图文举例详细讲解Logistic曲线的回归分析

合集下载

逻辑曲线(Logistic回归)

逻辑曲线(Logistic回归)

逻辑回归的参数解释
β0
截距,表示当所有解释变量x都为0时, logit P的估计值。
β1, β2, ..., βp
斜率,表示各解释变量对logit P的影 响程度。
逻辑回归的假设条件
线性关系
假设自变量与因变量之间存在线性关系,即因变 量的变化可以被自变量的线性组合所解释。
误差项同分布
假设误差项服从同一分布,通常是正态分布。
评估指标
根据任务类型选择合适的评估指标,如准确率、召回率、F1分数等。
模型比较
将新模型与其他同类模型进行比较,了解其性能优劣。
04 逻辑回归的优缺点
优点
分类性能好
逻辑回归模型在二分类问题上 表现优秀,分类准确率高。
易于理解和实现
逻辑回归模型形式简单,参数 意义明确,方便理解和实现。
无数据分布假设
总结词
在某些情况下,逻辑回归可能不是解决回归问题的最佳选择,此时可以考虑其他替代方 案。
详细描述
当因变量是连续变量,且自变量和因变量之间的关系非线性时,线性回归可能不是最佳 选择。此时可以考虑使用其他回归模型,如多项式回归、岭回归、套索回归等。另外, 当自变量和因变量之间的关系不确定时,可以考虑使用支持向量回归等模型进行预测。
06 总结与展望
总结
应用广泛
逻辑回归模型在许多领域都有广泛的应用,如医学、金融、市场 营销等,用于预测和解释二元分类结果。
理论基础坚实
基于概率和统计理论,逻辑回归模型能够提供可靠的预测和解释, 尤其是在处理小样本数据时。
灵活性和可解释性
模型参数可以解释为对结果概率的影响程度,这使得逻辑回归成为 一种强大且易于理解的工具。
在二分类问题中,逻辑回归通过将线性回归的输出经过逻辑函数转换,将连续的预测值转换为概率形式,从而实 现对因变量的二分类预测。逻辑函数的形式为1 / (1 + e ^ (-z)),其中z为线性回归的输出。

logistic回归分析案例

logistic回归分析案例

logistic回归分析案例Logistic回归分析案例。

Logistic回归分析是一种常用的统计分析方法,主要用于预测二分类或多分类的结果。

在实际应用中,Logistic回归分析可以帮助我们理解影响某一事件发生的因素,以及对事件发生的概率进行预测。

本文将通过一个实际的案例来介绍Logistic回归分析的应用。

案例背景。

假设我们是一家电商公司的数据分析师,现在我们需要分析用户的购买行为,并预测用户是否会购买某一产品。

我们收集了一些用户的个人信息和他们最近一次购买的产品,希望通过这些数据来预测用户是否会购买新产品。

数据准备。

首先,我们需要收集用户的个人信息和购买行为数据。

个人信息包括年龄、性别、职业等;购买行为数据包括购买的产品类型、购买时间等。

在收集完数据后,我们需要对数据进行清洗和预处理,包括缺失值处理、异常值处理等。

模型建立。

在数据准备完成后,我们可以开始建立Logistic回归模型。

首先,我们需要将数据划分为训练集和测试集,以便对模型进行验证。

然后,我们可以利用训练集来拟合Logistic回归模型,并利用测试集来评估模型的预测效果。

模型评估。

在模型建立完成后,我们需要对模型进行评估。

常用的评估指标包括准确率、精确率、召回率等。

这些指标可以帮助我们判断模型的预测效果,并对模型进行调优。

模型应用。

最后,我们可以利用建立好的Logistic回归模型来预测用户是否会购买新产品。

通过输入用户的个人信息和购买行为数据,模型可以给出用户购买新产品的概率,从而帮助我们进行精准营销和推广。

结论。

通过以上实例,我们可以看到Logistic回归分析在预测用户购买行为方面具有很好的应用价值。

通过收集用户数据、建立模型、评估模型和应用模型,我们可以更好地理解用户行为,并做出更精准的预测和决策。

总结。

Logistic回归分析是一种强大的统计工具,可以帮助我们预测二分类或多分类的结果。

在实际应用中,我们可以根据具体情况收集数据、建立模型,并利用模型进行预测和决策。

因变量是定性变量的回归分析—Logistic回归分析

因变量是定性变量的回归分析—Logistic回归分析

因变量是定性变量的回归分析—Logistic回归分析一、从多元线性回归到Logistic 回归例这是200个不同年龄和性别的人对某项服务产品的认可的数据(logi.sav).其中:年龄是连续变量,性别是有男和女(分别用1和0表示)两个水平的定性变量,而变量“观点”则为包含认可(用1表示)和不认可(用0表示)两个水平的定性变量。

从这张图可以看出什么呢?从这张图又可以看出什么呢?这里观点是因变量, 只有两个值;所以可以把它看作成功概率为p 的Bernoulli 试验的结果.但是和单纯的Bernoulli 试验不同,这里的概率p 为年龄和性别的函数. 必须应用Logistic 回归。

二、 多元线性回归不能应用于定性因变量的原因首先,多元线性回归中使用定性因变量严重违反本身假设条件,即:因变量只能取两个值时,对于任何给定的自变量值,e 本身也只能取两个值。

这必然会违背线性回归中关于误差项e 的假设条件。

其次,线性概率概型及其问题:由于因变量只有两个值;所以可以把它看作成功概率p ,取值范围必然限制在0—1的区间中,然而线性回归方程不能做到。

另外概率发生的情况也不是线性的。

三、 Logistic 函数Logistic 的概率函数定义为:[])(ex p 11bx a P +-+=我们将多元线性组合表示为:Z x b x b x b b i i k k ==+++∑ 110102030405060700.20.40.60.8agep于是,Logistic 概率函数表示为:[])ex p(11ex p 11Z x b P i i -+=-+=∑经过变形,可得到线性函数:i i x b Z p p ∑==⎥⎦⎤⎢⎣⎡-)1(ln 这里, 事件发生概率=P(y=1)事件不发生概率=1-P (y=0) 发生比:Ω=-=ppodds 1)( 对数发生比:)(log )1(ln )log(p it p p odds =⎥⎦⎤⎢⎣⎡-= 这样,就可将logistic 曲线线性化为:i i x b P it ∑=)(log从P 到logit P 经历了两个步骤变换过程: 第一步:将p 转换成发生比,其值域为0到无穷第二步:将发生比换成对数发生比,其值域科为[]∞+∞-经过转换, 将P →logit P,在将其作为回归因变量来解释就不再有任何值域方面的限制了,即可线性化!四、 Logistic 回归系数的意义以logit P 方程的线性表达式来解释回归系数,即:k k x b x b x b a P it ++++= 2211)(log在logistic 回归的实际研究中,通常不是报告自变量对P 的作用,而是报告自变量对logit P 的作用。

logistic回归分析(共86张)

logistic回归分析(共86张)
方程=表0达.52:61,
ln( p ) 0.9099 0.8856x1 0.5261x2 1 p
控制饮酒因素后, 吸烟与不吸烟相比 患食管癌的优势比 为2.4倍
第18页,共86页。
OR的可信区间(qū 估计 jiān)
吸烟与不吸烟患食管癌OR的95%可信区间:
exp(b1 u /2Sb1 ) exp(0.8856 1.960.15) (1.81,3.25)
模型为条件Logistic回归。
成组(未配对)设计的病例对照研究资料,计算的
Logistic回归模型为非条件Logistic回归。 例:见265页
区别:
条件Logistic回归的参数估计无常数项(β0),主要 用于危险因素的分析。
第28页,共86页。
一、logistic回归的应用
1.疾病(某结果)的危险因素分析和筛选 用回归模型中的回归系数(βi)和OR说明
第3页,共86页。
Logistic回归(huíguī)方法
该法研究是 当 y 取某值(如y=1)发生的概率(p)与
某暴露因素(x)的关系。
No P(概率I)m的a取g值e波动0~1范围。
基本原理:用一组观察数据拟合Logistic模型, 揭示若干个x与一个因变量取值的关系,反映y 对x的依存关系。
1
Z值 23
图16-1 Logistic回归函数的几何图形
第7页,共86页。
几个(jǐ ɡè)logistic回归模型方程
第8页,共86页。
logistic回归模型(móxíng)方程的线性表达
对logistic回归模型的概率(p)做logit变 换,
方程如下:
线形关 系
Y~(-∞至+∞)

《logistic回归》课件

《logistic回归》课件
03
易于理解和实现: 由于基于逻辑函数,模型输出结 果易于解释,且实现简单。
Logistic回归的优势与不足
• 稳定性好: 在数据量较小或特征维度较高 时,Logistic回归的预测结果相对稳定。
Logistic回归的优势与不足
01
不足:
02
对数据预处理要求高: 需要对输入数据进行标准化或归一化处理,以 避免特征间的尺度差异对模型的影响。
模型假设
01
线性关系
因变量与自变量之间存在线性关系 。
无自相关
因变量与自变量之间不存在自相关 。
03
02
无多重共线性
自变量之间不存在多重共线性,即 自变量之间相互独立。
随机误差项
误差项是独立的,且服从二项分布 。
04
模型参数求解
最大似然估计法
通过最大化似然函数来求解模型参数。
梯度下降法
通过最小化损失函数来求解模型参数。
特征选择与降维
在处理大数据集时,特征选择和降维是提高模 型性能和可解释性的重要手段。
通过使用诸如逐步回归、LASSO回归等方法, 可以自动选择对模型贡献最大的特征,从而减 少特征数量并提高模型的泛化能力。
降维技术如主成分分析(PCA)可以将高维特 征转换为低维特征,简化数据结构并揭示数据 中的潜在模式。
迭代法
通过迭代的方式逐步逼近最优解。
牛顿法
利用牛顿迭代公式求解模型参数。
模型评估指标
准确率
正确预测的样本数占总样本数的比例 。
精度
预测为正例的样本中实际为正例的比 例。
召回率
实际为正例的样本中被预测为正例的 比例。
F1分数
精度和召回率的调和平均数,用于综 合评估模型性能。

Logistic回归分析(共53张PPT)

Logistic回归分析(共53张PPT)
数值。
• 优势比
• 常把出现某种结果的概率与不出现的概率 之比称为比值(odds),即odds=p/1-p。两个
比值之比称为比值比(Odds Ratio),简称 OR。
• Logistic回归中的常数项(b0)表示,在不
接触任何潜在危险/保护因素条件下,效 应指标发生与不发生事件的概率之比的对 数值。

Forward: LR ( 向前逐步法:似然比 法 likelihood ratio,LR)→ 再击下 方的 Save 钮,将 Predicted values 、 Influence 与 Residuls 窗口中的 预选项全勾选 → Continue → 再击 下方的 Options 钮,将 Statistics and Plot 小窗口中的选项全勾选 → Continue → OK 。
三、参数检验
• 似然比检验(likehood ratio test)
通过比较包含与不包含某一个或几 个待检验观察因素的两个模型的对数似 然函数变化来进行,其统计量为G (又 称Deviance)。
G=-2(ln Lp-ln Lk) 样本量较大时, G近似服从自由度
为待检验因素个数的2分布。
• 比分检验(score test)
, Logistic回归系数的解释变得更为复杂 ,应特别小心。
根据Wald检验,可知Logistic回归系
数bi服从u分布。因此其可信区间为
病例与对照匹配---条件logistic回归 其中, 为常数项, 为偏回归系数。 应变量水平数大于2,且水平之间不存在等级递减或递增的关系时,对这种多分类变量通过拟合一种广义Logit模型方法。
u= bi s bi
u服从正态分布,即为标准正态离差。

logistic回归分析

logistic回归分析

表13-7 例13-2的logistic回归模型自变量筛选结果
模型
因素 X
第1步 常数项
回归系数 标准误
b
Sb
-2.528 0.238
Wald χ2 P值 112.433 <0.001
OR值
OR值95%可信区间 下限 上限
0.080
治疗11周
2.149 0.289 55.267 <0.001 8.578 4.867 15.117
因素 X 常数项
回归系数 标准误
Waldχ2 P值 OR值
b
Sb
-0.910 0.136 44.870 0.000 0.403
OR值95%可信区间
下限
上限
吸烟
0.886 0.150 34.862 0.000 2.424 1.807
3.253
饮酒
0.526 0.157 11.207 0.001 1.692 1.244
logistic回归分析
Logistic regression analysis
• 医学研究中应变量有时是二分类结果,如发病与不 发病、死亡与生存、有效与无效、复发与未复发等, 当需要研究二分类应变量的影响因素时,适合采用 logistic回归分析。
logistic回归属于概率型非线性回归,它是研究二 分类(可以扩展到多分类)反应变量与多个影响 因素之间关系的一种多变量分析方法。logistic回 归模型参数具有明确的实际意义。
OR值的可信区间:
exp(bj - zα/2 Sbj ) ORj exp(bj zα/2 Sb j )
• 例13-1 研究吸烟(X1)、饮酒(X2)与食道癌 (Y)关系的病例-对照资料,试作logistic回归 分析。

《logistic回归分析》PPT课件

《logistic回归分析》PPT课件
3
第一节 非条件logistic回归
一、logistic 回归模型:
设因变量 Y 是一个二分类变量,其取值为 Y =1 和Y =0。 影响 Y 取值的 m 个自变量分别为 X1, X 2 ,, X m 。在 m 个自变量(即暴露因素)作用下阳性结果发生的条件
概率为 P P(Y 1 X1, X 2 ,, X m ) ,则 logistic 回归模
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
9
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
Logistic
模型为:
p1

p( y
1|
(2)多分类资料Logistic回归: 因变量为多项分类的资料,可 用多项分类Logistic回归模型或有序分类Logistic回归模型进 行分析。
2
非条件Logistic回归分析 条件Logistic回归分析 无序分类反应变量Logistic回归分析 有序多分类反应变量Logistic回归分析 Logistic回归分析应用及注意事项
21
对所拟合模型的假设检验:
概率p值均小 于0.05,说明 方程有意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

L o g i s t i c 曲线的回归分析 例 某一品种玉米高度与时间(生长周期,每个生长周期为2-3天,与气温有关)的数据如表1.所示。

用转化为线性方程的方法估计其logistic 曲线预测模型。

设最大值k 为300(cm )。

表1. 玉米高度与时间(生长周期)的关系
图93
观察散点图,其呈S 型曲线,符合logistic 曲线。

采用转化为线性方程的方法求解模型。

3.2 Logistic 曲线方程及线性化
Logistic 曲线方程为:
1at
k
y me -=+
(12) (1) 将数据线性化及成图
转化为线性方程为:
01'y a a t =+
(13)
其中,'ln(/1)y k y =-,0ln a m =,1a a =-
具体操作为:
向excel 表格中输入y ’数据。

图 94
并依据上面同方法做y ’与x 的散点图。

图95
如图96所示,选择线性类型。

图96
选项中选择显示公式和显示R 2。

图97
(13)
(14)
(2) (3) Multiple R 为复相关系数,R Square 为决定系数,其值为0.987。

Adjusted R Square: 调整过的R 2,即考虑了自变量的个数。

df 为自由度,SS 为平方和,MS 为均方。

Significance F 即为P 值。

当05.0=α时,图106中的P 值小于α,表明回归效果显着。

因而由决定系数和方差P 值确定所作回归方程有效。

因而,所求得的Logistic 方程为:
0.2297300
1393.063t
y e -=+ (15)。

相关文档
最新文档