复合材料力学ppt
合集下载
第7章复合材料力学的几个专题课件

σmax σ
l<l0
l=l0
作用在短纤维上的平均拉应力为
L >l0
l/2
1l l0
fd lf,m a 1 x1 ll0
l l0
β为图中l0/2线段上的面积与(σf,max乘以l0/2积)之比值。 当基体为理想塑性材料时,纤维上的拉应力从末端为零线形增大,则β=1/2,因此
• 对于纵向弹性模量,也可使用混合定律。
2.非连续金属基复合材料的强度
• 混合定律应用于短纤维(包括晶须)时, 应考虑长度对直径比L/d和基体抗剪强度。
• 短纤维长度不同时,最终表达式不同。
– 若纤维长度L小于临界长度Lc,则纤维的最大应 力达不到纤维的平均强度,纤维不会断裂,破 坏是由于界面或基体破坏所造成的。
Hale Waihona Puke 7.2.2 短纤维复合材料强度预测
• 复合材料力学行为的核心:基体与增强体 进行载荷分配。
• 混合定律: 外加载荷等于基体和增强体按体积平均载 荷的总和。
Aff (1f)M
1.连续纤维增强金属基复合材料的强度
• 主要靠连续纤维承受外加载荷 • 金属基体作为传递和分散载荷的媒体 • 纤维增强金属基复合材料的破坏,主要是由
– 若纤维长度L大于临界长度Lc,纤维的应力达到 平均强度时,材料开始断裂。
• 短纤维的增强作用不如连续纤维有效,因 此短纤维的f’比连续纤维的高。
3.颗粒增强金属基复合材料的强度 • 强化机制是弥散强化 • 复合材料破坏从颗粒界面开始,表现为界
面破坏或颗粒脱落
• 切应力导致颗粒破坏,引起材料变型
单向复合材料及铝合金的S-N曲线 1-Kevlar-49/环氧;2-硼纤维/环氧;3-S玻璃纤维/环
复合材料力学性能ppt课件

低分子是瞬变过程
(10-9 ~ 10-10 秒)
各种运动单元的运动需要 克服内摩擦阻力,不可能
瞬时完成。
高分子是松弛过程
运动单元多重性:
键长、键角、侧基、支链、 链节、链段、分子链
需要时间
( 10-1 ~ 10+4 秒)
.
8
Tg 粘流态
Tf
Td
Tf ~ Td
分解温 度
(1)分子运动机制:整链分子产生相对位移
应变硬化
E D A
D A
O A
B
y
图2.4 非晶态聚合物的应力. -应变曲线(玻璃态)
20
2.2 高分子材料的力学性能
.
21
2.2 高分子材料的力学性能
序号 类型
1
2
硬而脆 硬而强
3 强而韧
4 软而韧
5 软而弱
曲线
模量
高
高
高
低
低
拉伸强度
中
高
高
中
低
断裂伸长率 小
中
大
很大
中
断裂能
小
中
大
大
小
F
F
A0
一点弯曲
三点弯曲
均匀压缩 体积形变 压缩应变
F
扭转
F
.
17
2.2 高分子材料的力学性能
应力-应变曲线 Stress-strain curve
标准哑 铃型试
样
实验条件:一定拉伸速率和温度
.
电子万能材料试验机
18
2.2 高分子材料的力学性能
图2.3 高分子材料三种典型的应力-应变曲线
.
19
复合材料的力学性能

18
3
三、复合材料的性能特点
1、高比强度、比弹性模量; 2、各向异性; 3、抗疲劳性能好; 4、减振性能好; 5、可设计性强。
4
四、结构设计原理
1、层次结构 一次结构(单层),不产生新相; 二次结构(铺层)有新相产生;能较好地过 渡; 三次结构(多层)形成多个铺层。 2、连续纤维与非连续纤维增强 连续纤维增强 方向性明显,性能受纤维的 粗细、数量、排列的影响。 非连续纤维增强 纤维的长度与直径之比 L/d,提高剪切强度。 返回
1 Vf Vm I: 1 Gc G f Gm (式11 - 20) 上限 下限
II II: GC G f Vf G m Vm (式11 - 26) II 合 成:G c (1 c )G 1 CG c C (式11 - 27)
9
4、泊松比υ
纵向泊松比
LT
横向泊松比
2
二、材料复合的物理冶金基础
1、界面与界面反应
界面上反应热力学与动力学: 相应温度下反应的可能性;反应常数;反应速度常数。 固溶与化合反应: 原子扩散,形成浓度不同的固溶体;新化合物。 过渡层的出现:
2、强化理论
第二相强化、弥散强化;形变带强化。 断裂及其机理: 裂纹的萌生及扩展;断裂。 聚合强度的作用。
14
二、弹性模量
弹性模量计算公式(式11-61)(式11-62)(式11-63)
三、强度
按混合定律计算。 用纤维的平均应力代替(11-39)中的纤维抗拉强度。 返回
15
§11.4 复合材料的断裂、冲击和疲劳
一、断裂
1、损伤累积机理 裂纹萌生:缺陷处 扩展: 2、非累积损伤机理 ①接力破坏 ②脆性粘接断裂机理 ③最薄弱环节破坏机理 3、复合材料的破坏形式 ①纤维断裂 ②基体变形和开裂 ③纤维脱胶 ④纤维拨出
第8章复合材料力学性能

1.76g/cm3);
➢强度高,拉伸强度为3.62GPa; ➢模量高于GF,为125GPa; ➢韧性好,断裂伸长率为2.5%; ➢缺点:表面惰性大,与树脂界面粘结性能差,抗压、抗
扭曲性能差。
14
14
基体材料
① 基体材料选择三原则:
第一,基体材料本身力学性能较好,如有较高的内聚强 度、弹性模量;与增强纤维有相适应的断裂伸长率; 第二,对增强材料有较好的润湿能力和粘结力,保证良 好的界面粘结; 第三,工艺性优良,成型和固化方法与条件简单,固化 收缩率低。
Ⅱ型CF(高强型): 强度>3GPa; 模量为230~270GPa; 断裂伸长率为0.5~1%
联碳化合物公司P-140 型CF: 模量高达966GPa
东丽公司T1000型CF: 强度达到7.05GPa; 模量为295GPa;
13
13
③ 芳纶的力学特性
➢以Kevlar-49为代表的芳纶是一种高模量有机纤维; ➢密度小(1.44g/cm3,GF为2.54g/cm3,T300为
17
17
8.2.1 纵向拉伸性能 (1)纵向拉伸应力σL 、拉伸模量EL
单向纤维复合材料纵向拉伸加载示意图和单向板纵向拉伸 简化力学模型图如下: PL = Pf + Pm
Pf 、 Pm分别为纤维(fibre)和基体(matrix)承受的载荷
18
18
当用应力表示
PL = Pf + Pm
σL AL = σf Af + σm Am
单向(纤维增强)复合材料 双向(正交纤维)复合材料 多向(纤维增强)复合材料 三向(正交纤维增强)复合材料 短纤维增强复合材料
4
4
(1)单向(纤维增强)复合材料
➢强度高,拉伸强度为3.62GPa; ➢模量高于GF,为125GPa; ➢韧性好,断裂伸长率为2.5%; ➢缺点:表面惰性大,与树脂界面粘结性能差,抗压、抗
扭曲性能差。
14
14
基体材料
① 基体材料选择三原则:
第一,基体材料本身力学性能较好,如有较高的内聚强 度、弹性模量;与增强纤维有相适应的断裂伸长率; 第二,对增强材料有较好的润湿能力和粘结力,保证良 好的界面粘结; 第三,工艺性优良,成型和固化方法与条件简单,固化 收缩率低。
Ⅱ型CF(高强型): 强度>3GPa; 模量为230~270GPa; 断裂伸长率为0.5~1%
联碳化合物公司P-140 型CF: 模量高达966GPa
东丽公司T1000型CF: 强度达到7.05GPa; 模量为295GPa;
13
13
③ 芳纶的力学特性
➢以Kevlar-49为代表的芳纶是一种高模量有机纤维; ➢密度小(1.44g/cm3,GF为2.54g/cm3,T300为
17
17
8.2.1 纵向拉伸性能 (1)纵向拉伸应力σL 、拉伸模量EL
单向纤维复合材料纵向拉伸加载示意图和单向板纵向拉伸 简化力学模型图如下: PL = Pf + Pm
Pf 、 Pm分别为纤维(fibre)和基体(matrix)承受的载荷
18
18
当用应力表示
PL = Pf + Pm
σL AL = σf Af + σm Am
单向(纤维增强)复合材料 双向(正交纤维)复合材料 多向(纤维增强)复合材料 三向(正交纤维增强)复合材料 短纤维增强复合材料
4
4
(1)单向(纤维增强)复合材料
复合材料力学课件第03章单层复合材料的宏观力学]分析
![复合材料力学课件第03章单层复合材料的宏观力学]分析](https://img.taocdn.com/s3/m/d7aa7d614028915f814dc231.png)
正交各向异性单向板通常受到的是面内应
力(即1 , 2 , 12)的作用,此时的应力—应变
关系为:
1 S11 S12 S13 0 0 0 1
2
S
21
S 22
S 23
0
0
0
2
332
S
31
0
S 32 0
S 33 0
0 S44
0 0
0 0
332
13
0
0
0
0
S55
0
13
1
E1
S
21
E1
12
E2 1
E2
0
0
其中: 12 21
E2 E1
0
0
1
G12
平面应力状态(3)
Pl.状态下的刚度矩阵为:[]=[Q][]
Q11 Q12 0
Q S1 Q12 Q22
0
—有四个独立参数
0 0 Q66
Q11
1
E1
12 21
Q22
1
E2
1221
Q12
Q21
1 2
平面应变状态(4)
0 0
S13
0
0 0
S 23 0 0
1 2
S 33 0 0
0 S44 0
0 0
03
S55
0
S13
03
S 33 0
0
0
S23
S 33 0
0
1 2
12 S66 12
平面应变状态(5)
1
2
12
m2
T
1
n2
m n
n2 m2 mn
第十一章复合材料的力学性能.

8/9/2021
21
在第I阶段,纤维和基体都处于弹性变形状态,复合 材料也处于弹性变形状态,且
8/9/2021
22
8/9/2021
23
复合材料进入变形第II阶段时,纤维仍处于弹性状态, 但基体已产生塑性变形,此时复合材料的应力为:
由于载荷主要由纤维承担,所以随着变形的增加,纤 维载荷增加较快,当达到纤维抗拉强度时,纤维破断, 此时基体不能支持整个复合材料载荷,复合材料随之 破坏。
(2)剪切型 纤维之间同向弯曲,基体
主要产生剪切变形,这种 屈曲模式较为常见。
8/9/2021
27
复合材料沿纤维方向受压时,可以认为纤维在基体内的 承力形式像弹性杆。
假设基体仅提供横向支持,载荷由纤维均摊,复合材料 的抗压强度由纤维在基体内的微屈曲临界应力控制。
将单向纤维复合材料简化成纤维和基体薄片相间粘接的 纵向受压杆件,当外载荷增至一定值后,纤维开始失稳, 产生屈曲。
纤维复合材料的比模量大,因而它的自振频率很高,在加载 速率下不容易出现因共振而快速断裂的现象。
同时复合材料中存在大量纤维,与基体的界面,由于界面对 振动有反射和吸收作用,所以复合材料的振动阻尼强,即使 激起振动也会很快衰减。
(5) 可设计性强
通过改变纤维、基体的种类和相对含量,纤维集合形式及排 布方式等可满足复合材料结构和性能的设计要求。
第十一章 复合材料的力学性能
8/9/2021
1
20世纪60年代以来,航天、航空、电子、汽车等高技术领 域的迅速发展,对材料性能的要求日益提高,单一的金属、 陶瓷、高分子材料已难以满足迅速增长的性能要求。
为了克服单一材料性能上的局限性,人们越来越多的根据 构件的性能要求和工况条件,选择两种或两种以上化学、 物理性质不同的材料,按一定的方式、比例、分布组合成 复合材料,使其具有单一材料所无法达到的特殊性能或综 合性能。
复合材料力学课件第01章 绪论

复合材料力学
教材:沈观林,复合材料力学,清华 教材:沈观林,复合材料力学, 大学出版社, 大学出版社,2006 学时: 学时:32h。 1-8周,最后一次课考试 。 周
第一章
§1.1 概述
绪论
§1.2 连续纤维复合材料的构造 §1.3 复合材料的特点 §1.4 复合材料的应用 §1.5 复合材料的力学分析方法
应用于航空(1)
航空工程中应用复合材料的例子 如表1-7: 如表1 碳纤维树脂基发动机叶片,玻璃钢 直升机飞机螺旋桨,非金属蜂窝夹层雷 达罩,CF/GF复合材料、中间硼纤维增强 蜂窝结构飞机机身,平尾,水平安定面, 垂直安定面,石墨纤维复合材料喷气发 动机,CF/KF混杂复合材料整流罩、主起 落架舱门等。AD200/400,基本上是高强 玻璃纤维/环氧复合材料制造的。
特点二
使用复合材料, 使用复合材料,可使设计提前到材料 的制造阶段, 的制造阶段,以最有效地发挥材料的潜力 和作用。例如: 和作用。例如:
图5 可设计复合材料结构
特点三
与金属材料相比, 与金属材料相比,复合材料的抗疲劳 断裂性能要好。一般而言, 断裂性能要好。一般而言, 复合材料 :σe ≈60%σb % 金属材料: 金属材料: σe ≈30%σb %
§1.4
§1.4 复合材料的应用
复合材料是各国目前都正在大力发展 的新型材料,使得其性能不断提高, 的新型材料,使得其性能不断提高,同时 在先进结构上也得到了越来越广泛的应用。 在先进结构上也得到了越来越广泛的应用。 1∘在航空结构上的应用 2∘在航天工程中的应用 3∘在车辆制造业的应用 4∘其他用途
层合板结构
图4 叠层材料构造形式
层合板的表示
层合板的表示方法是按叠层顺序依次将各铺 的角度写入方括号中, 层(ply)的角度写入方括号中,并用斜杠分隔 的角度写入方括号中 例如: 之。例如:[0/90/45/0/45/90/0]、[30/-30] 、 当有对称面时,可只写一半,并用下标S表 当有对称面时,可只写一半,并用下标 表 示对称。例如: 示对称。例如:[60/0/0/60] → [60/0]s 当有重复铺层时,可用数字下标表示。例如: 当有重复铺层时,可用数字下标表示。例如: [60/60/0/0/60/60] → [602/0]s [30/-30/0/0/-30/30] → [±30/0]s ± [30/0/0/30/30/0/0/30] → [30/0]2s 半重复层合板的表示方法为: 半重复层合板的表示方法为: [-30/60/0/60/-30] → [定义: 其它定义:
教材:沈观林,复合材料力学,清华 教材:沈观林,复合材料力学, 大学出版社, 大学出版社,2006 学时: 学时:32h。 1-8周,最后一次课考试 。 周
第一章
§1.1 概述
绪论
§1.2 连续纤维复合材料的构造 §1.3 复合材料的特点 §1.4 复合材料的应用 §1.5 复合材料的力学分析方法
应用于航空(1)
航空工程中应用复合材料的例子 如表1-7: 如表1 碳纤维树脂基发动机叶片,玻璃钢 直升机飞机螺旋桨,非金属蜂窝夹层雷 达罩,CF/GF复合材料、中间硼纤维增强 蜂窝结构飞机机身,平尾,水平安定面, 垂直安定面,石墨纤维复合材料喷气发 动机,CF/KF混杂复合材料整流罩、主起 落架舱门等。AD200/400,基本上是高强 玻璃纤维/环氧复合材料制造的。
特点二
使用复合材料, 使用复合材料,可使设计提前到材料 的制造阶段, 的制造阶段,以最有效地发挥材料的潜力 和作用。例如: 和作用。例如:
图5 可设计复合材料结构
特点三
与金属材料相比, 与金属材料相比,复合材料的抗疲劳 断裂性能要好。一般而言, 断裂性能要好。一般而言, 复合材料 :σe ≈60%σb % 金属材料: 金属材料: σe ≈30%σb %
§1.4
§1.4 复合材料的应用
复合材料是各国目前都正在大力发展 的新型材料,使得其性能不断提高, 的新型材料,使得其性能不断提高,同时 在先进结构上也得到了越来越广泛的应用。 在先进结构上也得到了越来越广泛的应用。 1∘在航空结构上的应用 2∘在航天工程中的应用 3∘在车辆制造业的应用 4∘其他用途
层合板结构
图4 叠层材料构造形式
层合板的表示
层合板的表示方法是按叠层顺序依次将各铺 的角度写入方括号中, 层(ply)的角度写入方括号中,并用斜杠分隔 的角度写入方括号中 例如: 之。例如:[0/90/45/0/45/90/0]、[30/-30] 、 当有对称面时,可只写一半,并用下标S表 当有对称面时,可只写一半,并用下标 表 示对称。例如: 示对称。例如:[60/0/0/60] → [60/0]s 当有重复铺层时,可用数字下标表示。例如: 当有重复铺层时,可用数字下标表示。例如: [60/60/0/0/60/60] → [602/0]s [30/-30/0/0/-30/30] → [±30/0]s ± [30/0/0/30/30/0/0/30] → [30/0]2s 半重复层合板的表示方法为: 半重复层合板的表示方法为: [-30/60/0/60/-30] → [定义: 其它定义:
复合材料力学第二章2PPT课件

S13S 22
, C 22
S11S 33
S
2 13
S
,
C 23
S 1 2 S 1 3 S S2 3 1 1 S
, C 33
S11S 22 S
S
2 12
C 44
1 S 44
, C 55
1 S 55
, C 66
1 S 66
其中:
S S 1 1 S 2 2 S 3 3 S 1 1 S 2 2 3 S 2 2 S 1 2 3 S 3 3 S 1 2 2 2 S 1 2 S 2 3 S 1 3
S12 0
S11 0
0 2 S11 S12
0 0
0
0
0 0 0 0 0 0
0 0
2S11 S120ຫໍສະໝຸດ 02S11 S12
同样可写出几种特殊材料的刚度矩阵形式及独立常数 个数。
2 S 1 1 S 1 2 2 ( 1 / E / E ) 2 ( 1 ) / E 1 / G
§2-2 正交各向异性材料的工程常数
i j 为应力在i方向作用时在j方向产生横向应变的泊松比
ij
j i
根据柔度矩阵的对称性 Sij S ji
可得: i j j i 正交各向异性材料三个互等关系 Ei E j
由此可见:只要知道3个弹性模量和3个泊松比,就可
以计算出另3个泊松比。所以:有9个独立的工程常数
下面用二维图形简单解释一下应力-应变关系
1 E2
32 E3
0
0
0
S ij
13 E1
23 E2
0
0
1 E3
0
0
1 G 23
0 0
0
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 美国国防部委托国家科学研究院发表的“面向21世纪 国防需求的材料研究”报告指出
• 复合材料包括三要素:
• 基体材料 • 增强相 • 复合方式(界面结合形式)
• 复合材料的分类
– 按增强剂形状不同,可分为颗粒、连续纤维、短 纤维、弥散晶须、层状、骨架或网状、编织体增 强复合材料等
– 按照基体材料的不同,复合材料包括聚合物基复 合材料、金属基复合材料、陶瓷基复合材料、碳/ 碳复合材料等
• (美国麻省理工学院材料科学与工程系教授J. P. Clark, 1985)
• 以碳纤维、碳化硅纤维、氧化铝纤维、硼纤维、芳纶 纤维、高密度聚乙烯纤维等高性能增强材料,并使用 高性能树脂、金属与陶瓷等为基体,制成的具有比玻 璃纤维复合材料更好性能的先进复合材料
• “到2020年,只有复合材料才有潜力获得20-25% 的性能提升,其中陶瓷基和聚合物基复合材料的 密度、刚度、强度、韧性和抗高温能力都可能有 如此大的改善,而被列为最优先发展的材料”。
几何方程
x
u , x
yz
y
v , y
zx
z
w z
,
xy
w y
v z
;
u z
w ; x
v x
u y
.
x
yx
zx
xy y zy
x z
y z
z
变形协调方程
2 x y 2
பைடு நூலகம்
2 y x 2
2 xy xy
2 y z 2
2 z y 2
2 yz yz
2 z x 2
2 x z 2
2 xz zx
• 第二类基本问题
– 在弹性体的全部表面上都给定了位移,要求确 定弹性体内部及表面任意一点的应力和位移
on S :
s
u u*
v v*
w w*
• 第三类基本问题
– 在弹性体的一部分表面上都给定了外力,在 其余的表面上给定了位移,要求确定弹性体 内部及表面任意一点的应力和位移
– 近现代逐步开始主动利用复合材料的功能性
玻璃钢、先进复合材料
天然 复合材料
玻璃钢
先进复合材料 树脂基复合材料 陶瓷基复合材料 金属基复合材料 碳/碳复合材料
智能复合材料 仿生复合材料 功能复合材料 纳米复合材料 生物复合材料 材料复合结构
• 复合材料的内涵不断拓展
– 从宏观尺度的复合到纳米尺度的复合 – 从结构材料到结构功能一体化材料和多功能复
复合材料的应用
国防、航空航天领域——轻质化
增加有效载荷
增加射程和续航能力
减小能耗、降低成本 机动性能和生存能力
降低结构质量 提高结构效率
战略导弹弹头减少1Kg结构 重量,增加射程20Km
战略导弹三级固体火箭 发动机减少1Kg结构重量 ,增加射程16Km
某第三级固体发动机壳体采用碳/ 环氧复合材料后,结构质量由原 来的116千克降为46千克,仅此就
– 按使用功能不同,可分为结构复合材料和功能复 合材料等
• 复合材料关注的性能
− 强度、刚度、耐腐蚀性、疲劳寿命 − 与温度有关的性能和绝热性等 − 其它性能
复合材料的特点
• 可设计性 • 材料与结构的同一性
✓ 复合材料结构设计中包含材料设计
• 材料性能对复合工艺的依赖性 • 复合材料具有各向异性和非均质性的力学
三类基本问题
• 第一类基本问题
– 在弹性体的全部表面上都给定 了外力,要求确定弹性体内部 及表面任意一点的应力和位移
xcons ,x)(yxcons ,y)(zxcons ,z)(Xn xy cons ,x)(ycons ,y)(zycons ,z)(Yn xzcons ,x)(yzcons ,y)(zcons ,z)(Zn
性能特点
复合材料的优点
• 耐疲劳性能好
金属材料疲劳强度极限是其拉伸强度的30%~50%,碳纤维增强树脂基复 合材料的约为70%~80%
• 阻尼减振性能好
基体和纤维界面有较大的吸收振动能量的能力
• 破损安全性好
不会突然丧失承载能力
• 耐化学腐蚀性、电、热性能好
复合材料的缺点
• 界面强度低 • 延展性差,多为脆性材料 • 材料性能的分散性大 • 树脂基复合材料的耐热性较低
各向异性、多相性,内部微结构及其损伤的随 机性,损伤模式的多样性和损伤材料的离散性, 对环境影响的敏感性,材料的可设计性,性能 对制造工艺的依赖性(残余应力,界面结合的影 响等等)
复合材料力学的认识
固体力学:结构受力分析与材料的力学性能 ➢ 弹性力学 ➢ 材料力学
材料学:从材料的物理、化学性质、材料工艺、 结构、组分的角度 ➢ 复合材料学
国防、航空其它领域:
轻型飞机、通用航空领域(70-90%) 直升机(50%-80%) 无人机(50%-80%)
其它领域
• 民用领域 • 基础设施 • 海洋石油工业 • 新能源工业 • 电子信息领域
复合材料应用中的机遇和挑 战!
复合材料在应用中对传统设计理 念所带来的冲击
复合材料的可设计性为材料开发 带来了无限的可能性
• 自然界中普遍存在着天然复合材料
– 树木、骨骼、草茎与泥土复合等 – 天然材料几乎都是复合材料,采取复合的形式
是自然的规律
• 人类利用复合材料的历史经历了古代、 近代和现代三个阶段
– 房屋、纸张……
六千年以前,陕西西安半坡村的仰韶文化住房遗址 说明我国古人已经开始用草混在泥土中筑墙和铺地, 这种草泥就是最原始的纤维增强复合材料,它与现 代高性能纤维增强复合材料非常相似
80 60 40 20
0 0
0,02
0,04
0,06
True strain
各角度弹性模量预测结果对比
各角度弹塑性曲线的预测结果对比
0癬exp 15癬exp 30癬exp 45癬exp 60癬exp 90癬exp 0?Digi 15癬Digi 30癬Digi 45癬Digi 60癬Digi 90癬Digi
x 1 y 2 应力 : z 3 yz 4 zx 5 xy 6
x 1
y 2
应变 :
z 3
yz 2 yz 4
zx 2zx 5
xy 2 xy 6
C
物理方程 同样,可用应力分量表示应变分量:
S
[S]=[C]-1—柔度矩阵。 同样, [S]也是对称矩阵。
复合材料力学
第一部分 复合材料力学基础 第一章 绪 论
理论力学、弹性力学、材料力学 ✓运动、变形、受力……
✓塑性变形、损伤失效…… ✓均质、各向同性、线弹性……
复合材料力学? 复合材料?
金属材料 的高峰
四分天下
• 人类历史上的材料应用的四次重大突 破
– 天然材料:新石器时代 – 人工材料:铜器和铁器时代 – 合成材料:塑料、橡胶 – 复合材料:玻璃纤维
x y
z
yz
C C
31 41
C 32 C 42
C 33 C 43
C 34 C 44
C 35 C 45
C C
36 46
z yz
zx
xy
C C
51 61
C 52 C 62
C 53 C 63
C 54 C 64
C 55 C 65
C C
56 66
zx xy
记作{}=[C]{}, [C]—刚度矩阵
将导弹射程提高1000Km以上
国外航空复合材料发展历史
第一阶段
受载不大的
(70年代初完成) 简单零部件
舱门、口盖、整流罩、方 向舵、襟副翼、雷达罩、
起落架舱门
第二阶段
承力大
(80年代初开始) 规模大
尾翼(垂尾、平尾)、前机身段、机翼 ➢F-14 硼/环氧复合材料平尾 ➢F/A-18 机翼 用量13%
由于本身发展的需要,要求力学在微结构的水平 上来研究材料的行为.通过研究微结构的变形、损 伤和破坏对材料宏观性能的影响来指出改进材料 的方向和途径
与其它材料相比,复合材料对力学的这种需求显 得更为迫切
力学工作者对自己提出的要求是同时具备理论、 实验和计算机计算的三个方面的本领,才能应付 复合材料发展中所提出的问题.这些问题
合材料 – 从简单复合到非线性复合效应的复合 – 从复合材料到复合结构 – 从机械设计到仿生设计
•复合材料的定义?
• 复合材料是指由有机高分子、无机非金属或金属等几类不 同材料通过复合工艺组合而成的新型材料,它既能保留原 有组分材料的主要特色,又通过材料设计使各组分的性能 互相补充并彼此关联,从而获得新的优越性能,与一般材 料的简单混合有本质的区别
✓ 材料数据 • CNT电导率: 200S/m • 界面相电导率:150S/m(用于模拟 隧道效应)
• 数值基体导电性:1E-12S/m
第一部分 复合材料力学基础 第二章 各向异性弹性力学
§2.1 弹性力学基础 §2.2 各向异性弹性体的应力-应变关系 §2.3 正交各向异性材料的工程弹性常数
§2.1 弹性力学基础
– (1994年出版,师昌绪主编《材料大辞典》)
• 由两种以上材料组合而成的、物理和化学性质与原材料不同、但 又保持某些有效功能
• 一般一种材料作为基体,其他材料作为增强相 • 一定尺度上的组合
• 先进复合材料(Advanced Composite Materials, 简称ACM)是指加进了新的高性能纤维的而区别 于“低技术”的玻璃纤维增强塑料的复合材料
0,08
多孔陶瓷的脆性断裂研究 ✓ 脆性损伤演化过程(孔隙率30%)
✓ 孔隙率对脆性损伤的影响(孔隙率50%-60%-70%)
玻璃微珠部分替代玻纤纤维
✓ 保证材料刚度下降5%以内 ✓ 材料成本下降20%,工艺时间下降29%
• 复合材料包括三要素:
• 基体材料 • 增强相 • 复合方式(界面结合形式)
• 复合材料的分类
– 按增强剂形状不同,可分为颗粒、连续纤维、短 纤维、弥散晶须、层状、骨架或网状、编织体增 强复合材料等
– 按照基体材料的不同,复合材料包括聚合物基复 合材料、金属基复合材料、陶瓷基复合材料、碳/ 碳复合材料等
• (美国麻省理工学院材料科学与工程系教授J. P. Clark, 1985)
• 以碳纤维、碳化硅纤维、氧化铝纤维、硼纤维、芳纶 纤维、高密度聚乙烯纤维等高性能增强材料,并使用 高性能树脂、金属与陶瓷等为基体,制成的具有比玻 璃纤维复合材料更好性能的先进复合材料
• “到2020年,只有复合材料才有潜力获得20-25% 的性能提升,其中陶瓷基和聚合物基复合材料的 密度、刚度、强度、韧性和抗高温能力都可能有 如此大的改善,而被列为最优先发展的材料”。
几何方程
x
u , x
yz
y
v , y
zx
z
w z
,
xy
w y
v z
;
u z
w ; x
v x
u y
.
x
yx
zx
xy y zy
x z
y z
z
变形协调方程
2 x y 2
பைடு நூலகம்
2 y x 2
2 xy xy
2 y z 2
2 z y 2
2 yz yz
2 z x 2
2 x z 2
2 xz zx
• 第二类基本问题
– 在弹性体的全部表面上都给定了位移,要求确 定弹性体内部及表面任意一点的应力和位移
on S :
s
u u*
v v*
w w*
• 第三类基本问题
– 在弹性体的一部分表面上都给定了外力,在 其余的表面上给定了位移,要求确定弹性体 内部及表面任意一点的应力和位移
– 近现代逐步开始主动利用复合材料的功能性
玻璃钢、先进复合材料
天然 复合材料
玻璃钢
先进复合材料 树脂基复合材料 陶瓷基复合材料 金属基复合材料 碳/碳复合材料
智能复合材料 仿生复合材料 功能复合材料 纳米复合材料 生物复合材料 材料复合结构
• 复合材料的内涵不断拓展
– 从宏观尺度的复合到纳米尺度的复合 – 从结构材料到结构功能一体化材料和多功能复
复合材料的应用
国防、航空航天领域——轻质化
增加有效载荷
增加射程和续航能力
减小能耗、降低成本 机动性能和生存能力
降低结构质量 提高结构效率
战略导弹弹头减少1Kg结构 重量,增加射程20Km
战略导弹三级固体火箭 发动机减少1Kg结构重量 ,增加射程16Km
某第三级固体发动机壳体采用碳/ 环氧复合材料后,结构质量由原 来的116千克降为46千克,仅此就
– 按使用功能不同,可分为结构复合材料和功能复 合材料等
• 复合材料关注的性能
− 强度、刚度、耐腐蚀性、疲劳寿命 − 与温度有关的性能和绝热性等 − 其它性能
复合材料的特点
• 可设计性 • 材料与结构的同一性
✓ 复合材料结构设计中包含材料设计
• 材料性能对复合工艺的依赖性 • 复合材料具有各向异性和非均质性的力学
三类基本问题
• 第一类基本问题
– 在弹性体的全部表面上都给定 了外力,要求确定弹性体内部 及表面任意一点的应力和位移
xcons ,x)(yxcons ,y)(zxcons ,z)(Xn xy cons ,x)(ycons ,y)(zycons ,z)(Yn xzcons ,x)(yzcons ,y)(zcons ,z)(Zn
性能特点
复合材料的优点
• 耐疲劳性能好
金属材料疲劳强度极限是其拉伸强度的30%~50%,碳纤维增强树脂基复 合材料的约为70%~80%
• 阻尼减振性能好
基体和纤维界面有较大的吸收振动能量的能力
• 破损安全性好
不会突然丧失承载能力
• 耐化学腐蚀性、电、热性能好
复合材料的缺点
• 界面强度低 • 延展性差,多为脆性材料 • 材料性能的分散性大 • 树脂基复合材料的耐热性较低
各向异性、多相性,内部微结构及其损伤的随 机性,损伤模式的多样性和损伤材料的离散性, 对环境影响的敏感性,材料的可设计性,性能 对制造工艺的依赖性(残余应力,界面结合的影 响等等)
复合材料力学的认识
固体力学:结构受力分析与材料的力学性能 ➢ 弹性力学 ➢ 材料力学
材料学:从材料的物理、化学性质、材料工艺、 结构、组分的角度 ➢ 复合材料学
国防、航空其它领域:
轻型飞机、通用航空领域(70-90%) 直升机(50%-80%) 无人机(50%-80%)
其它领域
• 民用领域 • 基础设施 • 海洋石油工业 • 新能源工业 • 电子信息领域
复合材料应用中的机遇和挑 战!
复合材料在应用中对传统设计理 念所带来的冲击
复合材料的可设计性为材料开发 带来了无限的可能性
• 自然界中普遍存在着天然复合材料
– 树木、骨骼、草茎与泥土复合等 – 天然材料几乎都是复合材料,采取复合的形式
是自然的规律
• 人类利用复合材料的历史经历了古代、 近代和现代三个阶段
– 房屋、纸张……
六千年以前,陕西西安半坡村的仰韶文化住房遗址 说明我国古人已经开始用草混在泥土中筑墙和铺地, 这种草泥就是最原始的纤维增强复合材料,它与现 代高性能纤维增强复合材料非常相似
80 60 40 20
0 0
0,02
0,04
0,06
True strain
各角度弹性模量预测结果对比
各角度弹塑性曲线的预测结果对比
0癬exp 15癬exp 30癬exp 45癬exp 60癬exp 90癬exp 0?Digi 15癬Digi 30癬Digi 45癬Digi 60癬Digi 90癬Digi
x 1 y 2 应力 : z 3 yz 4 zx 5 xy 6
x 1
y 2
应变 :
z 3
yz 2 yz 4
zx 2zx 5
xy 2 xy 6
C
物理方程 同样,可用应力分量表示应变分量:
S
[S]=[C]-1—柔度矩阵。 同样, [S]也是对称矩阵。
复合材料力学
第一部分 复合材料力学基础 第一章 绪 论
理论力学、弹性力学、材料力学 ✓运动、变形、受力……
✓塑性变形、损伤失效…… ✓均质、各向同性、线弹性……
复合材料力学? 复合材料?
金属材料 的高峰
四分天下
• 人类历史上的材料应用的四次重大突 破
– 天然材料:新石器时代 – 人工材料:铜器和铁器时代 – 合成材料:塑料、橡胶 – 复合材料:玻璃纤维
x y
z
yz
C C
31 41
C 32 C 42
C 33 C 43
C 34 C 44
C 35 C 45
C C
36 46
z yz
zx
xy
C C
51 61
C 52 C 62
C 53 C 63
C 54 C 64
C 55 C 65
C C
56 66
zx xy
记作{}=[C]{}, [C]—刚度矩阵
将导弹射程提高1000Km以上
国外航空复合材料发展历史
第一阶段
受载不大的
(70年代初完成) 简单零部件
舱门、口盖、整流罩、方 向舵、襟副翼、雷达罩、
起落架舱门
第二阶段
承力大
(80年代初开始) 规模大
尾翼(垂尾、平尾)、前机身段、机翼 ➢F-14 硼/环氧复合材料平尾 ➢F/A-18 机翼 用量13%
由于本身发展的需要,要求力学在微结构的水平 上来研究材料的行为.通过研究微结构的变形、损 伤和破坏对材料宏观性能的影响来指出改进材料 的方向和途径
与其它材料相比,复合材料对力学的这种需求显 得更为迫切
力学工作者对自己提出的要求是同时具备理论、 实验和计算机计算的三个方面的本领,才能应付 复合材料发展中所提出的问题.这些问题
合材料 – 从简单复合到非线性复合效应的复合 – 从复合材料到复合结构 – 从机械设计到仿生设计
•复合材料的定义?
• 复合材料是指由有机高分子、无机非金属或金属等几类不 同材料通过复合工艺组合而成的新型材料,它既能保留原 有组分材料的主要特色,又通过材料设计使各组分的性能 互相补充并彼此关联,从而获得新的优越性能,与一般材 料的简单混合有本质的区别
✓ 材料数据 • CNT电导率: 200S/m • 界面相电导率:150S/m(用于模拟 隧道效应)
• 数值基体导电性:1E-12S/m
第一部分 复合材料力学基础 第二章 各向异性弹性力学
§2.1 弹性力学基础 §2.2 各向异性弹性体的应力-应变关系 §2.3 正交各向异性材料的工程弹性常数
§2.1 弹性力学基础
– (1994年出版,师昌绪主编《材料大辞典》)
• 由两种以上材料组合而成的、物理和化学性质与原材料不同、但 又保持某些有效功能
• 一般一种材料作为基体,其他材料作为增强相 • 一定尺度上的组合
• 先进复合材料(Advanced Composite Materials, 简称ACM)是指加进了新的高性能纤维的而区别 于“低技术”的玻璃纤维增强塑料的复合材料
0,08
多孔陶瓷的脆性断裂研究 ✓ 脆性损伤演化过程(孔隙率30%)
✓ 孔隙率对脆性损伤的影响(孔隙率50%-60%-70%)
玻璃微珠部分替代玻纤纤维
✓ 保证材料刚度下降5%以内 ✓ 材料成本下降20%,工艺时间下降29%