复合材料力学PPT精选文档
合集下载
第6章 复合材料细观力学PPT

物理关系
G , G , G Ⅱ
12
12 12 f 12
f 12 f m12
m12 m
于是
GⅡ 12
Gf
f
Gm m
6.3.3 植村-山胁的经验公式
E1 EⅠ1 E1Ⅱ
E2 (1 c)EⅠ2 cEⅡ2
1 (1 c)Ⅰ1 c1Ⅱ
2
E2 E1
1
G12 (1 c)GⅠ12 cG1Ⅱ2
(3)泊松比
I 1
,
I 2
当正轴σ1方向受力作用时,纵向泊 松比的定义为
I 1
2 1
单元的横向变形量Δb为 b b 2 b1I 1
从细观来看,单元的横向变形量应等于纤维与基 体的横向变形量之和,即
bbf 2 bm2 bff 2 bmm2 bfff1bmmm1
3
因为
1 f 1 m1
所以
E f 1 Em f 3(1 f )
(拉压 型)
Xc
Gm 1 f
(剪切 型)
7
练习题
• 用材料力学方法证明单向纤维复合材料中纤维所承受
载荷Pf与纵向总裁荷P之比为
Pf 1/(1 Em m )
P
Ef f
• 已知某纤维Xft=2000MPa,Ef1=90GPa,基体树脂 Xmt=220MPa,Em=3.5GPa.若基体的延伸率大于纤维,试 求由以上基体和纤维制得的复合材料单向板的临界纤
X ft
X mt
X ft
Em Ef1
vfmin称为纤维控制的最小体积含量
6.4.2 纵向压缩强度Xc
拉压型微屈曲引起破坏的纵向压缩强度
X c 2 f
E f Em f 3(1 f )
复合材料细观力学56页PPT文档

V
ij
1 2 1 2 1 2
V
V
ij d V
s (
i0
x n
j
1 2
s (u
0 j
x
in ni
j
) ds
u
jn i
V [ (
i0
x
),
j (
0 j
x
), i
] dV
V
(
i0
0 i
dV
x
,j
V
0
3D knitted composites for bicycle helmets
(a) cylinder and flange; (b) egg crate structures; (c) turbine rotors woven by Techniweave Inc.;
and (d) various
利用散度定理可以证明复合材 料的应变能和余能分别是
ij eij i*j
第二章 复合材料有效性能
第一节 Eshelby等效夹杂理论
1957年Eshelby在英国皇家学会会刊 发表了关于无限大体内含有椭球夹杂弹性 场问题的文章,证明了在均匀外载作用时, 椭球夹杂内部弹性场亦均匀。(椭圆积分 形式)
复合材料性能和损伤破坏规律取决于
组分材料性能 微细观结构特征
u
i
(
s
)
0 ij
x
j
Ti
(
s
)
0 ij
n
j
复合材料结构设计
复合材料本身是非均质、各向异性材料, 因此复合材料力学在经典非均匀各向异性 弹性力学基础上迅速发展。复合材料不仅 是材料,更确切的说是结构
复合材料力学性能经典.ppt

演示课件
当Vf较小时,纤维断裂而转移载荷很小,复合材 料的强度为:
σ1 = σm(1-Vf) 当Vf较高时,纤维断裂而转移到基体上载荷很大, 此时,基体随之断裂,复合材料的强度为:
σ1 = σf Vf+σm ′(1-Vf)
演示课件
σ1 随Vf变 化如图所 示
可求得交叉点Vf′:表示对应于εf < εm时两种破坏 形式变化时的纤维体积含量。 Vmin:纤维起增强效果的演示体课件积分数
演示课件
2.1 高分子材料的力学状态
玻璃化转变现象及Tg的重要性
自由体积理玻论璃化转变是高聚物的一种普遍现象。
发生玻璃化转变时,许多物理性能发生急剧变化,可完全 改变材料的使用性能: T>Tg 时高聚物处于高弹态(弹性体) T<Tg 时高聚物处于玻璃态(塑料、纤维)
Tg是决定材料使用范围的重要参数: Tg 是橡胶的最低使用温度 Tg 是塑料的最高使用温度
混合定律
演示课件
碳纤维/环氧树脂复合材料, Ef=180GPa,Vf=0.548, Em=3000MPa时,算得
E1=1×105MPa
拉伸实测值为103860MPa,与预测值 差别较小
演示课件
演示课件
讨论:复合材料在受轴向力时,基体和纤维所承受 的载荷大小与它们的模量和体积分数有关:
Pf f Af f Vf E f Vf E f Vf Pm m Am mVm EmVm Em (1Vf )
σ1·A= σf ·Af+ σm ·Am 若复合材料纤维体积含量为Vf , 基体体积含量 为Vm,则:
演示课件
Vf=Af/A Vm=Am/A Vf+Vm=1 则代入σ1·A= σf ·Af+ σm ·Am得
当Vf较小时,纤维断裂而转移载荷很小,复合材 料的强度为:
σ1 = σm(1-Vf) 当Vf较高时,纤维断裂而转移到基体上载荷很大, 此时,基体随之断裂,复合材料的强度为:
σ1 = σf Vf+σm ′(1-Vf)
演示课件
σ1 随Vf变 化如图所 示
可求得交叉点Vf′:表示对应于εf < εm时两种破坏 形式变化时的纤维体积含量。 Vmin:纤维起增强效果的演示体课件积分数
演示课件
2.1 高分子材料的力学状态
玻璃化转变现象及Tg的重要性
自由体积理玻论璃化转变是高聚物的一种普遍现象。
发生玻璃化转变时,许多物理性能发生急剧变化,可完全 改变材料的使用性能: T>Tg 时高聚物处于高弹态(弹性体) T<Tg 时高聚物处于玻璃态(塑料、纤维)
Tg是决定材料使用范围的重要参数: Tg 是橡胶的最低使用温度 Tg 是塑料的最高使用温度
混合定律
演示课件
碳纤维/环氧树脂复合材料, Ef=180GPa,Vf=0.548, Em=3000MPa时,算得
E1=1×105MPa
拉伸实测值为103860MPa,与预测值 差别较小
演示课件
演示课件
讨论:复合材料在受轴向力时,基体和纤维所承受 的载荷大小与它们的模量和体积分数有关:
Pf f Af f Vf E f Vf E f Vf Pm m Am mVm EmVm Em (1Vf )
σ1·A= σf ·Af+ σm ·Am 若复合材料纤维体积含量为Vf , 基体体积含量 为Vm,则:
演示课件
Vf=Af/A Vm=Am/A Vf+Vm=1 则代入σ1·A= σf ·Af+ σm ·Am得
最新复合材料力学ppt

复合材料的优点
• 耐疲劳性能好
金属材料疲劳强度极限是其拉伸强度的30%~50%,碳纤维增强树脂基复 合材料的约为70%~80%
• 阻尼减振性能好
基体和纤维界面有较大的吸收振动能量的能力
• 破损安全性好
不会突然丧失承载能力
• 耐化学腐蚀性、电、热性能好
________________________________ __________________
• “到2020年,只有复合材料才有潜力获得20-25% 的性能提升,其中陶瓷基和聚合物基复合材料的 密度、刚度、强度、韧性和抗高温能力都可能有 如此大的改善,而被列为最优先发展的材料”。
– 美国国防部委托国家科学研究院发表的“面向21世纪 国防需求的材料研究”报告指出
________________________________ __________________
是自然的规律
________________________________ __________________
• 人类利用复合材料的历史经历了古代、 近代和现代三个阶段
– 房屋、纸张……
六千年以前,陕西西安半坡村的仰韶文化住房遗址 说明我国古人已经开始用草混在泥土中筑墙和铺地, 这种草泥就是最原始的纤维增强复合材料,它与现 代高性能纤维增强复合材料非常相似
• (美国麻省理工学院材料科学与工程系教授J. P. Clark, 1985)
• 以碳纤维、碳化硅纤维、氧化铝纤维、硼纤维、芳纶 纤维、高密度聚乙烯纤维等高性能增强材料,并使用 高性能树脂、金属与陶瓷等为基体,制成的具有比玻 璃纤维复合材料更好性能的先进复合材料
________________________________ __________________
• 耐疲劳性能好
金属材料疲劳强度极限是其拉伸强度的30%~50%,碳纤维增强树脂基复 合材料的约为70%~80%
• 阻尼减振性能好
基体和纤维界面有较大的吸收振动能量的能力
• 破损安全性好
不会突然丧失承载能力
• 耐化学腐蚀性、电、热性能好
________________________________ __________________
• “到2020年,只有复合材料才有潜力获得20-25% 的性能提升,其中陶瓷基和聚合物基复合材料的 密度、刚度、强度、韧性和抗高温能力都可能有 如此大的改善,而被列为最优先发展的材料”。
– 美国国防部委托国家科学研究院发表的“面向21世纪 国防需求的材料研究”报告指出
________________________________ __________________
是自然的规律
________________________________ __________________
• 人类利用复合材料的历史经历了古代、 近代和现代三个阶段
– 房屋、纸张……
六千年以前,陕西西安半坡村的仰韶文化住房遗址 说明我国古人已经开始用草混在泥土中筑墙和铺地, 这种草泥就是最原始的纤维增强复合材料,它与现 代高性能纤维增强复合材料非常相似
• (美国麻省理工学院材料科学与工程系教授J. P. Clark, 1985)
• 以碳纤维、碳化硅纤维、氧化铝纤维、硼纤维、芳纶 纤维、高密度聚乙烯纤维等高性能增强材料,并使用 高性能树脂、金属与陶瓷等为基体,制成的具有比玻 璃纤维复合材料更好性能的先进复合材料
________________________________ __________________
复合材料力学-3-PPT精选文档67页

1
2
E 2 2
E 2 V f
2 Ef
Vm
2 Em
W
纤维 基体
E2
E fE m V m E f V fE m
E2
1
E m V m V f(E m / E f )
2 与试验值相比,较小,由于纤维随
基体模量正化
机排列,兼有串联和并联的成分 12
刚度的材料力学分析方法
1
Gm
V
m
V
f
G G
m f
基体
1
纤维
基体
m/2 f
14
刚度的材料力学分析方法
进一步工作
采用各种不同的模型,可以给出不同的弹性常数
欧克凡尔考虑了由于纤维约束引起在基体中的三向 应力状态而得到了如下的混合率表达式
E1
Ef Vf
E
' m
V
m
E2
E
f
E
' m
Vm
E
f
(1
2 m
)
时 1 1 m m 2 2 m 2 m 2 d E E d d V V d d 1 1 d d 2 2 d 2 d 2 E m m E V m m V m
U* 0
24
证明:表观弹性模量的上限
U *221 1d 4 d d 2 d 222EdV d1 1m m 4 m 2 m 222Em V mV
由于 UU*
1 2E2V221 1d 4 d d 2 d 222EdV d1 1m m 4 m 2 m 222Em V mV
2
E 2 2
E 2 V f
2 Ef
Vm
2 Em
W
纤维 基体
E2
E fE m V m E f V fE m
E2
1
E m V m V f(E m / E f )
2 与试验值相比,较小,由于纤维随
基体模量正化
机排列,兼有串联和并联的成分 12
刚度的材料力学分析方法
1
Gm
V
m
V
f
G G
m f
基体
1
纤维
基体
m/2 f
14
刚度的材料力学分析方法
进一步工作
采用各种不同的模型,可以给出不同的弹性常数
欧克凡尔考虑了由于纤维约束引起在基体中的三向 应力状态而得到了如下的混合率表达式
E1
Ef Vf
E
' m
V
m
E2
E
f
E
' m
Vm
E
f
(1
2 m
)
时 1 1 m m 2 2 m 2 m 2 d E E d d V V d d 1 1 d d 2 2 d 2 d 2 E m m E V m m V m
U* 0
24
证明:表观弹性模量的上限
U *221 1d 4 d d 2 d 222EdV d1 1m m 4 m 2 m 222Em V mV
由于 UU*
1 2E2V221 1d 4 d d 2 d 222EdV d1 1m m 4 m 2 m 222Em V mV
复合材料力学培训讲座(ppt 32页)

20.01.2020
30
NUDT 12.6
第一章 引言
Chap.01
1.4 本课程的主要任务
复合材料的性能特性 结构分析基础 典型构件受力和变形分析
1.5 处理方法
复合材料力学、 结构分析基础 建立各种材料体系的本构关系及控制方程
20.01.2020
31
全复合材料汽车——汽油之后的变革
高性能体育器械-网球、棒球、高尔夫球、赛车、滑雪、 鱼杆
人造器官
输油管道、储罐、压力容器等
20.01.2020
13
NUDT 12.6
六、复合材料的制备
Chap.01
传统意义上的复合材料的制造,目前使用最广、 效果最好的是纤维增强:
采用熔铸、浸渍、层压等方法,把玻璃纤维、 有机纤维、碳纤维及其织物嵌入树脂基体中;
20.01.2020
2
NUDT 12.6
Chap.01
课程简介 目的 内容 内容: 考核 复合材料力学:包括细观力学和层合板理论,以 参考书 及静力、动力和稳定分析及结构优化设计(典型
结构设计)。
20.01.2020
3
NUDT 12.6
Chap.01
课程简介 内容:
目的
第一章 引言
20.01.2020
12
NUDT 12.6
Chap.01
五、复合材料的特点及应用
复合材料具有高比强度、高比刚度、材料轻、耐腐蚀、抗 疲劳性能、减振性能和高温性能好意即可设计等特点
它最早应用于国防、航空、航天等尖端科学技术领域,近 年来,汽车、造船、建筑、化工石油、体育用品、生物、 医疗、娱乐等部门也推广使用复合材料
先进复合材料 树脂基复合材料 金属基复合材料 陶瓷基复合材料 碳/碳复合材料
复合材料力学ppt.共95页

复合材料力学ppt.
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
谢谢!Biblioteka 61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
谢谢!Biblioteka 61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
第七章复合材料力学性能的复合规律ppt课件

u m
(常见情况)
①当 Vf 较低时
单层板中纤维断裂(图7.11(d))而附加到基体 上的额外载荷不足以使基体开裂,而可以全部承受, 此时复合材料的强度为:
1u
muVm
u m
1Vf
②当 Vf 较高时 纤维断裂时,转移载荷大。
u 1
m
u f
m
Vf
1.0 0
u 1
uf Vf
m (1Vf )
1 Vm V f
或
E2 Em E f
E2
EmV f
EmE f E f (1 V f )
⑶单向板的主泊松比ν12
复合材料的主泊松比——是指在轴向外加应力时横 向应变与纵向应变的比值。
横向收缩,纵向伸长
主泊松比
12
2 1
1 —纵向应变
2 —横向应变
横向变形增量 W为:
W W f Wm
W
12
W
1
W f
f
VfW
1
Wm
m
VmW
1
121W V f f 1W Vm m1W
12 V f f Vm m
⑷单层板的面内剪切模量G12
假定纤维和基体所承受的剪切应力相等,并假 定复合材料的剪切特性是线性的,总剪切变量为D。
试样的剪切特性: f m
若试样宽度为W,则有剪切应变:
u 主要依赖于
1
u m
在纤维断裂前先发生
基体断裂,于是所有载荷转移到纤维上。
树脂破坏时(和破坏后): m 0
刚破坏时: f f
纯树脂破坏时:
u 1
u m
纯纤维破坏时: u 1
u f
当V f 很小时,纤维不能承受这些载荷而破坏,故有:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21
国外航空复合材料发展历史
第一阶段
受载不大的
(70年代初完成) 简单零部件
舱门、口盖、整流罩、方 向舵、襟副翼、雷达罩、
起落架舱门
第二阶段
承力大
(80年代初开始) 规模大
尾翼(垂尾、平尾)、前机身段、机翼
➢F-14 硼/环氧复合材料Leabharlann 尾 ➢F/A-18 机翼 用量13%
第三阶段
(90年代末开 始)
19
复合材料的应用
国防、航空航天领域——轻质化
增加有效载荷
增加射程和续航能力
减小能耗、降低成本 机动性能和生存能力
降低结构质量 提高结构效率
20
战略导弹弹头减少1Kg结构 重量,增加射程20Km
战略导弹三级固体火箭 发动机减少1Kg结构重量 ,增加射程16Km
某第三级固体发动机壳体采用碳/ 环氧复合材料后,结构质量由原 来的116千克降为46千克,仅此 就将导弹射程提高1000Km以上
受力复
杂规模 大
中机身段、中央翼盒
➢A380 中央翼盒 用量25% ➢B787 机身 用量50%
第四阶段
(21世纪初开 始)
受力很大 代替钢结构
起落架用复合材料
➢F-16 起落架后支撑杆 ➢NH-90 直升机起落架
22
A380复合材料部件 (用量23%)
23
Boeing 787 结构材料构成
24
– (1994年出版,师昌绪主编《材料大辞典》)
• 由两种以上材料组合而成的、物理和化学性质与原材料不同、但 又保持某些有效功能
• 一般一种材料作为基体,其他材料作为增强相 • 一定尺度上的组合
11
• 先进复合材料(Advanced Composite Materials, 简称ACM)是指加进了新的高性能纤维的而区别 于“低技术”的玻璃纤维增强塑料的复合材料
性能特点
17
复合材料的优点
• 耐疲劳性能好
金属材料疲劳强度极限是其拉伸强度的30%~50%,碳纤维增强树脂基复 合材料的约为70%~80%
• 阻尼减振性能好
基体和纤维界面有较大的吸收振动能量的能力
• 破损安全性好
不会突然丧失承载能力
• 耐化学腐蚀性、电、热性能好
18
复合材料的缺点
• 界面强度低 • 延展性差,多为脆性材料 • 材料性能的分散性大 • 树脂基复合材料的耐热性较低
复合材料力学
第一部分 复合材料力学基础 第一章 绪 论
2
理论力学、弹性力学、材料力学 ✓运动、变形、受力……
✓塑性变形、损伤失效…… ✓均质、各向同性、线弹性……
复合材料力学? 复合材料?
3
金属材料 的高峰
四分天下
4
• 人类历史上的材料应用的四次重大突 破
– 天然材料:新石器时代 – 人工材料:铜器和铁器时代 – 合成材料:塑料、橡胶 – 复合材料:玻璃纤维
5
• 自然界中普遍存在着天然复合材料
– 树木、骨骼、草茎与泥土复合等 – 天然材料几乎都是复合材料,采取复合的形式
是自然的规律
6
• 人类利用复合材料的历史经历了古代、 近代和现代三个阶段
– 房屋、纸张……
六千年以前,陕西西安半坡村的仰韶文化住房遗址 说明我国古人已经开始用草混在泥土中筑墙和铺地, 这种草泥就是最原始的纤维增强复合材料,它与现 代高性能纤维增强复合材料非常相似
合材料 – 从简单复合到非线性复合效应的复合 – 从复合材料到复合结构 – 从机械设计到仿生设计
9
•复合材料的定义?
10
• 复合材料是指由有机高分子、无机非金属或金属等几类不 同材料通过复合工艺组合而成的新型材料,它既能保留原 有组分材料的主要特色,又通过材料设计使各组分的性能 互相补充并彼此关联,从而获得新的优越性能,与一般材 料的简单混合有本质的区别
– 近现代逐步开始主动利用复合材料的功能性
玻璃钢、先进复合材料
7
天然 复合材料
玻璃钢
先进复合材料 树脂基复合材料 陶瓷基复合材料 金属基复合材料 碳/碳复合材料
智能复合材料 仿生复合材料 功能复合材料 纳米复合材料 生物复合材料 材料复合结构
8
• 复合材料的内涵不断拓展
– 从宏观尺度的复合到纳米尺度的复合 – 从结构材料到结构功能一体化材料和多功能复
国防、航空其它领域:
轻型飞机、通用航空领域(70-90%) 直升机(50%-80%) 无人机(50%-80%)
25
其它领域
• 民用领域 • 基础设施 • 海洋石油工业 • 新能源工业 • 电子信息领域
26
复合材料应用中的机遇和挑 战!
复合材料在应用中对传统设计理 念所带来的冲击
复合材料的可设计性为材料开发 带来了无限的可能性
27
复合材料应用中的力学问题!
常规材料中存在的力学问题,复合 材料中依然存在,且更复杂;
复合材料中存在很多常规材料中不 存在的力学问题,如层间应力、边 界效应,纤维脱胶、断裂等
复合材料的材料设计与结构设计是 同时进行,因而在复合材料设计、 加工工艺条件相互之间密切相关
– 按使用功能不同,可分为结构复合材料和功能复 合材料等
15
• 复合材料关注的性能
− 强度、刚度、耐腐蚀性、疲劳寿命 − 与温度有关的性能和绝热性等 − 其它性能
16
复合材料的特点
• 可设计性 • 材料与结构的同一性
✓ 复合材料结构设计中包含材料设计
• 材料性能对复合工艺的依赖性 • 复合材料具有各向异性和非均质性的力学
• (美国麻省理工学院材料科学与工程系教授J. P. Clark, 1985)
• 以碳纤维、碳化硅纤维、氧化铝纤维、硼纤维、芳纶 纤维、高密度聚乙烯纤维等高性能增强材料,并使用 高性能树脂、金属与陶瓷等为基体,制成的具有比玻 璃纤维复合材料更好性能的先进复合材料
12
• “到2020年,只有复合材料才有潜力获得20-25% 的性能提升,其中陶瓷基和聚合物基复合材料的 密度、刚度、强度、韧性和抗高温能力都可能有 如此大的改善,而被列为最优先发展的材料”。
– 美国国防部委托国家科学研究院发表的“面向21世纪 国防需求的材料研究”报告指出
13
• 复合材料包括三要素:
• 基体材料 • 增强相 • 复合方式(界面结合形式)
14
• 复合材料的分类
– 按增强剂形状不同,可分为颗粒、连续纤维、短 纤维、弥散晶须、层状、骨架或网状、编织体增 强复合材料等
– 按照基体材料的不同,复合材料包括聚合物基复 合材料、金属基复合材料、陶瓷基复合材料、碳/ 碳复合材料等
国外航空复合材料发展历史
第一阶段
受载不大的
(70年代初完成) 简单零部件
舱门、口盖、整流罩、方 向舵、襟副翼、雷达罩、
起落架舱门
第二阶段
承力大
(80年代初开始) 规模大
尾翼(垂尾、平尾)、前机身段、机翼
➢F-14 硼/环氧复合材料Leabharlann 尾 ➢F/A-18 机翼 用量13%
第三阶段
(90年代末开 始)
19
复合材料的应用
国防、航空航天领域——轻质化
增加有效载荷
增加射程和续航能力
减小能耗、降低成本 机动性能和生存能力
降低结构质量 提高结构效率
20
战略导弹弹头减少1Kg结构 重量,增加射程20Km
战略导弹三级固体火箭 发动机减少1Kg结构重量 ,增加射程16Km
某第三级固体发动机壳体采用碳/ 环氧复合材料后,结构质量由原 来的116千克降为46千克,仅此 就将导弹射程提高1000Km以上
受力复
杂规模 大
中机身段、中央翼盒
➢A380 中央翼盒 用量25% ➢B787 机身 用量50%
第四阶段
(21世纪初开 始)
受力很大 代替钢结构
起落架用复合材料
➢F-16 起落架后支撑杆 ➢NH-90 直升机起落架
22
A380复合材料部件 (用量23%)
23
Boeing 787 结构材料构成
24
– (1994年出版,师昌绪主编《材料大辞典》)
• 由两种以上材料组合而成的、物理和化学性质与原材料不同、但 又保持某些有效功能
• 一般一种材料作为基体,其他材料作为增强相 • 一定尺度上的组合
11
• 先进复合材料(Advanced Composite Materials, 简称ACM)是指加进了新的高性能纤维的而区别 于“低技术”的玻璃纤维增强塑料的复合材料
性能特点
17
复合材料的优点
• 耐疲劳性能好
金属材料疲劳强度极限是其拉伸强度的30%~50%,碳纤维增强树脂基复 合材料的约为70%~80%
• 阻尼减振性能好
基体和纤维界面有较大的吸收振动能量的能力
• 破损安全性好
不会突然丧失承载能力
• 耐化学腐蚀性、电、热性能好
18
复合材料的缺点
• 界面强度低 • 延展性差,多为脆性材料 • 材料性能的分散性大 • 树脂基复合材料的耐热性较低
复合材料力学
第一部分 复合材料力学基础 第一章 绪 论
2
理论力学、弹性力学、材料力学 ✓运动、变形、受力……
✓塑性变形、损伤失效…… ✓均质、各向同性、线弹性……
复合材料力学? 复合材料?
3
金属材料 的高峰
四分天下
4
• 人类历史上的材料应用的四次重大突 破
– 天然材料:新石器时代 – 人工材料:铜器和铁器时代 – 合成材料:塑料、橡胶 – 复合材料:玻璃纤维
5
• 自然界中普遍存在着天然复合材料
– 树木、骨骼、草茎与泥土复合等 – 天然材料几乎都是复合材料,采取复合的形式
是自然的规律
6
• 人类利用复合材料的历史经历了古代、 近代和现代三个阶段
– 房屋、纸张……
六千年以前,陕西西安半坡村的仰韶文化住房遗址 说明我国古人已经开始用草混在泥土中筑墙和铺地, 这种草泥就是最原始的纤维增强复合材料,它与现 代高性能纤维增强复合材料非常相似
合材料 – 从简单复合到非线性复合效应的复合 – 从复合材料到复合结构 – 从机械设计到仿生设计
9
•复合材料的定义?
10
• 复合材料是指由有机高分子、无机非金属或金属等几类不 同材料通过复合工艺组合而成的新型材料,它既能保留原 有组分材料的主要特色,又通过材料设计使各组分的性能 互相补充并彼此关联,从而获得新的优越性能,与一般材 料的简单混合有本质的区别
– 近现代逐步开始主动利用复合材料的功能性
玻璃钢、先进复合材料
7
天然 复合材料
玻璃钢
先进复合材料 树脂基复合材料 陶瓷基复合材料 金属基复合材料 碳/碳复合材料
智能复合材料 仿生复合材料 功能复合材料 纳米复合材料 生物复合材料 材料复合结构
8
• 复合材料的内涵不断拓展
– 从宏观尺度的复合到纳米尺度的复合 – 从结构材料到结构功能一体化材料和多功能复
国防、航空其它领域:
轻型飞机、通用航空领域(70-90%) 直升机(50%-80%) 无人机(50%-80%)
25
其它领域
• 民用领域 • 基础设施 • 海洋石油工业 • 新能源工业 • 电子信息领域
26
复合材料应用中的机遇和挑 战!
复合材料在应用中对传统设计理 念所带来的冲击
复合材料的可设计性为材料开发 带来了无限的可能性
27
复合材料应用中的力学问题!
常规材料中存在的力学问题,复合 材料中依然存在,且更复杂;
复合材料中存在很多常规材料中不 存在的力学问题,如层间应力、边 界效应,纤维脱胶、断裂等
复合材料的材料设计与结构设计是 同时进行,因而在复合材料设计、 加工工艺条件相互之间密切相关
– 按使用功能不同,可分为结构复合材料和功能复 合材料等
15
• 复合材料关注的性能
− 强度、刚度、耐腐蚀性、疲劳寿命 − 与温度有关的性能和绝热性等 − 其它性能
16
复合材料的特点
• 可设计性 • 材料与结构的同一性
✓ 复合材料结构设计中包含材料设计
• 材料性能对复合工艺的依赖性 • 复合材料具有各向异性和非均质性的力学
• (美国麻省理工学院材料科学与工程系教授J. P. Clark, 1985)
• 以碳纤维、碳化硅纤维、氧化铝纤维、硼纤维、芳纶 纤维、高密度聚乙烯纤维等高性能增强材料,并使用 高性能树脂、金属与陶瓷等为基体,制成的具有比玻 璃纤维复合材料更好性能的先进复合材料
12
• “到2020年,只有复合材料才有潜力获得20-25% 的性能提升,其中陶瓷基和聚合物基复合材料的 密度、刚度、强度、韧性和抗高温能力都可能有 如此大的改善,而被列为最优先发展的材料”。
– 美国国防部委托国家科学研究院发表的“面向21世纪 国防需求的材料研究”报告指出
13
• 复合材料包括三要素:
• 基体材料 • 增强相 • 复合方式(界面结合形式)
14
• 复合材料的分类
– 按增强剂形状不同,可分为颗粒、连续纤维、短 纤维、弥散晶须、层状、骨架或网状、编织体增 强复合材料等
– 按照基体材料的不同,复合材料包括聚合物基复 合材料、金属基复合材料、陶瓷基复合材料、碳/ 碳复合材料等