知数的最高次数是______,像这样的不等式,叫做一元一次不等式.4、某学校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?解:设参加的八年级学生为x 人,根据题意,得:_________,解这个不等式,得:_________,所以至少需要_________名八年级学生参加活动.5、用数轴表示不等式的解集,应记住下面的规律:①大于向______画;小于向______画;②>,<画______圆.空心圆表示______此点三、解答题(5小题,每小题10分,共计50分)1、快递员把货物送到客户手中称为送件,帮客户寄出货物称为揽件.快递员的提成取决于送件数和揽件数.某快递公司快递员小李若平均每天的送件数和揽件数分别为80件和20件,则他平均每天的提成是160元;若平均每天的送件数和揽件数分别为120件和25件,则他平均每天的提成是230元(1)求快递员小李平均每送一件和平均每揽一件的提成各是多少元;(2)已知快递员小李一周内平均每天的送件数和揽件数共计200件,且揽件数不大于送件数的14.如果他平均每天的提成不低于318,求他平均每天的送件数.2、某团委在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的单价比甲种树苗贵10元,用360元购买甲种树苗的棵数恰好与用480元购买乙种树苗的棵数相同.(1)求甲、乙两种树苗的单价各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?3、求不等式组41341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解. 4、某医院计划选购A 、B 两种防护服.已知A 防护服每件价格是B 防护服每件价格的1.5倍,用6000元单独购买A 防护服比用5000元单独购买B 防护服要少2件.(1)A ,B 两种防护服每件价格各是多少元?(2)如果该医院计划购买B 防护服的件数比购买A 防护服件数的3倍多80件,且用于购买A ,B 两种防护服的总经费不超过265000元,那么该医院最多可以购买多少件B 防护服?5、解不等式组()3841710x x x x <+⎧⎨+≤+⎩,并把解集表示在数轴上.-参考答案-一、单选题1、D【解析】【分析】根据不等式的性质逐一进行判断即可得到答案.【详解】选项A ,在不等式x >y 两边都乘以-1,不等号的方向改变得<x y --,故选项A 不正确;选项B ,在不等式x >y 两边都乘上2,不等号的方向不变得22>x y ,故选项B 不正确;选项C ,在不等式x >y 两边都除以6,不等号的方向不变得66>x y ,故选项C 不正确; 选项D ,在不等式x >y 两边都加以4,不等号的方向不变得44x y +>+,故选项D 正确. 故选D .【点睛】本题主要考查了不等式的相关知识质,熟练掌握不等式的性质是解题的关键.2、D【解析】【分析】设腰长为x ,则底边为162x -,根据三角形三边关系可得到腰长可取的值,从而求得底边的长.【详解】解:设腰长为x ,则底边为162x -,162162x x x x x --<<-+,48x ∴<<,三边长均为整数, x 可取的值为:5或6或7,∴当腰长为5时,底边为6;当腰长为6时,底边为4,当腰长为7时,底边为2;综上所述,以上三种情况都有可能.故选:D .【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用.此题是借用不等式来求等腰三角形的底边的长度.3、D【解析】【分析】已知某市最高气温和最低气温,可知该市的气温的变化范围应该在最高气温和最低气温之间,且包括最高气温和最低气温.【详解】由题意,某市最高气温是33℃,最低气温是24℃,说明其它时间的气温介于两者之间,∴该市气温t(℃)的变化范围是:24≤t≤33;故选:D.【点睛】本题的关键在于准确理解题意,理解到当天的气温的变化范围应在最低气温和最低气温之间.4、A【解析】【分析】设A,B两人的体重分别为a,b,根据题意列出等式和不等式,即可得出答案.【详解】解:设A,B两人的体重分别为a,b,根据题意得:a+m=n+b,a>b,∴m<n,故选:A.【点睛】本题考查了不等式的性质,根据题意列出等式和不等式是解题的关键.5、D【解析】【分析】首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【详解】解:由12x +>得:1x >由24x x -≤得:4x ≤综合得:14x <≤故选:D .【点睛】此题主要考查了一元一次不等式组的解法,关键是正确确定两个不等式的解集.6、C【解析】【分析】分别求出买5只羊的总费用和卖掉5只羊的总收入,再利用不等式的性质比较大小即可【详解】解:由题意,甲买羊共付出(32a b +)元,卖羊的共收入5()2a b +元, ∵甲赚了钱,∴32a b +<5()2a b +, 解得:a b <,故选:C .【点睛】本题考查列代数式、不等式的基本性质,理解题意,正确列出代数式和不等式是解答的关键.7、B【解析】【分析】根据不等式的性质依次分析判断.【详解】解:∵a b >,∴a +1>b +1,故选项A 不符合题意;∵a b >,∴22a b ->-,故选项B 符合题意;∵a b >,∴-2a<-2b ,故选项C 不符合题意;∵a b >,∴33a b >,故选项D 不符合题意; 故选:B .【点睛】此题考查了不等式的性质:不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘或除以同一个不为0的整正数,不等号方向不变;不等式两边同时乘或除以同一个不为0的负数,不等号方向改变.8、D【解析】【分析】不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.【详解】解:∵不等式组3x a x >⎧⎨≥-⎩的解为x a >, ∴3a ≥-,故选D .【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.9、C【解析】【分析】根据不等式的性质逐个判断即可.【详解】解:A. a b >,∴22a b -<-,故该选项不正确,不符合题意;B.当0a b >>时,22a b >,故该选项不正确,不符合题意;C. a b >,∴11a b -<-,故该选项正确,符合题意;D. 当0a b >>时,11a b<,故该选项不正确,不符合题意; 故选C【点睛】 本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.10、B【解析】【分析】根据不等式的性质解答即可.【详解】解:由不等式性质得,在不等式8x+1<-2x的两边同加上2x,不等号的方向不变,即10x+1<0.故选:B.【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解答的关键,注意符号的变化.二、填空题1、14【解析】【分析】首先根据正整数a,b,c均小于5,得出2a+2b+2c≤24+24+24=48,2a+2b+2c≥2+2+2=6,即6≤2022+1000m≤48,解不等式组求出m的范围,根据m为整数,得出m=-2,那么2022+1000m=22.观察得只有2+4+16=22,求出a+b+c=1+2+4=7,进而得到m(a+b+c)=-2×7=-14.【详解】解:∵正整数a,b,c均小于5,∴2a+2b+2c≤24+24+24=48,2a+2b+2c≥2+2+2=6,∴6≤2022+1000m≤48,∴-2.016≤m≤-1.974,∵m为整数,∴m=-2,∴2022+1000m=22.∵2a,2b,2c,的取值只能为2,4,8,16,观察得只有2+4+16=22,∴a+b+c=1+2+4=7,∴m(a+b+c)=-2×7=-14.故答案为:-14.【点睛】本题考查了有理数的混合运算,不等式的性质,一元一次不等式组的解法,求出m与a+b+c的值是解题的关键.2、②④【解析】【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就是一元一次不等式.【详解】①23x+1>x-x2是一元二次不等式,故选项不符合题意;②y-1>3是一元一次不等式,故此选项符合题意;③x+2x≥2中2x不是整式,故选项不符合题意;④x≤0是一元一次不等式,故此选项符合题意;⑤3x-y<5;含两个未知数,故选项不符合题意.故答案为:②④【点睛】本题考查一元一次不等式的定义中的未知数的最高次数为1次,本题还要注意未知数的系数不能是0.3、整式一个未知数 1【解析】略4、 15×(60-x )+20x ≥1000 x ≥20 20【解析】略5、 右 左 空心 不含【解析】略三、解答题1、 (1)快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元(2)他平均每天的送件数是160件或161件或162件或163件或164件【解析】【分析】(1)设快递员小李平均每送一件的提成是x 元,平均每揽一件的提成是y 元,列二元一次方程求解;(2)设他平均每天的送件数是m 件,则他平均每天的揽件数是(200)m -件,列不等式组求解.(1)解:设快递员小李平均每送一件的提成是x 元,平均每揽一件的提成是y 元,根据题意得: 802016012025230x y x y +=⎧⎨+=⎩, 解得 1.52x y =⎧⎨=⎩, 答:快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元;(2)解:设他平均每天的送件数是m 件,则他平均每天的揽件数是(200)m -件,根据题意得:()120041.52200318m m m m ⎧-⎪⎨⎪+-⎩, 解得160164m ,m 是正整数,m ∴的值为160,161,162,163,164,答:他平均每天的送件数是160件或161件或162件或163件或164件.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式组的实际应用,正确理解题意是解题的关键.2、 (1)甲种树苗的单价是30元,乙种树苗的单价是40元;(2)他们最多可购买11棵乙种树苗;【解析】【分析】(1)根据题意可得等量关系:480360=乙树苗单价甲树苗单价,根据等量关系列出方程求解即可; (2)根据题意可知不等关系:×110501500-⨯-≤甲树苗单价(%)(乙树苗数量),根据题意列出不等式求解即可.(1)解:设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x +10)元,依题意有48036010x x=+ , 解得:x =30,经检验,x =30是原方程的解,x +10=40,∴甲种树苗的单价是30元,乙种树苗的单价是40元.(2)设他们可购买y棵乙种树苗,依题意有,30×(1﹣10%)(50﹣y)+40y≤1500 ,解得,71113y≤,∴y最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查列分式方程解决实际问题,以及列不等式解决实际问题,能够根据题意找出等量关系并列出方程是解决本题的关键.3、该不等式的整数解为-2,-1,0,1.【解析】【分析】首先求出不等式组中每一个不等式的解集,再根据大小小大中间确定不等式的解集即可.【详解】解:41341233x xx x->-⎧⎪⎨-≤-⎪⎩①②,由①得:x>-3,由②得x≤1,不等式组的解集为:-3<x≤1,则该不等式的整数解为-2,-1,0,1.【点睛】本题考查了解一元一次不等式组,关键是掌握解集的规律,同大取大,同小取小,大小小大中间找,大大小小找不到.4、 (1)B种防护服每件价格是500元,A种防护服每件价格是750元(2)该医院最多可以购买380件B防护服【解析】【分析】根据题意可知等量关系:500060002B A-=防护服单价防护服单价,根据A防护服每件价格是B防护服每件价格的1.5倍,可用一个未知数表示出A,B两种防护服单价,进而可列分式方程解决本题;根据该医院计划购买B防护服的件数比购买A防护服件数的3倍多80件,可知A,B两种防护服购买数量之间的关系,由题意可得,购买A型防护服装所需经费+B型防护服所需经费≤265000,故列出不等式解决即可.(1)设B种防护服每件价格是x元,则A种防护服每件价格是1.5x元,依题意得:5000600021.5x x-=,解得:x=500,经检验,x=500是原方程的解,且符合题意,则1.5x=750,答:B种防护服每件价格是500元,A种防护服每件价格是750元.(2)设该医院可以购买y件A防护服,则购买(3y+80)件B防护服,依题意得:750y+500(3y+80)≤265000,解得:y≤100,则3y+80≤380,答:该医院最多可以购买380件B 防护服.【点睛】本题考查列方式方程解应用题,用不等式解决应用题,能够根据题意找到等量关系并列出方程是解决本题的关键.5、不等式组的解集为24x -≤<,数轴见解析【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式①得4x <,解不等式②得 2x ≥-,在数轴上表示为:∴此不等式组的解集为24x -≤<.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

难点详解青岛版八年级数学下册第8章一元一次不等式必考点解析试题(含详解)

难点详解青岛版八年级数学下册第8章一元一次不等式必考点解析试题(含详解)

八年级数学下册第8章一元一次不等式必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,A 、B 、M 、N 四人去公园玩跷跷板.设M 和N 两人的体重分别为m 、n ,则m 、n 的大小关系为( )A .m <nB .m >nC .m =nD .无法确定2、已知关于x 的分式方程()()232626mx x x x x +=----无解,且关于y 的不等式组()4434m y y y ->⎧⎨-≤+⎩有且只有三个偶数解,则所有符合条件的整数m 的乘积为( )A .1B .2C .4D .83、若数a 使关于x 的不等式组()324263x x x a ⎧+<+⎨-≤⎩有且仅有5个整数解,且使关于y 的分式方程312122y a y y++=--有整数解,则满足条件的所有a 的值之和是( ) A .﹣21 B .﹣12 C .﹣14 D .﹣184、如果关于x 的方程35122x a x x ++=--有正整数解,且关于x 的不等式组2()641115x a x a x x +≤+-⎧⎪-⎨-<⎪⎩的解集为6x <-,则符合条件的所有整数a 之和为( )A .4B .3C .2D .15、若x y >,则下列不等式一定成立的是( )A .x y ->-B .22x y <C .66x y <D .44x y +>+6、若关于x 的一元一次不等式组()23242741x m x x x -+⎧⎪⎨⎪++⎩的解集为32x ,且关于y 的方程2(53)322m y y ---=的解为非负整数,则符合条件的所有整数m 的和为( )A .2B .7C .11D .107、某矿泉水每瓶售价1.5元,现甲、乙两家商场 给出优 惠政策:甲商场全部9折,乙商场20瓶以上的部分8折.老师要小明去买一些矿泉水,小明想了想觉得到乙商场购买比较优惠.则小明需要购买的矿泉水的数量x 的取值范围是( )A .x >20B .x >40C .x ≥40D .x <408、若x y <,且()()33->-a x a y ,则a 的取值范围是( )A .3a <B .3a >C .3a ≥D .3a ≤9、若方程组233x y k x y +=⎧⎨-=-⎩的解满足20x y +>,则k 的值可能为( ) A .-1 B .0 C .1 D .210、如果关于x 的分式方程3111ax x x =---的解为整数,且关于y 的不等式组()322242y y y y a +⎧≥+⎪⎨⎪+>+⎩有解,则符合条件的所有整数a 的和为( )A .-1B .0C .1D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某测试共有20道题,每答对一道得5分,每答错一道题扣1分,若小明得分要超过90分,设小明答对x 道题,可列不等式 _____.2、不等式组5202131x x x <⎧⎨-<+⎩的解集为_________. 3、如果关于x 的不等式mx ﹣2m >x ﹣2的解集是x <2,那么m 的取值范围是______.4、某种商品的进价为500元,售价为750元,由于换季,商店准备打折销售,但要保持该商品的利润率不低于20%,那么最多可以打______折.5、关于x 的不等式组1(25)131(3)2x x x x a ⎧+>+⎪⎪⎨⎪+≤+⎪⎩的所有整数解的和为﹣5,则a 的取值范围是 _____. 三、解答题(5小题,每小题10分,共计50分)1、已知:A =222111x x x x x -+--+. (1)化简A ;(2)若x 为不等式a +1≥3的最小整数解,求A 的值.2、先化简,再求值:(x -1-1x x +)÷221x x x ++,其中x 是不等式组()213324x x x ⎧⎨≥⎩-<++的整数解. 3、六•一前夕,某幼儿园园长到厂家选购A 、B 两种品牌的儿童服装,每套A 品牌服装进价比B 品牌服装每套进价多25元, 已知用2000元购进A 种服装的数量是用750元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别为多少元?(2)该服装A 品牌每套售价为130元,B 品牌每套售价为95元,服装店老板决定,购进B 品牌服装的数量比购进A 品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元, 则最少购进A 品牌的服装多少套?4、对于数轴上给定两点M 、N 以及一条线段PQ ,给出如下定义:若线段MN 的中点R 在线段PQ 上(点R 能与点P 或Q 重合),则称点M 与点N 关于线段PQ “中位对称”.如图为点M 与点N 关于线段PQ“中位对称”的示意图.已知:点O为数轴的原点,点A表示的数为﹣1,点B表示的数为2(1)若点C、D、E表示的数分别为﹣3,1.5,4,则在C、D、E三点中,与点A关于线段OB“中位对称”;点F表示的数为t,若点A与点F关于线段OB“中位对称”,则t的最大值是;(2)点H是数轴上一个动点,点A与点B关于线段OH“中位对称”,则线段OH的最小值是;(3)在数轴上沿水平方向平移线段OB,得到线段O'B',设平移距离为d,若线段O'B'上(除端点外)的所有点都与点A关于线段O'B'“中位对称”,请你直接写出d的取值范围.5、为了更安全地开展冰上运动某校决定购进一批护肘及护膝.已知用900元购进护膝的数量比用400元购进护肘的数量多10副,且每副护膝价格是每副护肘价格的1.5倍.(1)每副护肘和护膝的价格分别是多少元;(2)若学校决定用不超过8000元购进两种护具共300副,且护肘数量不多于102副,求有哪几种购买方案;(3)在(2)的条件下,若已知商家每副护肘的进价为15元,每副护膝的进价为20元,为支持学校的冰上运动,该商家准备正好用去方案中的最大利润的10%再次购进两种护具赠送给学校,请直接写出最多可赠送护膝多少副?-参考答案-一、单选题1、A【解析】【分析】设A,B两人的体重分别为a,b,根据题意列出等式和不等式,即可得出答案.【详解】解:设A ,B 两人的体重分别为a ,b ,根据题意得:a +m =n +b ,a >b ,∴m <n ,故选:A .【点睛】本题考查了不等式的性质,根据题意列出等式和不等式是解题的关键.2、B【解析】【分析】分式方程无解的情况有两种,第一种是分式方程化成整式方程后,整式方程无解,第二种是分式方程化成整式方程后有解,但是解是分式方程的增根,以此确定m 的值,不等式组整理后求出解集,根据有且只有三个偶数解确定出m 的范围,进而求出符合条件的所有m 的和即可.【详解】解:分式方程去分母得:()22()63mx x x +-=-,整理得:6(10)m x --=,分式方程无解的情况有两种,情况一:整式方程无解时,即10m -=时,方程无解,∴1m =;情况二:当整式方程有解,是分式方程的增根,即x =2或x =6,①当x =2时,代入6(10)m x --=,得:280m -=解得:得m =4.②当x =6时,代入6(10)m x --=,得:6120m -=,解得:得m=2.综合两种情况得,当m=4或m=2或1m=,分式方程无解;解不等式443(4)m yy y->⎧⎨-≤+⎩,得:48 y my<-⎧⎨≥-⎩根据题意该不等式有且只有三个偶数解,∴不等式组有且只有的三个偶数解为−8,−6,−4,∴−4<m−4≤−2,∴0<m≤2,综上所述当m=2或1m=时符合题目中所有要求,∴符合条件的整数m的乘积为2×1=2.故选B.【点睛】此题考查了分式方程的无解的问题,以及一元一次不等式组的偶数解,其中分式方程无解的情况有两种情况,一种是分式方程化成整式方程后整式方程无解,另一种是化成整式方程后有解,但是解为分式方程的增根,易错点是容易忽略某种情况;对于已知一元一次不等式组解,求参数的值,找到参数所表示的代数式的取值范围是解题关键.3、B【解析】【分析】先解不等式组,根据不等式组的有且仅有5个整数解确定a的范围,根据分式方程的解为整数,确定a的值,进而即可求解.【详解】解:324(2)63x x x a +<+⎧⎨-≤⎩①②解不等式①得:6x >- 解不等式②得:36a x +≤ ∵不等式组有且仅有5个整数解, ∴3106a +-≤< 解得93a -≤<-解3(12)2y a y -+=- 解得102a y +=, 1022a +≠且y 为整数,又93x -≤<- ∴a =−8,−48412--=-故选B【点睛】本题考查了解分式方程,解一元一次不等式组,掌握解分式方程,解一元一次不等式组是解题的关键.4、C【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正整数求出a 的范围,再由不等式组的解集确定出a 的范围,进而求出a 的具体范围,确定出整数a 的值,求出之和即可.【详解】解:分式方程去分母得:3(5)2x a x -+=-, 解得:32a x +=, 由分式方程的解为正整数,得到30a +>,即3a >-,2x ≠, ∴232a +≠,1a ≠, 不等式2()641115x a x a x x +≤+-⎧⎪-⎨-<⎪⎩,整理得:636x a x ≤-⎧⎨<-⎩, 由不等式的解集为6x <-,得到636a -≥-,即4a ≤,a ∴的范围是34a -<≤,且1a ≠ a 是整数,a ∴的值为2-,1-,0, 2,3,4,把2a =-代入32a x +=,得:223x -+=,即12x =,不符合题意; 把1a =-代入32a x +=,得:123x -+=,即1x =,符合题意; 把0a =代入32a x +=,得:320x +=,即32x =,不符合题意; 把2a =代入32a x +=,得:322x +=,即52x =,不符合题意; 把3a =代入32a x +=,得:323x +=,即3x =,符合题意; 把4a =代入32a x +=,得:324x +=,即72x =,不符合题意; ∴符合条件的整数a 取值为1-,3,之和为2,故选:C .【点睛】本题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键.5、D【解析】【分析】根据不等式的性质逐一进行判断即可得到答案.【详解】选项A ,在不等式x >y 两边都乘以-1,不等号的方向改变得<x y --,故选项A 不正确; 选项B ,在不等式x >y 两边都乘上2,不等号的方向不变得22>x y ,故选项B 不正确;选项C ,在不等式x >y 两边都除以6,不等号的方向不变得66>x y ,故选项C 不正确; 选项D ,在不等式x >y 两边都加以4,不等号的方向不变得44x y +>+,故选项D 正确. 故选D .【点睛】本题主要考查了不等式的相关知识质,熟练掌握不等式的性质是解题的关键.6、B【解析】【分析】先解关于x 的一元一次不等式组()23242741x m x x x -+⎧⎪⎨⎪++⎩,再根据其解集是32x ,得m 小于5;再解方程,根据其有非负整数解,得出m 的值,再求积即可. 【详解】解:由2324x m x -+,得:310x m ,由()2741x x ++,得:32x , 不等式组的解集为32x , ∴33102m , 解得5m ;解关于y 的方程得:213m y -=, 方程的解为非负整数,210m ∴-=或3或6或9,解得0.5m =或2或3.5或5,所以符合条件的所有整数m 的和257+=,故选:B .【点睛】此题考查了解一元一次不等式组及一元一次方程的解,熟练掌握各自的解法是解本题的关键.7、B【解析】略8、A【解析】【分析】根据不等式的性质求解即可.【详解】解:∵x y <,且()()33->-a x a y ,∴a -3<0,∴a <3,故选A .【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.9、D【解析】【分析】将两个方程组相加得到:233+=-x y k ,再由330->k 即可求出1k >进而求解.【详解】解:由题意可知:233x y k x y +=⎧⎨-=-⎩①②, 将①+②得到:233+=-x y k ,∵20x y +>,∴330->k ,解得1k >,故选:D .【点睛】本题考查二元一次方程组的解法及不等式的解法,解题关键是求出233+=-x y k ,进而求出k 的取值范围.10、A【解析】【分析】先解分式方程,根据分式方程有整数解求解a的值,再根据一元一次不等式组有解,求解a的取值范围,从而可得答案.【详解】解:3111axx x=---13,ax x12, a x关于x的分式方程3111axx x=---的解为整数,1,a∴≠则2,1xa11a∴-=±或12,a解得:2a=或0a=或3a=或1,a=-又10,x则1,x≠即21,1a3,a∴≠所以2a=或0a=或1,a=-()322242yyy y a①②+⎧≥+⎪⎨⎪+>+⎩由①得:2y≥由②得:42,y a关于y的不等式组()322242yyy y a+⎧≥+⎪⎨⎪+>+⎩有解,422,a1,a综上:0a=或1,a=-∴符合条件的所有整数a的和为 1.-故选A【点睛】本题考查的是分式方程的整数解,根据一元一次不等式组有解求解参数的取值范围,掌握“解分式方程及分式方程的整数解的含义,一元一次不等式组有解的含义”是解本题的关键.二、填空题1、5x−(20−x)>90【解析】【分析】设小明答对x道题,则答错(20−x)道题,根据小明的得分=5×答对的题目数−1×答错的题目数结合小明得分要超过90分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则答错(20−x)道题,依题意,得: 5x−(20−x)>90,故答案为:5x−(20−x)>90.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.2、故答案为:【点睛】本题主要考查了一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式.7.﹣2<x <4【解析】【分析】分别求出每一个不等式的解集,然后取交集,即可解题.【详解】解:解不等式5x <20,得:x <4,解不等式2x ﹣1<3x +1,得:x >﹣2,则不等式组的解集为﹣2<x <4,故答案为:﹣2<x <4.【点睛】本题考察了解不等式组的知识,在取交集时牢记口诀:同大取大、同小取小、大小小大中间找、大大小小无解了来确定不等式组的解集.3、m <1【解析】【分析】根据不等式的基本性质,两边都除以1m -后得到2x <,可知10m -<,解之可得.【详解】解:22mx m x ->-,移项得,22mx x m ->-,∴()()121m x m ->-,∵不等式22mx m x ->-的解集为2x <,∴10m -<,即1m <,故答案为:1m <.【点睛】题目主要考查不等式的性质及解不等式,熟练掌握不等式的性质是解题关键.4、八##8【解析】【分析】设该商品打x 折销售,根据利润=售价-进价,结合要保持利润不低于20%,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设该商品打x 折销售, 依题意得:750×10x -500≥500×20%, 解得:x ≥8.故答案为:八.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.5、732a ≤<【解析】【分析】根据不等式组所有整数解之和为﹣5可知,比2小的连续整数之和为﹣5的情况为,10(1)(2)+(3)=5++-+---,最小整数为﹣3,故323a -≤-且324a ->-,解出解集即可.【详解】 解:不等式()12513x x +>+,解集为:2x <, 不等式()132x x a +≤+ ,的解集为:32a x -≤, ∵不等式组所有整数解之和为﹣5,10(1)(2)+(3)=5++-+---,∴ 323a -≤-且324a ->-,解得:3a ≥,72a <, 综上所述,732a ≤< , 故答案为:732a ≤<. 【点睛】本题考查解一元一次不等式组的解集,以及数形结合思想,能够熟练应用数形结合思想是解决本题的关键.三、解答题1、 (1)﹣11x + (2)﹣13【解析】【分析】(1)先将分式的分子分母分解因式,然后约分,再根据分式的减法计算即可;(2)根据x 为不等式a +1≥3的最小整数解,可以得到x 的值,然后代入(1)中的结果,即可得到A 的值.(1)A=222111 x x x x x-+--+=2(1)(1)(1)xx x-+-﹣1xx+=11xx-+﹣1xx+=11 x x x--+=11x-+;(2)由不等式a+1≥3可得,a≥2,∵x为不等式a+1≥3的最小整数解,∴x=2,由(1)知,A化简后的式子是﹣11x+,当x=2时,原式=﹣121+=﹣13,即A的值是﹣13,【点睛】本题考查了分式的化简求值,求一元一次不等式的整数解,正确的计算是解题的关键.2、321x xx--,2-【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后根据x 是不等式组()213324x x x ⎧⎨≥⎩-<++的整数解,可以得到x 的整数值,再从x 的整数值中选取使得原分式有意义的值代入化简后的式子即可解答本题.【详解】 解:2(1)121x x x x x x --÷+++ 2(1)(1)(1)1x x x x x x-+-+=⋅+ 221(1)1x x x x x--+=⋅+ 2(1)(1)x x x x--+= 321x x x--=, 由不等式组()213324x x x ⎧⎨≥⎩-<++得,-1≤x <2, ∴x 的整数值为-1,0,1,∵x ≠0,x +1≠0,∴x ≠0,-1,∴x =1, ∴原式3121121-⨯-==-. 【点睛】本题考查了分式的化简求值、一元一次不等式组的整数解,解答本题的关键是明确分式化简求值的方法.3、 (1)A 、B 两种品牌服装的进价分别为100元和75元;(2)最少购进A 品牌的服装16套【分析】(1)首先设B 品牌服装每套进价为x 元,则A 品牌服装每套进价为(x+25)元,根据关键语句“用2000元购进A 种服装数量是用750元购进B 种服装数量的2倍”列出方程,解方程即可;(2)首先设购进A 品牌的服装a 套,则购进B 品牌服装(2a +4)套,根据“可使总的获利超过1200元”可得不等式(130-100)a +(95-75)(2a +4)≥200,再解不等式即可.(1)设B 品牌服装每套进价为x 元种,则A 品牌服装每套进价为(x +25)元根据题意得:2000750225x x=⨯+, 解得:x =75经检验:x =75是原方程的解,x +25=100,答:A 、B 两种品牌服装的进价分别为100元和75元;(2)设购买A 种品牌服装a 件,则购买B 种品牌服装(2a +4)件,根据题意得:(130-100)a +(95-75)(2a +4)≥1200解得:a ≥16,∴a 取最小值是16,答:最少购进A 品牌的服装16套.【点睛】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意,表示出A 、B 两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.4、 (1)D 、E ;5(2)0.5(3)13d <<【分析】(1)根据“中位对称”的定义求出中点再去判断即可;(2)根据“中位对称”的定义求出中点再去判断即可;(3)分别表示出O B ''、表示的数,再分别求O B ''、与点A 关于线段O 'B '“中位对称”,对称时的d 值即可,需要注意向左或右两种情况.(1)点A 表示的数为﹣1,点B 表示的数为2,点C 、D 、E 表示的数分别为﹣3,1.5,4∴线段AC 的中点表示的数为-2,不在线段OB 上,不与点A 关于线段OB “中位对称”; 线段AD 的中点表示的数为0.25,在线段OB 上,D 与点A 关于线段OB “中位对称”; 线段AE 的中点表示的数为1.5,在线段OB 上,E 与点A 关于线段OB “中位对称”; ∴D 、E 与点A 关于线段OB “中位对称”;∵点F 表示的数为t∴线段AF 的中点表示的数为12t -+ ∴若点A 与点F 关于线段OB “中位对称”,∴点F 在线段OB 上,∴当AF 中点与B 重合时 t 最大,此时122t -+=,解得5t =,即t 的最大值是5 (2)∵点A 表示的数为﹣1,点B 表示的数为2∴线段AE 的中点表示的数为0.5,∵点A 与点B 关于线段OH “中位对称”,∴0.5在线段OH 上∴线段OH 的最小值是0.5(3)当向左平移时,O '表示的数是d -,B '表示的数是2d -线段AO '的中点表示的数为12d --,线段AB '的中点表示的数为12d -, 当O '与点A 关于线段O 'B '“中位对称”时,∴线段AO '的中点在O B ''上, ∴122d d d ---<<- ∴15d <<当B '与点A 关于线段O 'B '“中位对称”时,线段AB '的中点在O B ''上, ∴122d d d --<<- ∴13d -<<∵线段O 'B '上(除端点外)的所有点都与点A 关于线段O 'B '“中位对称”∴当向左平移时,13d <<同理,当向右平移时,d 不存在综上若线段O 'B '上(除端点外)的所有点都与点A 关于线段O 'B '“中位对称”13d <<【点睛】本题考查数轴上的动点问题,解题的关键是根据“中位对称”的定义进行解题,同时熟记数轴上中点公式也是解题的关键点.5、 (1)每副护肘的价格是20元,每副护膝的价格的价格是30元(2)方案1:购进护肘100副,护膝200副;方案2:购进护肘101副,护膝199副;方案3:购进护肘102副,护膝198副(3)最多可赠送护膝11副【解析】【分析】1)设每副护肘的价格是x元,则每副护膝的价格的价格是1.5x元,利用数量=总价÷单价,结合用900元购进护膝的数量比用400元购进护肘的数量多10副,即可得出关于x的分式方程,解之经检验后即可求出每副护肘的价格,再将其代入1.5x中即可求出每副护膝的价格;(2)设购进护肘m副,则购进护膝(300﹣m)副,利用总价=单价×数量,结合总价不超过8000元且购进护肘数量不多于102副,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数,即可得出各购买方案;(3)利用总利润=每副的销售利润×购进数量,即可求出选择各方案获得的销售总利润,比较后可得出最大利润,设可赠送护膝a副,护肘b副,利用总价=单价×数量,即可得出关于a,b的二元一次方程,结合a,b均为正整数可得出最多可赠送护膝11副.(1)解:设每副护肘的价格是x元,则每副护膝的价格的价格是1.5x元,依题意得:900400101.5x x-=,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴1.5x=1.5×20=30.答:每副护肘的价格是20元,每副护膝的价格的价格是30元.(2)解:设购进护肘m副,则购进护膝(300﹣m)副,依题意得:2030(300)8000102m mm+-≤⎧⎨≤⎩,解得:100≤m≤102.又∵m为正整数,∴m可以取100,101,102,∴共有3种购买方案,方案1:购进护肘100副,护膝200副;方案2:购进护肘101副,护膝199副;方案3:购进护肘102副,护膝198副.(3)解:方案1获得的利润为(20﹣15)×100+(30﹣20)×200=2500(元);方案2获得的利润为(20﹣15)×101+(30﹣20)×199=2495(元);方案3获得的利润为(20﹣15)×102+(30﹣20)×198=2490(元).∵2500>2495>2490,∴选择方案1获得的利润最大,最大利润为2500元.设可赠送护膝a副,护肘b副,依题意得:20a+15b=2500×10%,化简得:a=5034b-.又∵a,b均为正整数,∴112ab=⎧⎨=⎩或86ab=⎧⎨=⎩或510ab=⎧⎨=⎩或{a=2a=14,∴最多可赠送护膝11副.【点睛】本题考查了分式方程的应用、一元一次不等式组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)找准等量关系,正确列出二元一次方程.。

初中数学一元一次不等式(组)单元综合能力达标测试题4(附答案)

初中数学一元一次不等式(组)单元综合能力达标测试题4(附答案)
(1)王老师为什么说他搞错了?试用方程的知识给予解释;
(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本,但笔记本的单价已经模糊不清,只能辨认应为小于5的整数,笔记本的单价可能为多少元?
参考答案
1.A
【解析】

解①得:x≥a+b,
解②得:x< ,
根据题意得:
解得: ,
所以 .
故选A.
【详解】
设胜的场次为x,则负的场次为32-x,则根据题意可得:
,解得不等式为 ,故这个队至少要胜20场才有希望进入季后赛.
【点睛】
本应用题关键学会利用方程的思想解不等式。
13.0,1,2
【解析】
【分析】
先按照解不等式的方法求出不等式的解集,然后再在其解集中确定符合题意的非负整数解即可.
【详解】
解:移项得: ,
故选:C
【点睛】
本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.
7.C
【解析】
【分析】
利用方差的意义、不等号的性质、全等三角形的判定及确定圆的条件对每个选项逐一判断后即可确定正确的选项.
【详解】
A.方差越大,越不稳定,故选项错误;
B.在不等式的两边同时乘以或除以一个负数,不等号方向改变,故选项错误;
(1)请为校方设计可能的租车方案;
(2)在(1)的条件下,校方根据自愿的原则,统计发现有 人参加,请问校方应如何租车,且又省钱?
24.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.

【原创】四川省攀枝花市米易二中2014年七年级下册数学第8单元一元一次不等式单元测试卷

【原创】四川省攀枝花市米易二中2014年七年级下册数学第8单元一元一次不等式单元测试卷

制作:陈学玮1C .表示数2的点的右侧D .表示数2的点或表示数2的点的右侧 3. 若a <b ,则下列不等式中正确的是( )A .a-2>b-2B .-2a <-2bC .2-a >2-b 4. 下列命题中,正确的是( )A .若a >b ,则a 2>b 2B .若a >|b|,则a 2>b 2C .若a ≠b ,则|a|≠|b|D .若a ≠b ,则a 2≠b 2 5. 已知b <a ,要使am <bm ,则( )A .m <0B .m=0C .m >0 6. 如果a≠0,且ax≥-1,则下列必成立的是( )A .x >−a 1 B .x ≤a1 C .当a >0时,x ≥−a 1;当a <0时,x ≤-a 1D .当a >0时,x ≤a 1;当a <0时,x ≥a17. 如果一元一次不等式组 的解集为x >3.则a 的取值范围是( )A .a >3B .a ≥3C .a ≤ 38. 如果不等式组 无解,那么m 的取值范围是( )A .m >8B .m ≥8C .m <8 9. 已知关于x 的不等式2x-m >-3的解集如图,则m 的值为( )A .2B .1C .0D .-1 10. 若不等式组的解集为-1≤x≤3,则图中表示正确的是( )A .B .C .D .二、(30分)填空题:11、已知x≥2的最小值是a ,x≤-6的最大值是b ,则a+b= 12、比较大小:当实数a <0时,1+a 1-a (填“>”或“<”).13、若不等式-3x+n >0的解集是x <2,则不等式-3x+n <0的解集是 14、不等式8-3x≥0的最大整数解是15、苹果的进价为每千克3.8元,销售中估计有5%的苹果正常损耗,为避免亏本,商家把售价应该至少定为每千克 元.16、关于x 的方程kx-1=2x 的解为正实数,则k 的取值范围是17、不等式组的解集为18、不等式组 的解集是19、如果不等式3x-m <0的正整数解为1,2,3,那么m 的范围是20、用适当的符号表示:x 的5倍与3的和比x 的8倍大 三、解答题: 21、(5分)解不等式5x-12≤2(4x-3),并把它的解集在数轴上表示出来。

青岛版2020八年级数学下册第八章一元一次不等式单元综合基础测试题4(附答案) (1)

青岛版2020八年级数学下册第八章一元一次不等式单元综合基础测试题4(附答案) (1)

23.对于任意实数 a,b,定义关于“⊕”的一种运算如下:a⊕b=2a-b.例如:5⊕2=2×5 -2=8,(-3)⊕4=2×(-3)-4=-10. (1)若 3⊕x=-2 011,求 x 的值; (2)若 x⊕3<5,求 x 的取值范围. 24.某公司经营甲、乙两种商品,每件甲种商品进价 12 万元,售价 14.5 万元.每件乙 种商品进价 8 万元,售价 10 万元,且它们的进价和售价始终不变.现准备购进甲、乙 两种商品共 20 件,所用 资金不低于 190 万元不高于 200 万元. (1)该公司有哪几种进货方案? (2)该公司采用哪种进货方案可获得最大利润?最大利润是多少? 25.“缤纷节”已经成为西南大学附中一张响亮的名片,受到了社会各界的高度赞扬缤纷 意寓缤纷的青春,缤纷的风采,缤纷的个性,缤纷的创意,它充分展现了我校学子的青
【详解】
当 3>x+2,即 x<1 时,3(x+2)+x+2>0,
解得:x>−2,
∴−2<x<1;
当 3<x+2,即 x>1 时,3(x+2)−(x+2)>0,
解得:x>−2,
∴x>1,
综上,−2<x<1 或 x>1,
故选:C.
7.B
【解析】
【分析】
先求出不等式的解集,然后从解集中找出最小整数即可.
”猜成
4
,请你解一元一次不等式组
x
4
0

(2)张老师说:我做一下变式,若“
”表示字母,且
x x
2 1
的解集是
0
x
3
,请求
字母“ ”的取值范围.

第八章 一元一次不等式单元测试(含答案)

第八章 一元一次不等式单元测试(含答案)

第八章 一元一次不等式 单元测试一、选择题:1. (2011上海)如果a >b ,c <0,那么下列不等式成立的是( ).(A) a +c >b +c ; (B) c -a >c -b ; (C) ac >bc ; (D)a b c c> . 2. (2011湖南湘潭市)不等式组⎩⎨⎧≤>21x x 的解集在数轴上表示为3. (2011江苏淮安)不等式322x x +<的解集是( ) A.x <-2 B. x <-1 C. x <0 D. x >24. (2011山东临沂)不等式组⎪⎪⎩⎪⎪⎨⎧≥+01-3x 3-x 12x的解集是( )A .x≥8B .3<x≤8C .0<x≤2D .无解5 (2011山东烟台)不等式4-3x ≥2x -6的非负整数解有( ) A.1 个 B. 2 个 C. 3个 D. 4个6. (2011山东日照)若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是( )(A )1<a ≤7 (B )a ≤7 (C ) a <1或a ≥7 (D )a =7 7. (2011山东威海)如果不等式213(1),.x x x m ->-⎧⎨<⎩的解集是2x <,那么m 的取值范围是( ) A .m =2B .m >2C .m <2D .m ≥28. (2011贵州安顺,5,3分)若不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的取值范围是( )A .m ≤35B .m <35C .m >35D .m ≥35 二、填空题:B21 0 C2 1 0 D21 0 A2 1 09、“x 的2倍与5的差小于0”用不等式表示为 . 10. (2011江苏泰州)不等式2x+1>﹣5的解集是 .11、幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余 59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件.12. (2011湖北黄冈)若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.13. (2011四川眉山)关于x 的不等式3x-a≤0,只有两个正整数解,则a 的取值范围是____ 三、解答题:14. (2011浙江省舟山)解不等式组:⎩⎨⎧≤-+>+1)1(2,13x x x 并把它的解在数轴上表示出来.15. (2011江苏扬州)解不等式组 )2( 132121)1( 313⎪⎩⎪⎨⎧++≤+-<+xx x x ,并写出它的所有整数解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题五 一元一次不等式一、选择题:1.a 是非负数应表示为( )A.a>0B.a ≤0C.a<0D.a ≥02.若a<b,则下列不等式成立的是( )A.a-b>0B.a+b<0;C.ac<bcD.-a>-b 3.下列各式对于任意数a 都能成立的是( ) A.7a>6a; B.a>-a; C.1154a a <; D.3-a<4-a4.若-3a 是正数,那么不等式232x ax ->的解集是( )A.x<623a-; B.x>623a-; C.x<632a -; D.x>632a -5.满足不等式3x+3≥2x+5及x+9≤2x+5的解集是( ) A.x ≥2 B.x ≥4; C.无解 D.x 为任意数6.设x 为一整数,且满足不等式-2x+3<4x-1及3x-2<-x+3,则x 等于( ) A.0 B.1 C.2 D.37.下列说法中错误的是( )A.2不是不等式x+3<5的解;B.不等式x+1<1有无数多个解C.不等式x+3≥6的解集是x=3;D.不等式x+1<4的正数解是1,28.下列各组不等式,根据不等式的性质,由第一个变为第二个,变错的是( ) A.如果ab>bc,那么a>c; B.如果a+b>b+c,那么a>c C.如果a>b,那么a-c>b-c; D.如果a>b,那么c-a>c-b9.设●、▲、■表示三种不同的物体,现用天平称了两次,情况如图所示,那么●、▲、■这三个物体按质量从大到小的顺序排列应为( )A.■●▲B.■▲●;C.▲●■D.▲■●■■■▲▲●●●●10.下列不等式组无解的是( )A.12133(2)4x x x x +⎧>-⎪⎨⎪--≥⎩B. 131722523(1)x xx x ⎧-≤-⎪⎨⎪->+⎩C.32321(4)22x xx++⎧<⎪⎪⎨⎪+<⎪⎩D.26(3)5(1)64(1)x xx x-<+⎧⎨--≥+⎩二、填空题:1.若关于x的方程(1-m)x=1-2x的解是负数,那么m的取值范围是______.2.若关于x的方程5x-2a=x-4的解在2和10之间(不包括2和10), 则a 应满足条件_______.3.对于二元一次方程51143x y+=,当x>1时,y的取值范围是_________.4.已知方程3(x-2a)+2=x-a+1的解适合不等式2(x-5)>8a,则a_______.5.若方程组323x yx y a+=-⎧⎨-=-⎩的解是负数,那么a的取值范围是_______.三、解下列不等式组1.1252132xx xx x-⎧->-⎪⎨⎪+≥-⎩2.2(4)313(2)123246181326x xx xxx x xx⎧⎪--<--⎪--⎪+≤-⎨⎪+-⎪+-≥-⎪⎩四、创新题1.某次数学竞赛有50道选择题,评分标准为答对一题2分,答错一题倒扣1分, 不答题不得分,也不扣分,某学生4道题没有答,但得分超过70分,取得了复赛资格,问他可能答对多少道题?2.乘某城市的一种出租汽车起步价都是10元(即行驶路程在5km以内都需付10元车费),达到或超过5km,每增加1km加价1.2元(不足1km部分按1km计算), 现在某人乘这种出租汽车从甲地到乙地,支付车费17.2 元, 问从甲地到乙地的路程大约是多少km?3.有人问一位老师,他所教的班有多少学生,老师说:“一半学生在学数学,四分之一的学生在学英语,七分之一的学生在学音乐,还乘不足六位同学在操场上踢足球”.试问这个班有多少学生?4.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物, 如果每人送3本,还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本, 设该校买了m本课外读物,有x名学生获奖,试解答下列问题.(1)用含x的代数式表示m;(2)求出获奖人数及所买课外读物的本数.五、中考题(2002,山东)火车站有某公司待运的甲种货物1530t,乙种货物1150t, 现计划用50节A,B两种型号的车厢将这批货物运至北京,已知每节A型货厢的运费是0.5万元, 每节B型货厢的运费是0.8万元;甲种货物35t和乙种货物15t可装满一节A型货厢, 甲货物25t和乙种货物35t可装满一节B型货厢,按此要求安排A,B两种货厢的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?答案:一、1.D 2.D 3.D 4.D 5.B 6.B 7.C 8.A 9.B 10.C 二、1.m>3提示:解关于x的方程(1-m)x=1-2x,得x=13m-,又知x<0,∴13m-<0,∵此分数为负值,且分子为1,则3-m<0,∴m>3.2.6<a<22提示:解关于x的方程5x-2a=x-4,得x=22a-,又知2<x<10,∴2<22a-<10,各边都乘以2,得4<a-2<20,移项,得6<a<22.3.y<-3 4提示:在二元一次方程51143x y+=中,用y表示x,得x=4(3)15y-,又已知x>1,4(3)15y->1, y<-344.113<-提示:解方程3( x-2a)+2=x-a+1,得x=512a-, 把x=512a-代入不等式2(x-5)>8a,2(512a--5)>8a,5a-1-10>8a,-3a>11, a113<-.5.0<a<9提示:解方程组323x yx y a+=-⎧⎨-=-⎩,得933axay-⎧=⎪⎪⎨⎪=-⎪⎩,∴933aa-⎧<⎪⎪⎨⎪-<⎪⎩,∴0<a<9.三、1.提示: 125(1)2132(2)x x x x x -⎧->-⎪⎨⎪+≥-⎩解不等式①,得113x <, 即233x <;解不等式②,得32x ≤,∴此不等式组的解集为32x ≤ .2.提示: 解不等式①,得x<335;解不等式②,得x ≥123;解不等式③,得x ≥-8,不等式①②③的解集在数轴上的表示如图所示:3513∴此不等式组的解集为 231335x ≤<.四、1.解:设他至少答对x 道题,依题意有2x-1×(50-4-x)>70,解这个不等式得x>3823,取最小正整数x=39,所以此学生至少答对39道题.2.解:设从甲地到乙地的路程是xkm,则16<10+1.2(x-5)≤17.2, 解此不等式组, 得10<x ≤11, 故从甲地到乙地的路程大于10km,小于或等于11km.3.解:设这个班共有x 名同学,依题意得6247x x x ⎛⎫++<⎪⎝⎭, 解这个不等式,得x<56, ∵x,,,247x x x都是正整数,∴x=28.∴这个班共有28名学生.4.(1)m=3x+8 (2)解:根据题意得不等式组385(1)385(1)3x x x x +>-⎧⎨+<-+⎩ ,解不等式①,得x<6.5 ; 解不等式②,得x>5, ∴5<x<6.5 , 又∵x 为正整数,∴x=6(人),∴m=3×6+8=26(本).五、提示:将甲种货物和乙种货物全部运走,根据题意我出不等式组来限定运送货物的两种车厢数的取值范围.设需要A型车厢x节,则需要B型车厢(50-x)节,依题意得1535(50)1150 3525(50)1530 x xx x+-≥⎧⎨+-≥⎩解①,得x≥28;解②,得x≤30,所以28≤x≤30.因为x为整数,故x=28,29,30,共有三种方案:(1)A型车厢28节,B型车厢22节;(2)A型车厢29节,B型车厢21节;(3)A 型车厢30节,B型车厢20节.当A型车厢为30节时,运费为0.5×30+0.8×(50-30)=31( 万元),此时运费最小.。

相关文档
最新文档