2012内江中考数学答案
2012年四川省内江市中考数学试卷

2012年四川省内江市中考数学试卷2012年四川省内江市中考数学试卷一、选择题(每小题3分,36分)3.(2012•内江)已知反比例函数的图象经过点(1,﹣2),则k的值为()4.(2012•内江)下列图形中,既是轴对称图形又是中心对称图形的有()5.(2012•内江)如图,a∥b,∠1=65°,∠2=140°,则∠3=()7.(2012•内江)函数的图象在()8.(2012•内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为()9.(2012•内江)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千 米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( )10.(2012•内江)如图,在矩形ABCD 中,AB=10,BC=5,点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则阴影部分图形的周长为( )11.(2012•内江)如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )12.(2012•内江)如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x (秒),y=PC 2,则y 关于x 的函数的图象大致为( )二、填空题(每小题5分,共20分)13.(2012•内江)分解因式:ab 3﹣4ab= _________ . 14.(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为 _________ .15.(2012•内江)如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是_________.16.(2012•内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD=_________.三、解答题(共44分)17.(2012•内江)计算:.18.(2012•内江)水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为米,加固后大坝的横截面积为梯形ABED,CE的长为8米.(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?(2)求加固后的大坝背水坡面DE的坡度.19.(2012•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?20.(2012•内江)某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.21.(2012•内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.四、填空题(每小题6分,共24分)22.(2012•内江)已知三个数x,y,z,满足,则=_________.23.(2012•内江)已知反比例函数的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M1,M 2,M3…,M n,则=_________.24.(2012•内江)已知a i≠0(i=1,2,…,2012)满足,使直线y=a i x+i(i=1,2,…,2012)的图象经过一、二、四象限的a i概率是_________.25.(2012•内江)已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为_________.五、解答题(每小题12分,共36分)26.(2012•内江)已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.27.(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.28.(2012•内江)如图,已知点A(﹣1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=90°,抛物线y=ax2+bx+c 经过A、B、C三点,其顶点为M.(1)求抛物线y=ax2+bx+c的解析式;(2)试判断直线CM与以AB为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N,使得S△BCN=4?如果存在,那么这样的点有几个?如果不存在,请说明理由.2012年四川省内江市中考数学试卷参考答案与试题解析一、选择题(每小题3分,36分)3.(2012•内江)已知反比例函数的图象经过点(1,﹣2),则k的值为())代入函数解析式解:∵反比例函数2=4.(2012•内江)下列图形中,既是轴对称图形又是中心对称图形的有()5.(2012•内江)如图,a∥b,∠1=65°,∠2=140°,则∠3=()7.(2012•内江)函数的图象在()由于函数解析式中有,则必为非负数,又由于函数解析式中有,故解:∵中8.(2012•内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为()CD=(垂径定理)=,即阴影部分的面积为9.(2012•内江)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()=10.(2012•内江)如图,在矩形ABCD中,AB=10,BC=5,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则阴影部分图形的周长为()11.(2012•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()=;=;sinA==12.(2012•内江)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()cosA==二、填空题(每小题5分,共20分)13.(2012•内江)分解因式:ab3﹣4ab=ab(b+2)(b﹣2).14.(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为4.15.(2012•内江)如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是.的概率为=,故答案为:.16.(2012•内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD=9.DE=3的面积为(三、解答题(共44分)17.(2012•内江)计算:.﹣.18.(2012•内江)水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为米,加固后大坝的横截面积为梯形ABED,CE的长为8米.(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?(2)求加固后的大坝背水坡面DE的坡度.,×,DG=8=DG==20=3000(立方米)DC=16=24i==19.(2012•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?20.(2012•内江)某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,12次的人数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.=.21.(2012•内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.四、填空题(每小题6分,共24分)22.(2012•内江)已知三个数x,y,z,满足,则=﹣4.将该题中所有分式的分子和分母颠倒位置,化简后求出的值,从而得到的值.解:∵=,=,﹣,=+,整理得,+﹣①,+②,=③,=+﹣=,++﹣=,=23.(2012•内江)已知反比例函数的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M1,M 2,M3…,M n,则=.)P M M,则(,经过平移得到面积的和为M,于是面积和等于(﹣y=)P+M= M().故答案为.24.(2012•内江)已知a i≠0(i=1,2,…,2012)满足,使直线y=a i x+i(i=1,2,…,2012)的图象经过一、二、四象限的a i概率是.)满足,)满足,概率是=,故答案为:,25.(2012•内江)已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为(,0).,解得,x=,,五、解答题(每小题12分,共36分)26.(2012•内江)已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.,27.(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.,得出=,•=可求出,+cx+=0≥+=,•=x+=,=0•≥28.(2012•内江)如图,已知点A(﹣1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=90°,抛物线y=ax2+bx+c 经过A、B、C三点,其顶点为M.(1)求抛物线y=ax2+bx+c的解析式;(2)试判断直线CM与以AB为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N,使得S△BCN=4?如果存在,那么这样的点有几个?如果不存在,请说明理由.,﹣x x+2AB﹣﹣(,ME=﹣;CE=OD=BC=2BC×h=CBO=÷﹣﹣x x+42+2,﹣)参与本试卷答题和审题的老师有:caicl;zcx;CJX;gsls;lantin;sjzx;星期八;dbz1018;未来;gbl210;zjx111;sd2011;MMCH;ZJX;HJJ。
内江2012年模拟 数学答案

2012年中考模拟试卷 数学参考答案及评分标准一、选择题(每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCABCCDBBDDA二、填空题(每小题4分,共24分)13. (-3,1) ,x <-3或x >0 14.X 1=0 X 2 = -2 15.316. 17三、解答题(共66分) 17、(本小题6分) (1) ()()201102381(sin 30)π--+---= 1 +22-1+4 …………………………………………(3分) =22-2 …………………………………………(1分) 18、(本题9分)解:证明:(1)BF 与⊙O 相切,连接OB 、OA ,连接BD (1分),∵AD ⊥AB ,∴∠BAD=90°, ∴BD 是直径,∴BD 过圆心 ∵AB=AC ,∴∠ABC=∠C , ∵∠C=∠D ,∴∠ABC=∠D ,∵AD ⊥AB ,∴∠ABD+∠D=90°, ∵AF=AE ,∴∠EBA=∠FBA , ∴∠ABD+∠FBA=90°,∴OB ⊥BF , ∴BF 是⊙O 切线………………………………(5分);(2)∵∠F=600,∴∠D=900-∠F=300,∴∠AOB=600,∴△AOB 为等边三角形 S 弓形AB =332243360260220-=⨯-ππ (4分)19.(本题9分)解:(1)设共调查了x 名学生,参加篮球项目的有45%x=90,则x=200;…………… 3分 (2)由200-20-30-90=60为参加羽毛球项目的学生数,所以补全的条形图如图;3分(3)参加足球项目的学生数占20/200=10%,∴扇形统计图中足球部分的圆心角的度数为36°;3分20、解:设CD 为x 米. ∵∠ACD=90°, ∴在直角△ADC 中,∠DAC=30°,AC=CD•cos30°=错误!未找到引用源。
中考数学试题及答案内江

中考数学试题及答案内江内江市中考数学试题及答案一、选择题1. 已知x+2y=6,3x-4y=-2,则x=____,y=____。
A) x=1,y=2 B) x=2,y=1 C) x=-1,y=2 D) x=2,y=-12. 若a:b=3:5,b:c=2:3,则a:c=____。
A) 2:3 B) 3:4 C) 4:5 D) 4:33. 25是下列哪一个数的因数?A) 42 B) 45 C) 50 D) 554. 直线y=2x-3与x轴的交点的坐标为____。
A) (1,0) B) (-1,0) C) (0,-3) D) (0,3)5. 若9-2(a+b)=5,且a=3,则b的值为____。
A) -11 B) -10 C) 11 D) 10二、填空题1. 在△ABC中,∠ACB=90°,AB=5cm,BC=12cm,求∠ABC的大小为____°。
2. 已知正方形ABCD的边长为6cm,以BC为直径的圆的面积为____cm²。
3. 一辆汽车以每小时60公里的速度行驶,2小时行驶的距离为____公里。
4. 在△ABC中,∠B=30°,边AC=6cm,边BC=8cm,则边AB的长度为____cm。
5. 若4x-1=2x+3,则x=____。
三、解答题1. 计算:$\frac{1}{3}+\frac{2}{5}$解:两个分数的分母相乘为15,得到$\frac{5}{15}+\frac{6}{15}=\frac{11}{15}$。
2. 解方程:$\frac{2}{3}x+4=10$解:将式子中的4移动到等号右边,并乘以3,得到$\frac{2}{3}x=6$。
然后,将等式两边都乘以$\frac{3}{2}$,得到$x=9$。
3. 计算:$(2+3)^2-4\cdot(5-1)$解:首先计算括号内的加法和减法,得到$(5)^2-4\cdot(4)$。
然后,计算乘法,得到$25-16=9$。
最新四川省内江市中考数学试卷及解析汇总

2012年四川省内江市中考数学试卷及解析2012年四川省内江市中考数学试卷一、选择题(每小题3分,36分)1.(3分)(2012•内江)﹣6的相反数为()A.6B.C.D.﹣62.(3分)(2012•内江)下列计算正确的是()A.a2+a4=a6B.2a+3b=5ab C.(a2)3=a6D.a6÷a3=a23.(3分)(2012•内江)已知反比例函数的图象经过点(1,﹣2),则k的值为()A.2B.C.1D.﹣24.(3分)(2012•内江)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个5.(3分)(2012•内江)如图,a∥b,∠1=65°,∠2=140°,则∠3=()A.100°B.105°C.110°D.115°6.(3分)(2012•内江)一组数据4,3,6,9,6,5的中位数和众数分别是()A.5和5.5 B.5.5和6 C.5和6 D.6和67.(3分)(2012•内江)函数的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限8.(3分)(2012•内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为()A.4πB.2πC.πD.9.(3分)(2012•内江)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.B.C.D.10.(3分)(2012•内江)如图,在矩形ABCD中,AB=10,BC=5,点E、F分别在AB、CD上,将矩形ABCD 沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则阴影部分图形的周长为()A.15 B.20 C.25 D.30 11.(3分)(2012•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.12.(3分)(2012•内江)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm 的速度,沿A→B →C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.二、填空题(每小题5分,共20分)13.(5分)(2012•内江)分解因式:ab3﹣4ab=_________.14.(5分)(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为_________.15.(5分)(2012•内江)如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是_________.16.(5分)(2012•内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD= _________.三、解答题(共44分)17.(7分)(2012•内江)计算:.18.(9分)(2012•内江)水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为米,加固后大坝的横截面积为梯形ABED,CE的长为8米.(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?(2)求加固后的大坝背水坡面DE的坡度.19.(9分)(2012•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:造型花卉甲乙A 80 40B 50 70(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?20.(10分)(2012•内江)某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA 0≤n<3B 3≤n<6C 6≤n<9D 9≤n<12E 12≤n<15F 15≤n<18(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰有1位男生,E组发言的学生中恰有1位女生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.21.(9分)(2012•内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.四、填空题(每小题6分,共24分)22.(6分)(2012•内江)已知三个数x,y,z,满足,则=_________.23.(6分)(2012•内江)已知反比例函数的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M 1,M2,M3…,M n,则=_________.24.(6分)(2012•内江)已知a i≠0(i=1,2,…,2012)满足,使直线y=a i x+i(i=1,2,…,2012)的图象经过一、二、四象限的a i概率是_________.25.(6分)(2012•内江)已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为_________.五、解答题(每小题12分,共36分)26.(12分)(2012•内江)已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.27.(12分)(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.28.(12分)(2012•内江)如图,已知点A(﹣1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=90°,抛物线y=ax2+bx+c经过A、B、C三点,其顶点为M.(1)求抛物线y=ax2+bx+c的解析式;(2)试判断直线CM与以AB为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N,使得S△BCN=4?如果存在,那么这样的点有几个?如果不存在,请说明理由.2012年四川省内江市中考数学试卷参考答案与试题解析一、选择题(每小题3分,36分)1.(3分)(2012•内江)﹣6的相反数为()A.6B.C.D.﹣6解答:解:﹣6的相反数是:6,故选:A,2.(3分)(2012•内江)下列计算正确的是()A.a2+a4=a6B.2a+3b=5ab C.(a2)3=a6D.a6÷a3=a2解答:解:A、a2+a4=a6,不是同底数幂的乘法,指数不能相加,故本选项错误;B、2a+3b=5ab,不是合并同类项,故本选项错误;C、(a2)3=a6,幂的乘方,底数不变指数相乘,故本选项正确;D、a6÷a3=a2,同底数幂的除法,底数不变指数相减,6﹣3≠2,故本选项错误.故选C.3.(3分)(2012•内江)已知反比例函数的图象经过点(1,﹣2),则k的值为()A.2B.C.1D.﹣2解答:解:∵反比例函数的图象经过点(1,﹣2),∴﹣2=,∴k=﹣2.故选D.4.(3分)(2012•内江)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个解答:解:∵从左到右第一个和第三个图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它们是轴对称图形;∵从左到右第二个和第四个图形旋转180°后能与原图形重合,∴此图形不是中心对称图形,是轴对称图形;∴既是轴对称又是中心对称图形的有两个,故选C.5.(3分)(2012•内江)如图,a∥b,∠1=65°,∠2=140°,则∠3=()A.100°B.105°C.110°D.115°解答:解:过点A作AB∥a,∵a∥b,∴AB∥a∥b,∴∠2+∠4=180°,∵∠2=140°,∴∠4=40°,∵∠1=65°,∴∠3=∠1+∠4=65°+40°=105°.故选B.6.(3分)(2012•内江)一组数据4,3,6,9,6,5的中位数和众数分别是()A.5和5.5 B.5.5和6 C.5和6 D.6和6解答:解:在这一组数据中6是出现次数最多的,故众数是6;将这组数据已从小到大的顺序排列,处于中间位置的两个数是5、6,那么由中位数的定义可知,这组数据的中位数是(5+6)÷2=5.5;故选B.7.(3分)(2012•内江)函数的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限解答:解:∵中x≥0,中x≠0,故x>0,此时y>0,则函数在第一象限.故选A.8.(3分)(2012•内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为()A.4πB.2πC.πD.解答:解:连接OD.∵CD⊥AB,∴CE=DE=CD=(垂径定理),故S△OCE=S△CDE,即可得阴影部分的面积等于扇形OBD的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S扇形OBD==,即阴影部分的面积为.故选D.9.(3分)(2012•内江)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.B.C.D.解答:解:设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,根据题意,得=.故选C.10.(3分)(2012•内江)如图,在矩形ABCD中,AB=10,BC=5,点E、F分别在AB、CD上,将矩形ABCD 沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则阴影部分图形的周长为()A.15 B.20 C.25 D.30解答:解:根据折叠的性质,得A1E=AE,A1D1=AD,D1F=DF.则阴影部分的周长=矩形的周长=2(10+5)=30.故选:D.11.(3分)(2012•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.解答:解:如图:连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO==;AC==;则sinA===.故选B.12.(3分)(2012•内江)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.解答:解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选C.二、填空题(每小题5分,共20分)13.(5分)(2012•内江)分解因式:ab3﹣4ab=ab(b+2)(b﹣2).解答:解:ab3﹣4ab=ab(b2﹣4)=ab(b+2)(b﹣2).故答案为:ab(b+2)(b﹣2).14.(5分)(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为4.解答:解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故答案为:4.15.(5分)(2012•内江)如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是.解答:解:在6×6的网格中共有36个格点,而使得三角形面积为1的格点有8个,故使得三角形面积为1的概率为=,故答案为:.16.(5分)(2012•内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD= 9.解答:解:过点B作BE∥AC交DC的延长线于点E,过点B作BF⊥DC于点F,则AC=BE,DE=DC+CE=DC+AB=6,又∵BD=AC且BD⊥AC,∴△BDE是等腰直角三角形,∴BF=DE=3,故可得梯形ABCD的面积为(AB+CD)×BF=9.故答案为:9.三、解答题(共44分)17.(7分)(2012•内江)计算:.解答:解:原式=2﹣1+1+1﹣4+3=2.18.(9分)(2012•内江)水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为米,加固后大坝的横截面积为梯形ABED,CE的长为8米.(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?(2)求加固后的大坝背水坡面DE的坡度.解答:解:(1)分别过A、D作AF⊥BC,DG⊥BC,垂点分别为F、G,如图所示.在Rt△ABF中,AB=16米,∠B=60°,sin∠B=,∴AF=16×=8,DG=8∴S△DCE=×CE×DG=×8×8=32需要填方:150×32=4800(立方米);(2)在直角三角形DGC中,DC=16∴GC==24∴GE=GC+CE=32,坡度i===19.(9分)(2012•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:造型花卉甲乙A 80 40B 50 70(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?解答:解:(1)设需要搭配x个A种造型,则需要搭配B种造型(60﹣x)个,则有,解得37≤x≤40,所以x=37或38或39或40.第一方案:A种造型37个,B种造型23个;第二种方案:A种造型38个,B种造型22个;第三种方案:A种造型39个,B种造型21个.第四种方案:A种造型40个,B种造型20个.(2)分别计算三种方案的成本为:①37×1000+23×1500=71500元,②38×1000+22×1500=71000元,③39×1000+21×1500=70500元,④40×1000+20×1500=70000元.通过比较可知第④种方案成本最低.答:选择第四种方案成本最低,最低位70000元.20.(10分)(2012•内江)某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA 0≤n<3B 3≤n<6C 6≤n<9D 9≤n<12E 12≤n<15F 15≤n<18(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰有1位男生,E组发言的学生中恰有1位女生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.解答:解:(1)∵B、E两组发言人数的比为5:2,E组发言人数占8%,∴B组发言的人数占20%,由直方图可知B组人数为10人,所以,被抽查的学生人数为:10÷20%=50人,C组人数为:50×30%=15人,补全直方图如图;(2)F组发言的人数所占的百分比为:1﹣6%﹣20%﹣30%﹣26%﹣8%=1﹣90%=10%,所以,估计全年级在这天里发言次数不少于12次的人数为:500×(8%+10%)=90人;(3)A组发言的学生:50×6%=3人,所以有1位女生,2位男生,E组发言的学生:50×8%=4人,所以有2位女生,2位男生,列表如下:画树状图如下:共12种情况,其中一男一女的情况有6种,所以P(一男一女)==.21.(9分)(2012•内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.解答:(1)证明:∵∠CED是△BCE的外角,∠AED是△ABE的外角,∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE,∵∠BAE=∠BCE,∠AED=∠CED,∴∠CBE=∠ABE,∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠BAD=90°,AB=CD,∴∠CBE=∠ABE=45°,∴△ABD与△BCD是等腰直角三角形,∴AB=AD=BC=CD,∴四边形ABCD是正方形;(2)当AE=2EF时,FG=3EF.证明:∵四边形ABCD是正方形,∴AB∥CD,AD∥BC,∴△ABE∽△FDE,△ADE∽△GBE,∵AE=2EF,∴BE:DE=AE:EF=2,∴BC:AD=BE:DE=2,即BG=2AD,∵BC=AD,∴CG=AD,∵△ADF∽△GCF,∴FG:AF=CG:AD,即FG=AF=AE+EF=3EF.四、填空题(每小题6分,共24分)22.(6分)(2012•内江)已知三个数x,y,z,满足,则=﹣4.解答:解:∵,∴=﹣,=,=﹣,=++,整理得,+=﹣①,+=②,+=﹣③,①+②+③得,=﹣+﹣=﹣,则++=﹣,∴=﹣,于是=﹣4.故答案为﹣4.23.(6分)(2012•内江)已知反比例函数的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M 1,M2,M3…,M n,则=.解答:解:延长M n P n﹣1交M1P1于N,如图,∵当x=1时,y=1,∴M1的坐标为(1,1);∵当x=n时,y=,∴Mn的坐标为(n,);∴=P 1M1×P1M2+M2P2×P2M3+…+M n﹣1P n﹣1×P n﹣1M n=(M1P1+M2P2+…+M n﹣1P n﹣1)=M1N=(1﹣)=.故答案为.24.(6分)(2012•内江)已知a i≠0(i=1,2,…,2012)满足,使直线y=a i x+i(i=1,2,…,2012)的图象经过一、二、四象限的a i概率是.解答:解:∵a i≠0(i=1,2,…,2012)满足,∴a i有22个是负数,1990个是正数,∵a i<0时直线y=a i x+i(i=1,2,…,2012)的图象经过一、二、四象限,∴使直线y=a i x+i(i=1,2,…,2012)的图象经过一、二、四象限的a i概率是=,故答案为:,25.(6分)(2012•内江)已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为(,0).解答:解:如图,作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.此时AM﹣BM=AM﹣B′M=AB′.不妨在x轴上任取一个另一点M′,连接M′A、M′B、M′B.则M′A﹣M′B=M′A﹣M′B′<AB′(三角形两边之差小于第三边).∴M′A﹣M′B<AM﹣BM,即此时AM﹣BM最大.∵B′是B(3,﹣1)关于x轴的对称点,∴B′(3,1).设直线AB′解析式为y=kx+b,把A(1,5)和B′(3,1)代入得:,解得,∴直线AB′解析式为y=﹣2x+7.令y=0,解得x=,∴M点坐标为(,0).故答案为:(,0).五、解答题(每小题12分,共36分)26.(12分)(2012•内江)已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.解答:(1)证明:∵菱形AFED,∴AF=AD,∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°=∠DAF,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF,∴CF=BD,∴CF+CD=BD+CD=BC=AC,即①BD=CF,②AC=CF+CD.(2)解:AC=CF+CD不成立,AC、CF、CD之间存在的数量关系是AC=CF﹣CD,理由是:由(1)知:AB=AC=BC,AD=AF,∠BAC=∠DAF=60°,∴∠BAC+∠DAC=∠DAF+∠DAC,即∠BAD=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF,∴BD=CF,∴CF﹣CD=BD﹣CD=BC=AC,即AC=CF﹣CD.(3)AC=CD﹣CF.理由是:∵∠BAC=∠DAF=60°,∴∠DAB=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF,∴CF=BD,∴CD﹣CF=CD﹣BD=BC=AC,即AC=CD﹣CF.27.(12分)(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.解答:解:(1)设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,则:+==﹣,•==,若一个一元二次方程的两个根分别是已知方程两根的倒数,则这个一元二次方程是:x2+x+=0;(2)①当a=b时,原式=2②当a≠b时,∵a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,∴a,b是x2﹣15x﹣5=0的解,∴a+b=15,ab=﹣5,∴====﹣47;(3)∵a+b+c=0,abc=16,∴a+b=﹣c,ab=,∴a、b是方程x2+cx+=0的解,∴c2﹣4•≥0,c2﹣≥0,∵c是正数,∴c3﹣43≥0,c3≥43,c≥4,∴正数c的最小值是4.28.(12分)(2012•内江)如图,已知点A(﹣1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=90°,抛物线y=ax2+bx+c经过A、B、C三点,其顶点为M.(1)求抛物线y=ax2+bx+c的解析式;(2)试判断直线CM与以AB为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N,使得S△BCN=4?如果存在,那么这样的点有几个?如果不存在,请说明理由.解答:解:(1)Rt△ACB中,OC⊥AB,AO=1,BO=4;由射影定理,得:OC2=OA•OB=4,则OC=2,即点C(0,2);设抛物线的解析式为:y=a(x+1)(x﹣4),将C点代入上式,得:2=a(0+1)(0﹣4),a=﹣,∴抛物线的解析式:y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)直线CM与以AB为直径的圆相切.理由如下:如右图,设抛物线的对称轴与x轴的交点为D,连接CD.由于A、B关于抛物线的对称轴对称,则点D为Rt△ABC斜边AB的中点,CD=AB.由(1)知:y=﹣(x+1)(x﹣4)=﹣(x﹣)2+,则点M(,),ME=﹣2=;而CE=OD=,OC=2;∴ME:CE=OD:OC,又∠MEC=∠COD=90°,∴△COD∽△CEM,∴∠CME=∠CDO,∴∠CME+∠CDM=∠CDO+∠CDM=90°,而CD等于⊙D的半径长,所以直线CM与以AB为直径的圆相切;(3)由B(4,0)、C(0,2)得:BC=2;则:S△BCN=BC•h=×2×h=4,h=;过点B作BF⊥BC,且使BF=h=,过F作直线l∥BC交x轴于G.Rt△BFG中,sin∠BGF=sin∠CBO=,BG=BF÷sin∠BGF=÷=4;∴G(0,0)或(8,0).易知直线BC:y=﹣x+2,则可设直线l:y=﹣x+b,代入G点坐标,得:b=0或b=4,则:直线l:y=﹣x或y=﹣x+4;联立抛物线的解析式后,可得:或,则 N1(2+2,﹣1﹣)、N2(2﹣2,﹣1+)、N3(2,3).。
内江 中考数学试题及答案

内江中考数学试题及答案在论述内江中考数学试题及答案时,我们将按照试题和答案的格式书写文章,以确保内容的准确性和整洁美观。
题目一:内江中考数学试题及答案第一部分:选择题1. 试题描述:已知函数f(x)=3x^2+2x+5,求f(2)的值。
试题答案:f(2) = 252. 试题描述:将一个正方形沿对角线折叠后,两个顶点重合,依次连接两个顶点同时得到的图形是什么?试题答案:等腰直角三角形第二部分:填空题1. 试题描述:已知在[1, 9]区间上,函数y=ax^2+bx+3的图像与x轴相交于点A(1,0)和点B(3,0),则a=________,b=________。
试题答案:a=-1,b=122. 试题描述:已知直线y=kx+4与x轴交于点(2,0),则k=________。
试题答案:k=-2第三部分:解答题1. 试题描述:已知集合A={1, 2, 3, 4, 5, 6, 7, 8},集合B={4, 5, 6, 7, 8, 9, 10},求A∪B的元素个数。
试题答案:A∪B={1, 2, 3, 4, 5, 6, 7, 8, 9, 10},元素个数为10。
2. 试题描述:一块长方形砖,宽为6 cm,长比宽多2 cm。
若用这种砖铺满长为18 cm、宽为8 cm的地板,至少需要多少块砖?试题答案:至少需要6块砖。
第四部分:应用题试题描述:某市新增人口每年以2%的速度递增,设2000年该市总人口为500万人,请问到2022年该市总人口约为多少人?试题答案:2022年该市总人口约为610万人。
通过按照试题和答案的格式来论述内江中考数学试题及答案,我们可以准确地表达每道数学题目的意思并给出正确的答案。
同时,文章排版整洁,语句通顺,全文表达流畅,没有影响阅读体验的问题。
祝愿所有参加内江中考的学生能够取得优异的成绩!。
三角形2012年四川中考数学题(含答案和解释)

三角形2012年四川中考数学题(含答案和解释)四川各市2012年中考数学试题分类解析汇编专题9:三角形选择题1. (2012四川乐山3分)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为【】A.B.C.D.1【答案】C。
【考点】锐角三角函数定义,特殊角的三角函数值。
【分析】∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA= 。
∴∠A=30°。
∴∠B=60°。
∴sinB= 。
故选C。
2. (2012四川乐山3分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中正确结论的个数是【】A.1个B.2个C.3个D.4个【答案】B。
【考点】全等三角形的判定和性质,等腰直角三角形,三角形中位线定理,勾股定理。
【分析】①连接CD(如图1)。
∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB。
∵AE=CF,∴△ADE≌△CDF(SAS)。
∴ED=DF,∠CDF=∠EDA。
∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°。
∴△DFE是等腰直角三角形。
故此结论正确。
②当E、F分别为AC、BC中点时,∵由三角形中位线定理,DE平行且等于BC。
∴四边形CEDF是平行四边形。
又∵E、F分别为AC、BC中点,AC=BC,∴四边形CEDF 是菱形。
又∵∠C=90°,∴四边形CEDF是正方形。
故此结论错误。
③如图2,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,由②,知四边形CMDN是正方形,∴DM=DN。
内江市2012年中考数学试题(word版)

内江市二0一二年高中阶段教育学校招生考试及初中毕业会考试卷 数 学(全卷160分,时间120分钟)A 卷(共100分)一、选择题(每小题3分,36分) 1.-6的相反数为( )A.6B.61 C.61- D.- 62.下列计算正确的是( )A.642a a a =+ B.ab b a 532=+ C.()632a a =D.236aa a =÷3.已知反比例函数xky =的图像经过点(1,-2),则K 的值为( ) A.2 B.21-C.1D.- 2 4.下列图形中,既是轴对称图形又是中心对称图形的有( )A. 4个B. 3个C. 2个D. 1个 5.如图1,=∠=∠=∠3,1402,651,//00则b a () A.0100 B.0105 C.0110 D.01156.一组数据4,3,6,9,6,5的中位数和众数分别是( ) A. 5和5.5 B. 5.5和6 C. 5和6 D. 6和67.函数x xy +=1的图像在( )A.第一象限B.第一、三象限C.第二象限D.第二、四象限8.如图2,AB 是o 的直径,弦0,30,23CD AB CDB CD ⊥∠==,则阴影部分图形的面积为( )A.4πB.2πC.πD.23π 9.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( )A.304015x x =-B.304015x x =-C.304015x x =+D.304015x x=+ 10.如图3,在矩形ABCD 中,10,5,AB BC ==点E F 、分别在AB CD 、上,将矩形ABCD 沿EF 折叠,使点A D 、分别落在矩形ABCD 外部的点11A D 、处,则阴影部分图形的周长为( )A.15B.20C.25D.3011.如图4所示,ABC ∆的顶点是正方形网格的格点,则sin A 的值为( ) A.12B.55C.1010D.255图 2 图3 图412.如图5,正ABC 的边长为3cm,动点P 从点A 出发,以每秒1cm 的速度,沿A B C →→的方向运动,到达点C 时停止,设运动时间 为x (秒),2y PC =,则y 关于x 的函数的图像大致为( )图5二、填空题(每小题5分,共20分)13.分解因式:34ab ab -=14.由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图6所示,那么组成该几何体所需的小正方形的个数最少为15.如图7所示,A 、B 是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使ABC 的面积为1的概率是16.如图8,四边形ABCD 是梯形,,BD AC BD AC =⊥且若2,4,AB CD ==则ABCD S =梯形图6 图7 图8 三、解答题(共44分) 17.(7分)计算:01201231112(1)86483π-⎛⎫⎛⎫-+-+--+ ⎪ ⎪⎝⎭⎝⎭18.(9分)水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD .如图9所示,已知迎水坡面AB 的长为16米,060,B ∠=背水坡面CD 的长为163米,加固后大坝的横截面积为梯形,ABED CE 的长为8米。
2012中考数学试卷及答案

数 学 试 题(2)参考公式:抛物线2y ax bx c =++的顶24(,)24b ac b a a-- 一、选择题(本大题共10小题,每小题3分,共30分。
1.16-的相反数是 A. 16 B. 6 C.-6 D. 16-2.若|2|a -与2(3)b +互为相反数,则ab 的值为A.-6B. 18C.8D.93.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、园,则该几何体是A.长方体B.球体C.圆锥体D.圆柱体4.“一方有难。
八方支援”,在我国四川省汶川县今年“5·12”发生特大地震灾难后,据媒体报道,截止2008年6月4日12时,全国共接受国内外各界捐助救灾款物已达到人民币436.81亿元,这个数据用科学记数法(保留三个有效数字)表示为A. 94.3710⨯元 B. 120.43710⨯元 C.104.3710⨯元 D.943.710⨯元5.已知:一次函数(1)y a x b =-+的图象如图1所示,那么,a 的取值范围是A. 1a >B. 1a <C. 0a >D. 0a <6. m 是方程21x x +-的根,则式子3222007x m ++的值 A.2007 B.2008 C.2009 D.20107.小亮的爸爸想对小亮中考前的6次数学考试成绩进行统计分析,判断小亮的数学成绩是否稳定,则小亮的爸爸需要知道这6次数学考试成绩的A.平均数或中位数B.众数或频数C.方差或标准差D.频数或众数8.某化肥厂计划在x 天内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x 的方程是A.1201803x x =+ B. 1201803x x =- C. 1201803x x =+ D.1201803x x =- 9.如图2,边长为1的正三角形和边长为2的正方形在同一水平线上,正三角形沿水平线自左向右匀速穿过正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B C D
数学
第一卷
一.选择题(本大题共10小题,每小题3分,满分30分)
每小题只有一个正确答案,请将选出的答案代号填入题后的括号内。
1.点A 在数轴上表示+2,从点A 沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( )。
A 、3
B 、-1
C 、5
D 、-1或3
2.下列运算正确的是 ( ) A . x 2+x 2=x 4 B .(a -1)2=a 2-1 C .a 2·a 3=a 5 D .3x +2y =5xy
3.如图, △ ABC 中,∠B = 90 º ,∠C = 30 º , AB = 1 ,将 △ ABC 绕顶点 A 旋转 1800 ,点 C 落在 C ′处,则 CC ′的长为 A . 42 B.4 C . 23 D . 2
5
3,()53525A. B. C. D. 5352
a b a
a b
-==4.已知
则
5.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是
(A) 18 (B) 13 (C) 38 (D) 35
6.在一个圆柱体中间挖出一个小圆洞,如图1所示,则该物体俯视图的形状是( ).
7.顺次连接对角线相等的四边形各边的中点,得到一个四边形,对这个四边形的形状描述最准确的是( )
A 、平行四边形
B 、菱形
C 、矩形
D 、正方形
8.教练组对运动员正式比赛前的5次训练成绩进行分析,判断谁的成绩更加稳定,一般需要考察这5 次成绩的( ).
A .平均数或中位数
B .众数或频率
C .方差或极差
D .频数或众数 9.已知⊙O 1的半径为3cm ,O 1到直线l 的距离为2cm ,则直线l 与⊙O 1的位置关系为( ) A .相交 B .相切 C .相离 D .不相交 10.已知 k 1<0<k 2,则函数 y =k 1x 和 y =
2
k x
的图象大致是( )
A B C D
二.填空题(本大题5小题,每小题3分,共15分)
11.举世瞩目的长江三峡水利枢纽工程建成后,总装机容量为1820千瓦,年发电量为847亿千瓦时,
将年发电量用科学记数法表示为 千瓦时。
12.如图,已知AB ∥CD ,直线EF 分别交 AB 、CD 于点 E ,F , EG 平分∠BEF 交CD 于点G ,如果∠1=50°,那么∠2的度数是 度.
13、李好在六月月连续几天同一时刻观察电表显示的度数,记录如 下: 日期 1号 2号 3号 4号 5号 6号 7号 8号 … 30号 电表显示(度)
120
123
127
132
138
141
145
148
…
估计李好家六月份总月电量是___________。
14.如图在圆O 中︒=∠45A ,BC=2,则该圆的直径是______________
15.小红从A 地去B 地,以每分钟2米的速度运动,她先前进1米,再后退2米,又前进3米,再
后退4米,……依此规律走下去,则1小时后她离A 地相距___________米.
第二卷
题目虽然简
单,也要 仔细呦!
B C
A O
x
y
O
x
y
O O
x y
x
y
O
一. 选择题答案:
二. 填空题答案:
三.解答题(本大题共4小题,满分24分.只要你认真思考,仔细运算,一定会解答正确的!)
16.化简:x -1x ÷(x -1
x )
17.已知4273
4,x x a b +-==, 并且522b a
≤<. 请求出x 的取值范围, 并将这个范围在数轴上表示出来.
18.如图有一个等腰三角形ABD ,AB =AD
(1) 请你用尺规作图法作出点A 关于轴BD 的对称点C ;(不用写作法,但保留作图痕迹) (2) 连结(1)中的BC 和CD ,请判断四边形ABCD 的形
状,并证明你的结论。
19. 用一张直径是10cm 半圆维形纸帽,使得半径AO 和BO 重合,这样做成的纸帽的底面积是多少?(精确到
1平方厘米)
20. 我校八年级学生中有女生226人, 男生250人, 计划组成甲、乙两种活动小组共40个,甲、乙两种活动小组的人数搭配情况如下表:
需要女生 需要男生 甲种活动(每组) 7人 4人
乙种活动(每组)
3人
10人
设准备组成x 个甲种活动小组,请解答下列问题:
(1)求出满足条件的x 的值,并叙述出相应的分组方案;
(2)若甲种活动小组每人需要器材、培训费用25元,乙种活动小组每人需要器材、培训费用20元,请说明(1)中哪种方案能尽可能节省开销?
21. 蕾蕾和姐姐得到了一张2008年奥运会开幕式的门票,两人都很想前往,可票只有一张。
姐姐
题 号 1 2 3 4 5 6 7 8 9 10 答 案
题 号 11 12 13 14 15 答 案
人 数
搭 配 活 动
分 组
D
A
B
想了一个办法:拿8张扑克牌,将数字为3、4、7、9的四张给蕾蕾,将数字为2、5、6、8的四张留给自己,规则如下,两人分别从自己的四张扑克中随机抽出一张,将抽出的两张扑克数字相加,如果和为偶数,则蕾蕾获胜;如果和为奇数,则姐姐获胜。
获胜方将获得门票。
(1)你认为该游戏是否公平?请用树状图或列表说明。
(2)如果你认为游戏不公平,请你改变游戏方案,使得游戏公平;如果你认为游戏是公平的,请你制定一个不公平的游戏规则。
22. 宜昌市因城市发展需要,对部分城市街道进行改造,我校教学楼A点位于I地O点的正西方向200米处,一台挖掘机从O点出发以每分钟5米的速度沿北偏西53°的方向施工,已知挖掘机的噪音污染半径为130米,试问我校教学楼是否会受到挖掘机的噪音干扰?若不会,请说明理由;若会,请你求出教学楼A点会受干扰多少分钟?(结果精确到个位)(已知:sin53°≈0.80,tan37°≈0.75,sin37°≈0.60,tan53°≈1.32)
23. 为了使城市困难居民住上安居工程房,政府给予一定的贴息(限定年利率不得超过4%)。
李师傅购得一套现价为12万元的房子,首期付款(第一年)为3万元,从第二年起,以后每年付相同的房款与上一年剩余欠款的利息的和。
李师傅按规定第二年应交款7700元,第十年应交6500元。
(1)求剩余欠款的年利率。
(2)李师傅共要多少年才能全部付清房款?
(2)李师傅最后一年应交款是多少元?
24. 如图(1):平形四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC于G,延长
3 4 7 9
2
5
6
8
蕾蕾
53°
北
东
西
南
O
A
姐姐
BA 交圆于E.
(1)求证:EF =FG ;
(2)如图(2),若ED 与⊙A 相切,试判断GD 与⊙A 的位置关系,并证明你的结论;
(3) 在(2)的条件不变的情况下,若GC =CD ,且S △DGC =43,求⊙A 的半径.
25. 如图,已知抛物线c bx ax y ++=2
经过原点,与x 轴又相交于N 点,直线4+=kx y 与
坐标轴分别相交于A 、D 两点,与抛物线相交于B (1,m )和C (2,2)两点: (1)求直线与抛物线的解析式; (2)求证:C 点是△AOD 的外心;
(3)若(1)中的抛物线在x 轴上方的部分,上面有一点P (y x ,),设∠PON=α,当sin α为何值时,△PON 的面积有最大值;
(4)若P 点保持(3)中的运动路线,是否存在△PON ,使得其面积等于△OCN 面积的
16
9
;若存在,求出动P 的位置,若不存在,请说明理由。
G
B
F
E
D C
C
D
G
F
A A
E B
图(1)
图(2)。