2012年高中数学 第二章 基本初等函数1同步练习 新人教A版必修1
人教A版数学必修一新课标高中数学(必修1)第二章:基本初等函数1(基础训练)题.docx

高中数学学习材料马鸣风萧萧*整理制作资料名称: 新课标高中数学(必修1)第二章基本初等函数(1)(基础训练)测试题一、选择题1.下列函数与x y =有相同图象的一个函数是( )A .2x y = B .xx y 2=C .)10(log ≠>=a a ay xa 且 D .x a a y log =2.下列函数中是奇函数的有几个( )①11x x a y a +=- ②2l g (1)33x y x -=+- ③x y x = ④1l o g 1ax y x +=- A .1 B .2 C .3 D .43.函数y x=3与y x=--3的图象关于下列那种图形对称( ) A .x 轴 B .y 轴 C .直线y x = D .原点中心对称4.已知13x x -+=,则3322x x -+值为( )A .33B .25C .45D . 45-5.函数12log (32)y x =-的定义域是( )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]36.三个数60.70.70.76log 6,,的大小关系为( ) A . 60.70.70.7log 66<< B . 60.70.70.76log 6<<C .0.760.7log 660.7<< D . 60.70.7log 60.76<<7.若f x x (ln )=+34,则f x ()的表达式为( ) A .3ln x B .3ln 4x + C .3xe D .34xe +二、填空题1.985316,8,4,2,2从小到大的排列顺序是 。
2.化简11410104848++的值等于__________。
3.计算:(log )log log 2222545415-++= 。
4.已知x y x y 224250+--+=,则log ()x xy 的值是_____________。
人教版数学高一-同步练习 第二章 基本初等函数2(新人教A版必修1)

必修1 第二章 基本初等函数(2)一、选择题:1、函数y =log 2x +3(x≥1)的值域是 ( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞)2、已知(10)xf x =,则()100f = ( ) A 、100 B 、10010 C 、lg10 D 、23、已知3log 2a =,那么33log 82log 6-用a 表示是 ( )A 、52a -B 、2a -C 、23(1)a a -+D 、 231a a --4.已知函数()f x 在区间[1,3]上连续不断,且()()()1230f f f <,则下列说法正确的是 ( )A .函数()f x 在区间[1,2]或者[2,3]上有一个零点B .函数()f x 在区间[1,2]、 [2,3]上各有一个零点C .函数()f x 在区间[1,3]上最多有两个零点D .函数()f x 在区间[1,3]上有可能有2006个零点5.设()833-+=x x f x ,用二分法求方程()33801,3x x x +-=∈在内近似解的过程 中取区间中点02x =,那么下一个有根区间为 ( )A .(1,2)B .(2,3)C .(1,2)或(2,3)D .不能确定6. 函数log (2)1a y x =++的图象过定点 ( )A.(1,2)B.(2,1)C.(-2,1)D.(-1,1)7. 设0,1,,0x x x a b a b ><<>且,则a 、b 的大小关系是 ( )A.b <a <1B. a <b <1C. 1<b <aD. 1<a <b8. 下列函数中,值域为(0,+∞)的函数是 ( )A. 12x y = B. 112x y -⎛⎫= ⎪⎝⎭ C. 1y = D. y 9.方程133-=x x 的三根 1x ,2x ,3x ,其中1x <2x <3x ,则2x 所在的区间为 ( )A . )1,2(--B . ( 0 , 1 )C . ( 1 , 23 )D . (23 , 2 ) 10.值域是(0,+∞)的函数是 ( )A 、125x y -=B 、113x y -⎛⎫= ⎪⎝⎭C 、12x y =-D 、112x⎛⎫- ⎪⎝⎭ 11.函数y= | lg (x-1)| 的图象是 ( )12.函数|log |)(21x x f =的单调递增区间是 () A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞二、填空题:13.计算:210319)41()2(4)21(----+-⋅- = .14.已知幂函数的图像经过点(2,32)则它的解析式是 .15.函数21()log (2)f x x =-的定义域是 .16.函数)x 2x (log y 221-=的单调递减区间是_______________.三、解答题17.求下列函数的定义域:(1)3)1(log 1)(2-+=xx f (2)2312log )(--=x x x fC18. 已知函数xx x f -+=11lg )(,(1)求)(x f 的定义域; (2)使0)(>x f 的x 的取值范围.19. 求函数y =3322++-x x 的定义域、值域和单调区间.20. 若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值。
新人教A版必修1第二章基本初等函数

logc b loga b (a 0,且a 1; c 0,且c 1; b 0) logc a
三、重点内容
(三)基本性质:
y a x (a 0,且a 1)
0<a<1
y
a>1
y
1
图象
0
1
x
0
x
定义域 值域 性质
(0, )
当x>0时0<y<1; 当x<0时y>1; 当x=0时y=1; 在R上是减函数
R
(0, )
当x>0时y>1; 当x<0时0<y<1; 当x=0时y=1; 在R上是增函数
R
三、重点内容
(三)基本性质: y loga x(a 0,且a 1)
0 a 1
y
a 1
y
图象
定义 域 值域 性质
O
1
x
O
1
x
(0, )
R
(0, )
R
( 3 )) 0过定点 x 1时, y 0; (1)(过定点 3) x 1时, y 0; (1,0) ( 1 (1,0)
四、例题分析 若f ( x) x 2 x b, 且f (log 2 a ) b, log 2 [ f (a )] 2(a 1).
高中数学必修1(人教A版)第二章基本初等函数2-1知识点总结 含同步练习题及答案

(2 x )2 + 2 x − 6 = 0,
令 t = 2 x ,则 t > 0 ,所以
t 2 + t − 6 = 0.
解得 t = 2 或 t = −3.因为 t > 0 ,所以 t = 2 ,即 2 x = 2 ,所以 x = 1. 若 a−5x > ax+7 (a > 0 且 a ≠ 1),求 x 的取值范围.
< 1 的解为
(
)
B.−2 < t < 1 C.−2 < t < 2 D.−3 < t < 2
A.1 < t < 2
答案: A 解析: 若不等式
x2 − 2ax + a > 0,对 x ∈ R 恒成立,则 Δ = 4a2 − 4a < 0 ∴ 0 < a < 1 又 2 a2t+1 < at +2t−3 < 1 ,则 2t + 1 > t 2 + 2t − 3 > 0 t + 1 > t 2 + 2t − 3 ∴ 1 < t < 2 . 即 { 22 t + 2t − 3 > 0
2
3 3 ] 上是增函数,在 [ , +∞) 上是减函数,所以 2 2 3 3 −x2 +3x+2 在 f (x) = 2 (−∞, ] 上是增函数,在 [ , +∞) 上是减函数. 2 2 x (2)函数的定义域为 R,令 t = 2 (t > 0),则 y = (2 x )2 − 2 × 2 x + 5 = t 2 − 2t + 5 = (t − 1)2 + 4,根据该函数的图象可得,y ∈ [4, +∞). 当 t ≥ 1 时,y = (t − 1)2 + 4 在 [1, +∞) 上为增函数,又 2 x ≥ 1 ,即 x ≥ 0,且 t = 2 x 在 [0, +∞) 上为增函数,由复合函数的单调性的判断方法知,原函数在 [0, +∞) 上是增函数.同 理,原函数在 (−∞, 0] 上为增函数.
人教版高中数学必修1数学第二章课后习题(共10页)Word版

新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462r t s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ;(6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R .(3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5.(4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n .(2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n .点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的.B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ),2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=- 2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =;(2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x==,所以3x =; (4)设lg 0.001x =,则3100.00110x-==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-.4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x=(5) 100.3x= (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s.10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数. 2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4; (3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a . 3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ). (2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (ab b a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1).9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x在x ∈(-∞,+∞)上是增函数.证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x . 因为x 1,x 2∈(-∞,+∞), 所以.012.01212>+>+x x又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃.6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3。
2012年高考数学按章节分类汇编 第二章基本初等函数 新人教A版必修1

2012年高考数学按章节分类汇编(人教A 必修一)第二章 基本初等函数一、选择题1.(2012年高考(安徽文))23log 9log 4⨯=( )A .14B .12C .2D .42.(2012年高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数的是 ( )A .()ln 2y x =+B.y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+3 .(2012年高考(重庆文))设函数2()43,()32,x f x x x g x =-+=-集合{|(())0M x R f g x =∈> {|()2},N x R g x =∈<则MN 为 ( )A .(1,)+∞B .(0,1)C .(-1,1)D .(,1)-∞4 .(2012年高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --= D .31y x =+5 .(2012年高考(四川文))函数(0,1)xy a a a a =->≠的图象可能是6 .(2012年高考(山东文))函数1()ln(1)f x x =++ ( )A .[2,0)(0,2]-B .(1,0)(0,2]-C .[2,2]-D .(1,2]-7.(2012年高考(广东文))(函数)下列函数为偶函数的是( )A .sin y x =B .3y x =C .x y e =D.y =8.(2012年高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-的定义域;则AB =( )A .(1,2)B .[1,2]C .[,)12D .(,]129 .(2012年高考(新课标理))设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为 ( )A .1ln 2-Bln 2)-C .1ln 2+Dln 2)+10 .(2012年高考(四川理))函数1(0,1)xy a a a a=->≠的图象可能是11.(2012年高考(江西理))下列函数中,与函数( ) A .y=1sin x B .y=1nxxC .y=xe xD .sin xx 12.(2012年高考(湖南理))已知两条直线1l :y =m 和2l : y=821m +(m >0),1l 与函数2log y x =的图像从左至右相交于点A,B ,2l 与函数2log y x =的图像从左至右相交于C,D .记线段AC 和BD 在X 轴上的投影长度分别为a ,b ,当m 变化时,ba的最小值为( )A. B.C.D.二、填空题13.(2012年高考(上海文))方程03241=--+x x的解是_________.14.(2012年高考(陕西文))设函数发0,()1(),0,2x x f x x ìï³ïï=íï<ïïïî,则((4))f f -=_____15.(2012年高考(北京文))已知()(2)(3)f x m x m x m =-++,()22xg x =-.若,()0x R f x ∀∈<或()0g x <,则m 的取值范围是________.16.(2012年高考(北京文))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.17.(2012年高考(上海春))函数224log ([2,4])log y x x x=+∈的最大值是______.18.(2012年高考(江苏))函数x x f 6log 21)(-=的定义域为____.三、解答题19.(2012年高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.基本初等函数参考答案一、选择题1. 【解析】选D 23lg9lg 42lg32lg 2log 9log 44lg 2lg3lg 2lg3⨯=⨯=⨯= 2.解析:A.()ln 2y x =+在()2,-+∞上是增函数. 3. 【答案】:D【解析】:由(())0f g x >得2()4()30g x g x -+>则()1g x <或()3g x >即321x -<或323x ->所以1x <或3log 5x >;由()2g x <得322x-<即34x <所以3l o g 4x <故(,1)M N =-∞【考点定位】本题考查了利用直接代入法求解函数的解析式以及指数不等式的解法.本题以函数为载体,考查复合函数,关键是函数解析式的确定.4. 【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B. 5. [答案]C[解析]采用特殊值验证法. 函数(0,1)xy a a a a =->≠恒过(1,0),只有C 选项符合. [点评]函数大致图像问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用.6. 解析:要使函数)(x f 有意义只需⎩⎨⎧≥-≠+040)1ln(2x x ,即⎩⎨⎧≤≤-≠->220,1x x x ,解得21≤<-x ,且0≠x .答案应选B.7.解析:D.()()f x f x -=.8. 【解析】选D {3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=9. 【解析】选A函数12xy e =与函数ln(2)y x =互为反函数,图象关于y x =对称 函数12x y e =上的点1(,)2x P x e 到直线y x =的距离为d =设函数min min 11()()1()1ln 222x x g x e x g x e g x d '=-⇒=-⇒=-⇒=由图象关于y x =对称得:PQ最小值为min 2ln 2)d =- 10. [答案]C[解析]采用排除法. 函数(0,1)x y a a a a =->≠恒过(1,0),选项只有C 符合,故选C. [点评]函数大致图像问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用.11. D 【解析】本题考查常有关对数函数,指数函数,分式函数的定义域以及三角函数的值域.函数y =的定义域为()(),00,-∞+∞,而答案中只有s i n xy x=的定义域为()(),00,-∞+∞.故选D.【点评】求函数的定义域的依据就是要使函数的解析式有意义的自变量的取值范围.其求解根据一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负;(3)对数的真数大于0:(4)实际问题还需要考虑使题目本身有意义.体现考纲中要求了解一些简单函数的定义域,来年需要注意一些常见函数:带有分式,对数,偶次根式等的函数的定义域的求法. 12. 【答案】B【解析】在同一坐标系中作出y=m,y=821m +(m>0),2log y x =图像如下图,由2log x = m,得122,2m m x x -==,2log x = 821m +,得821821342,2m m x x +-+==.依照题意得8218218218212222,22,22m m m mmm m m b a b a++--+--+-=-=-=-821821222m m mm +++==.8141114312122222m m m m +=++-≥-=++,min ()b a ∴=.【点评】在同一坐标系中作出y=m,y=821m +(m>0),2log y x =图像,结合图像可解得.821m =+xm二、填空题13. [解析] 0322)2(2=-⋅-x x ,0)32)(12(=-+x x ,32=x,3log 2=x . 14.解析:41(4)()162f --==,((4))(16)4f f f -==15. 【答案】(4,0)-【解析】首先看()22x g x =-没有参数,从()22x g x =-入手,显然1x <时,()0g x <,1x ≥时,()0g x ≥,而对,()0x R f x ∀∈<或()0g x <成立即可,故只要1x ∀≥时,()0f x <(*)恒成立即可.当0m =时,()0f x =,不符合(*),所以舍去;当0m >时,由()(2)(3)0f x m x m x m =-++<得32m x m --<<,并不对1x ∀≥成立,舍去;当0m <时,由()(2)(3)0f x m x m x m =-++<,注意20,1m x ->≥,故20x m ->,所以30x m ++>,即(3)m x >-+,又1x ≥,故(3)(,4]x -+∈-∞-,所以4m >-,又0m <,故(4,0)m ∈-,综上,m 的取值范围是(4,0)-.【考点定位】 本题考查学生函数的综合能力,涉及到二次函数的图像的开口,根的大小,涉及到指数函数,还涉及到简易逻辑中的“或”,还考查了分类讨论的思想,对m 进行讨论.16. 【答案】2【解析】()lg ,()1f x x f ab ==,lg()1ab ∴=2222()()lg lg 2lg()2f a f b a b ab ∴+=+==【考点定位】本小题考查的是对数函数,要求学生会利用对数的运算公式进行化简,同时也要求学生对于基础的对数运算比较熟悉. 17. 518.【答案】(0.【考点】函数的定义域,二次根式和对数函数有意义的条件,解对数不等式.【解析】根据二次根式和对数函数有意义的条件,得1266000112log 0log 620<x >x >x >x x x x ≤-≥≤≤⎧⎧⎧⎪⎪⇒⇒⎨⎨⎨⎩⎪⎪⎩⎩.三、解答题 19. [解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x xx x 得101122<<+-x x因为01>+x ,所以1010221+<-<+x x x ,3132<<-x . 由⎩⎨⎧<<-<<-313211x x 得3132<<-x (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==由单调性可得]2lg ,0[∈y .因为yx 103-=,所以所求反函数是x y 103-=,]2lg ,0[∈x。
高中数学 第二章 基本初等函数(Ⅰ)2.2.1.2 对数的运算课后提升训练 新人教A版必修1

对数的运算(30分钟60分)一、选择题(每小题5分,共40分)1.(2017·大同高一检测)2log32-log3+log38的值为( )A. B.2 C.3 D.【解析】选B.原式=log322-log332+log39+log38=log34+log38- log332+2=log332-log332+2=2. 【补偿训练】(2017·杭州高一检测)2log510+log50.25= ( )A.0B.1C.2D.4【解析】选C.2log510+log50.25=log5100+log50.25=log525=2.2.下列各式中正确的个数是( )①log a(b2-c2)=2log a b-2log a c;②(log a3)2=2log a3;③=lg5.A.0B.1C.2D.3【解析】选A.由对数的运算性质和换底公式知,它们均不正确.3.(2017·黑龙江高一检测)已知lg2=a,lg3=b,则log36等于( )A. B. C. D.【解析】选B.log36===.4.若log5·log36·log6x=2,则x等于( )A.9B.C.25D.【解题指南】利用对数的换底公式将原式中的对数转化为常用对数,再计算.【解析】选D.由换底公式,得··=2,所以-=2.所以lgx=-2lg5=lg.所以x=.5.声强级L I(单位:dB)由公式L I=10lg给出,其中I为声音强度(单位:W/m2).交响音乐会坐在铜管乐前的声音强度约为 5.01×10-2W/m2,则其声强级为(其中lg5.01≈0.7) ( )A.99dBB.100dBC.107dBD.109dB【解析】选 C.当I=5.01×10-2时,其声强级为L I=10lg=10lg(5.01×1010)=10(lg5.01+10)≈107(dB).6.(2017·大连高一检测)若lna,lnb是方程3x2-6x+2=0的两个根,则的值等于( )A. B. C.4 D.【解析】选 A.由根与系数的关系,得lna+lnb=2,lna·lnb=,所以=(lna-lnb)2=(lna+lnb)2-4lna·lnb=22-4×=.7.(2017·北京高一检测)函数f(x)=log a x(a>0且a≠1),若f(x1x2…x n)=16,则f()+f()+…+f()的值等于( )A.2log216B.32C.16D.8【解析】选B.f(x)=log a x,f(x1x2…x n)=16,所以log a(x1x2…x n)=16,所以f()+f()+…+f()=log a+log a+…+log a=2(log a x1+log a x2+…+log a x n)=2log a(x1x2…x n)=32.8.(2017·武汉高一检测)已知2m=5n=10,则+= ( )A.0B.1C.2D.3【解析】选B.因为2m=5n=10,所以m=log210,n=log510,即=lg2,=lg5,故+=lg2+lg5=1.二、填空题(每小题5分,共10分)9.已知f(x)=lgx,若f(ab)=1,则f(a2)+f(b2)=________.【解析】因为f(ab)=1,所以lg(ab)=1,即lga+lgb=1,所以f(a2)+f(b2)=lga2+lgb2=2(lga+lgb)=2.答案:210.若lg3=a,lg5=b,那么lg=________.【解析】lg=lg4.5=lg=lg=(lg5+lg9-1)=(2a+b-1). 答案:三、解答题11.(10分)(2017·兰州高一检测)计算下列各式的值:(1)log535+2lo-log5-log514.(2)[(1-log63)2+log62·log618]÷log64.【解析】(1)原式=log535+log550-log514+2lo=log 5+lo2=log553-1=2.(2)原式=[(log66-log63)2+log62·log6(2×32)]÷log64=÷log622=[(log62)2+(log62)2+2log62·log63]÷2log62=log62+log63=log6(2×3)=1.【能力挑战题】已知2lg(x+y)=lg2x+lg2y,则log2=________.【解析】因为2lg(x+y)=lg2x+lg2y,所以lg(x+y)2=lg(4xy),所以(x+y)2=4xy,所以(x-y)2=0,所以x=y,所以=1,所以log2=log21=0. 答案:0。
人教版高中数学必修一《基本初等函数》同步变式练习及解析

新课标人教版数学•必修高一(上)同步变式练习第二章基本初等函数(I)变式练习1一、选择题1. y= f (x)(x€ R)是奇函数,则它的图象必经过点( )A •(—a,—f(—a)) B.( a,— f (a))C.( a, f (丄)) D •(—a,—f (a)) 答案:Da2•设定义在R上的函数f (x)=| x I,则f (x)( )A •既是奇函数,又是增函数B.既是偶函数,又是增函数C.既是奇函数,又是减函数D.既是偶函数,又是减函数解析:本题可以作出函数图象,由图象可知该函数为偶函数,又是R上的增函数.答案:B3•设f (x)是R上的偶函数,且在(0,+^)上是减函数,若x i v 0且x i + x2 >0,贝U( )A • f ( —x i)> f (—x2) B. f ( —X1)= f ( —X2)C. f ( —X1)v f ( —x2)D. f ( —X i)与f ( —x2)大小不确疋解析:x2> —x i> 0, f (X)是R 上的偶函数,••• f ( —x i)= f (x i).又f (x) 在(0,+x)上是减函数,• f ( —X2)= f (X2)V f ( —x i).答案:A二、填空题4. ______________________________________________________ 已知f(x)= x5+ ax3+ bx—8, f ( —2)= i0,贝U f (2): __________________ .解析:f ( —2) = ( —2) 5+ a ( —2) 3—2b —8= i0, •(—2) 5+ a ( —2) 3—2b= i8, f (2)= 25+ 23a+ 2b —8=—i8—8= —26.答案:-265. 若f (x)是偶函数,其定义域为R且在[0, +^)上是减函数,贝U f (—3)与f (a2—a+ i)的大小关系是43解析:a2—a+ 1 > ,:f (x)在[0,+x ]上是减函数,4••• f (a2—a+ 1)< f ( - ) •又f (x)是偶函数,.f (— - )= f (-).4 4 4••• f (a2—a+ 1)< f (—-).4答案:f (a2一a+1 )< f ( 3)4三、解答题6. 已知函数f (x)= x+三,且f (1)= 2.(1)求m;(2)判断f (x)的奇偶性;(3)函数f (幻在(1,+x)上是增函数还是减函数?并证明.解:(1) f (1): 1 + m= 2, m= 1.1 1(2) f (x)= x+ —, f ( —x)二一x—— = —f (x),A f (x)是奇函数.x x(3)设X1、X2是(1,+x)上的任意两个实数,且X1V X2,贝U11 1 1f ( X1 ) —f ( X2)= X1 + —( x2+ )= X1 —X2+( —一——)x1X2X1x2、,X1—*2、、X1X2—1=X1 —X2 —=( X1 —X2)X1X2X1X2当1v X1V X2 时,X1X2> 1 , X1X2 —1> 0,从而 f ( X1)— f ( X2)V 0, 即 f (X1)V f ( X2).1•••函数f (x)=丄+ X在(1,+x)上为增函数.X变式练习2一、选择题1.如果函数f (x) = ( a2—1) x在R上是减函数,那么实数a的取值范围是( )A. | a |> 1B.| a |v2C.| a |>3D. 1v| a |v • 2a2- 1v 1,解得1v| a |v 2 .答案:D2. 函数y= a x-2+ 1 (a>0, a^ 1)的图象必经过点()A. (0, 1)B.(1, 1)C.(2, 0)D.(2, 2)解析:由于函数y= a x经过定点(0, 1),所以函数y= a x-2经过定点(2, 1),于是函数y= a x-2+ 1经过定点(2, 2).答案:D3. 函数y= a x在]0, 1]上的最大值与最小值和为3,则函数y= 3ax- 1在[0, 1]上的最大值是()3A. 6B. 1C. 3D.-2解析:由于函数y= a x在]0, 1]上是单调的,因此最大值与最小值都在端点处取到,故有a0+ a1二3,解得a = 2,因此函数y= 3a x-1在]0, 1]上是单调递增函数,最大值当x= 1时取到,即为3.答案:C4. 设f (x)=, x€ R,那么f (乂)是()A. 奇函数且在(0,+x)上是增函数B. 偶函数且在(0,+^)上是增函数C. 函数且在(0,+^)上是减函数D. 偶函数且在(0,+^)上是减函数解析: 因为函数f (x)/ 1\X /(2)(x0)图象如下图.由图象可知答案显然是D . 答案:D5.下列函数中值域为正实数的是()B. y =(1)1X答案是B .答案:B 6. 函数y = 2—x +1+ 2的图象可以由函数y =( 1) x 的图象经过怎样的平移2得到()答案:C解析:本题是一个图形分析型综合题,重在寻找突破口,因为 y =( -) xa是一指数函数,故有b >0,即a 、b 同号,于是二次函数y = ax 2 + bx 的对称轴xa1y = 52 xC . y =D . y = . 1— 2X解析: A 中指数取不到零,因此值域为(一0, i )U( 1,+^); B 的指数可以取到所有实数,故值域是正实数;C 和D 的值域都是]0,+^).因此A .先向左平移 i 个单位, 再向上平移 2个单位B .先向左平移 i 个单位, 再向下平移 2个单位C .先向右平移 i 个单位, 再向上平移 2个单位D .先向右平移 再向下平移 解析:函数y = 2—x +1+ 2可变形为y =( 1)2i 个单位, 2个单位 x —1+ 2.7.在图中,二次函数y = ax 2+ bx 与指数函数 y = ( —)x 的图象只可为( )—v0,故B、D均错;又由指数函数的图象,得0v b v 1,则0>—— >2a a 2a1 1—1 2,即二次函数的顶点横坐标在区间(一 丄,0)内,显然C 错.因此答案为 2 2A .答案:A8.若一1v x v 0,则不等式中成立的是()A . 5—x v 5X v 0.5XB . 5X v 0.5X v 5—xC . 5X v 5 — x v 0.5XD . 0.5X v 5—x v 5X解析:根据指数函数图象可观察答案是 B . 答案:B 二、填空题9 .函数尸一2—x 的图象一定过 _______ 象限.解析:y = — 2—X =—( 1) x ,它可以看作是指数函数y =( - ) x 的图象作22 关于x 轴对称的图象,因此一定过第三象限和第四象限.答案:三、四10. ___________________________________________________________ 函数f(x ) = a x —1 + 3的图象一定过定点P,则P 点的坐标是 ________________ .解析:f (x )=a X —1 + 3的图象可以看作把f (x )=a X 的图象向右平移一个单位再向上平移3个单位而得到,且f (x )二a x 一定过点(0, 1),则f (x )二a x —1+ 3 应过点(1, 4).答案:(1, 4)11. ______________________ 函数y =3—x 与 的图象关于y 轴对称. 解析:图象与y =3—x 关于y 轴对称的函数为y =3X .答案:y = 3X1212. _______________________________________已知函数f (x )=(丄)山x ,其定义域是 __________________3[—1,1],由 0W 1—x 2 < 1 及函数 y = Q)的单调性可知(新 <(》1 ” <(2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修1 第二章 基本初等函数(1)
一、选择题: 1.3334)21()21()
2()2(---+-+----的值 ( ) A 4
37 B 8 C -24 D -8 2.函数x y 24-=的定义域为 ( )
A ),2(+∞
B (]2,∞-
C (]2,0
D [)+∞,1
3.下列函数中,在),(+∞-∞上单调递增的是 ( ) A ||x y = B x y 2log = C 31
x y = D x y 5.0=
4.函数x x f 4log )(=与x x f 4)(=的图象 ( )
A 关于x 轴对称
B 关于y 轴对称
C 关于原点对称
D 关于直线x y =对称
5.已知2log 3=a ,那么6log 28log 33-用a 表示为 ( )
A 2-a
B 25-a
C 2)(3a a a +-
D 132--a a
6.已知10<<a ,0log log <<n m a a ,则 ( )
A m n <<1
B n m <<1
C 1<<n m
D 1<<m n
7.已知函数f (x )=2x ,则f (1—x )的图象为 ( )
A B C D
8.有以下四个结论 ①
l g(l g10)=0 ② l g(l n e )=0 ③若10=l g x ,则x=10 ④ 若e =ln x,则
x =e 2, 其中正确的是 ( )
A. ① ③
B.② ④
C. ① ②
D. ③ ④
9.若y=log 56·log 67·log 78·log 89·log 910,则有 ( )
A. y ∈(0 , 1) B . y ∈(1 , 2 ) C. y ∈(2 , 3 ) D. y =1
10.已知f (x )=|lgx |,则f (
41)、f (31)、f (2) 大小关系为 ( )
A. f (2)> f (31)>f (
41) B. f (41)>f (31)>f (2) C. f (2)> f (41)>f (31) D. f (3
1)>f (41)>f (2) 11.若f (x )是偶函数,它在[)0,+∞上是减函数,且f (lg x )>f (1),则x 的取值范围是( )
A. (110,1)
B. (0,110) (1,+∞)
C. (110
,10) D. (0,1) (10,+∞) 12.若a 、b 是任意实数,且a >b ,则 ( )
A. a 2>b 2
B. a b <1
C. ()lg a b - >0
D.12a ⎛⎫ ⎪⎝⎭<12b
⎛⎫ ⎪⎝⎭ 二、填空题:
13. 当x ∈[-1,1]时,函数f (x )=3x
-2的值域为 14.已知函数⎩⎨⎧<+≥=-),
3)(1(),3(2)(x x f x x f x 则=)3(log 2f _________.
15.已知)2(log ax y a -=在]1,0[上是减函数,则a 的取值范围是_________
16.若定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f (2
1)=0,则不等式 f (l og 4x )>0的解集是______________.
三、解答题:
17.已知函数x y 2=
(1)作出其图象;
(2)由图象指出单调区间;
(3)由图象指出当x 取何值时函数有最小值,最小值为多少?
18. 已知f (x )=log a 11x x
+- (a >0, 且a ≠1) (1)求f (x )的定义域
(2)求使 f (x )>0的x 的取值范围.
19. 已知函数()log (1)(0,1)a f x x a a =+>≠在区间[1,7]上的最大值比最小值大
12
,求a 的值。
20.已知[]2,1,4329)(-∈+⨯-=x x f x x (1)设[]2,1,3-∈=x t x ,求t 的最大值与最小值; (2)求)(x f 的最大值与最小值;。