高三物理:有界磁场习题汇总专题
高三物理粒子在有界磁场中运动试题

高三物理粒子在有界磁场中运动试题1.在一个边界为等边三角形的区域内,存在一个方向垂直于纸面向里的匀强磁场,在磁场边界上的P点处有一个粒子源,发出比荷相同的三个粒子a、b、c(不计重力)沿同一方向进入磁场,三个粒子通过磁场的轨迹如图所示,用ta 、tb、tc分别表示a、b、c通过磁场的时间;用ra、rb、rc分别表示a、b、c在磁场中的运动半径,则下列判断正确的是()A.ta =tb>tcB.tc>tb>taC.rc>rb>raD.rb>ra>rc【答案】AC【解析】由粒子的运动轨迹可知,三个粒子运动的轨道半径的关系为rc >rb>ra,选项C正确,D错误;由,由于三种粒子的比荷相同,故周期相同,由图可知ab两粒子运动的圆心角相等且大于c粒子的圆心角,故根据可知ta =tb>tc,选项A正确,B错误,故选AC。
【考点】带电粒子在匀强磁场中的运动.2.如图在第一象限存在匀强磁场,第四象限存在正交电场和磁场,磁感应强度均为B,一个电子从y轴上的c点平行x轴射入磁场,经x轴的P点沿PC直线射出第四象限,已知AC的长度为L;∠CAP=30°;电子质量为m,电量为q。
求:(1)电子射入磁场时的速度v;(2)电子在第一象限运动时间;(3)电场强度E的大小和方向;(4)电子在第四象限运动时间.【答案】(1)(2)(3),30°(4)【解析】分析如图(1)设电子在第一象限做圆周运动的半径为R,由几何知识得∠ACP=30°OC=2OP又OP=R,OC=L-R;(2分)所以L-R=2R;R=L(2分)由qvB=得v=(2分)(2)由几何知识得,电子在第一象限做圆周运动转过的圆心角α=120°=π(2分)=(2分)电子在第一象限运动时间t1(3)由qE=qvB得E=vB=(2分)由二力平衡知,电场强度的方向在纸面内斜向下与x轴成30°(2分)(4)电子在第四象限运动时间为【考点】考查了带电粒子在电磁场中的运动3.(4分)(2011•海南)空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是()A.入射速度不同的粒子在磁场中的运动时间一定不同B.入射速度相同的粒子在磁场中的运动轨迹一定相同C.在磁场中运动时间相同的粒子,其运动轨迹一定相同D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大【答案】BD【解析】带电粒子在磁场中由洛伦兹力提供向心力做匀速圆周运动,虽然电量、质量不同,但比荷相同,所以运动圆弧对应的半径与速率成正比.它们的周期总是相等,因此运动的时间由圆心角来决定.解:A、入射速度不同的粒子,若它们入射速度方向相同,则它们的运动也一定相同,虽然轨迹不一样,但圆心角却相同.故A错误;B、在磁场中半径,运动圆弧对应的半径与速率成正比,故B正确;C、在磁场中运动时间:(θ为转过圆心角),虽圆心角可能相同,但半径可能不同,所以运动轨迹也不同,故C错误;D、由于它们的周期相同的,在磁场中运动时间越长的粒子,其轨迹所对的圆心角也一定越大.故D正确;故选:BD点评:带电粒子在磁场中运动的题目解题步骤为:定圆心、画轨迹、求半径.4.如图,虚线MN上方存在方向垂直纸面向里的匀强磁场B1,带电粒子从边界MN上的A点以速度vo垂直磁场方向射人磁场,经磁场偏转后从边界MN上的B点射出。
有界磁场专题复习

①向心力由洛伦兹力提v 2qvB =mR②轨道半径公R =mvqB无关。
a 十卡a 十t=T 或t=T3602K)作为辅助。
圆心的确定,通常有以下两种方法。
§专题有界磁场一、明确带电粒子在磁场中的受力特点 1. 产生洛伦兹力的条件:① 电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ② 电荷的运动速度方向与磁场方向不平行.2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=quB ;当电荷运动方向与磁场方向有夹角8时,洛伦兹力f=quB •sin 03. 洛伦兹力的方向:洛伦兹力方向用左手定则判断4. 洛伦兹力不做功.二、明确带电粒子在匀强磁场中的运动规律 带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,0=0°或180°时,带电粒子粒子在磁场中以速度u 做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即0=90°时,带电粒子在匀强磁场中以入射速度u 做匀速圆周运动.2兀R2K mmT ==—③周期:vqB,可见只与q有关,与三、充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1.“带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角a 之间的关系①已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两2013〜2014学年第一学期高二物理学案(理科)选修3-1条直线的交点就是圆弧轨道的圆心(如图9-1中P为入射点,M为出射点)。
带电粒子在有界磁场中的运动 经典练习(含答案详解)

带电粒子在有界磁场中的运动图38101.半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直磁场方向射入磁场中,并从B 点射出.∠AOB =120°,如图3810所示,则该带电粒子在磁场中运动的时间为( )A.2πr 3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 0 答案 D解析 从AB 弧所对圆心角θ=60°,知t =16 T =πm 3qB.但题中已知条件不够,没有此选项,另想办法找规律表示t .由匀速圆周运动t =ABv 0,从题图分析有R =3r ,则:AB =R ·θ=3r ×π3=33πr ,则t =AB v 0=3πr 3v 0.D 正确. 带电粒子在复合场中的运动图38112.一正电荷q 在匀强磁场中,以速度v 沿x 正方向进入垂直纸面向里的匀强磁场中,磁感应强度为B ,如图3811所示,为了使电荷能做直线运动,则必须加一个电场进去,不计重力,此电场的场强应该是( )A .沿y 轴正方向,大小为Bv qB .沿y 轴负方向,大小为BvC .沿y 轴正方向,大小为v BD .沿y 轴负方向,大小为Bv q答案 B解析 要使电荷能做直线运动,必须用电场力抵消洛伦兹力,本题正电荷受洛伦兹力的方向沿y 轴正方向,故电场力必须沿y 轴负方向且qE =Bqv ,即E =Bv .带电粒子在组合场中的运动图38123.如图3812所示,在平面直角坐标系xOy 内,第Ⅰ象限存在沿y 负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电的粒子,从y 轴正半轴上y =h 处的M 点,以速度v 0垂直于y 轴射入电场,经x 轴上x =2h 处的P 点进入磁场,最后以垂直于y 轴的方向射出磁场.不计粒子重力.求:(1)电场强度的大小E ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从进入电场到离开磁场经历的总时间t .答案 见解析解析 粒子的运动轨迹如右图所示(1)设粒子在电场中运动的时间为t 1则有2h =v 0t 1,h =12at 21根据牛顿第二定律得Eq =ma求得E =mv 202qh.(2)设粒子进入磁场时速度为v ,在电场中,由动能定理得Eqh =12mv 2-12mv 20又Bqv =m v 2r, 解得r =2mv 0Bq(3)粒子在电场中运动的时间t 1=2h v 0粒子在磁场中运动的周期T =2πr v =2πm Bq设粒子在磁场中运动的时间为t 2,t 2=38T ,求得t =t 1+t 2=2h v 0+3πm 4Bq.(时间:60分钟)题组一 带电粒子在匀强磁场中的匀速圆周运动1.(2014·临沂高二检测)运动电荷进入磁场(无其他场)中,可能做的运动是( )A .匀速圆周运动B .平抛运动C .自由落体运动D .匀速直线运动答案 AD解析 若运动电荷平行磁场方向进入磁场,则电荷做匀速直线运动,若运动电荷垂直磁场方向进入磁场,则电荷做匀速圆周运动,A 、D 正确;由于电荷的质量不计,故电荷不可能做平抛运动或自由落体运动.B 、C 错误.图38132.如图3813所示,带负电的粒子以速度v 从粒子源P 处射出,若图中匀强磁场范围足够大(方向垂直纸面),则带电粒子的可能轨迹是( )A .aB .bC .cD .d答案 BD解析 粒子的出射方向必定与它的运动轨迹相切,故轨迹a 、c 均不可能,正确答案为B 、D.图38143.(2013·孝感高二检测)如图3814所示,在x >0,y >0的空间有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B ,现有四个质量及电荷量均相同的带电粒子,由x 轴上的P 点以不同的初速度平行于y 轴射入此磁场,其出射方向如图所示,不计重力的影响,则( )A .初速度最大的粒子是沿①方向射出的粒子B .初速度最大的粒子是沿②方向射出的粒子C .在磁场中运动时间最长的是沿③方向射出的粒子D .在磁场中运动时间最长的是沿④方向射出的粒子答案 AD解析 显然图中四条圆弧中①对应的半径最大,由半径公式R =mv Bq可知,质量和电荷量相同的带电粒子在同一个磁场中做匀速圆周运动的速度越大,半径越大,A 对B 错;根据周期公式T =2πm Bq 知,当圆弧对应的圆心角为θ时,带电粒子在磁场中运动的时间为t =θm Bq,圆心角越大则运动时间越长,圆心均在x 轴上,由半径大小关系可知④的圆心角为π,且最大,故在磁场中运动时间最长的是沿④方向射出的粒子,D 对C 错.图38154.利用如图3815所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质量为m 、电荷量为q 、具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( )A .粒子带正电B .射出粒子的最大速度为qB L +3d 2mC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大答案 BC解析 由左手定则可判断粒子带负电,故A 错误;由题意知:粒子的最大半径r max =L +3d 2、粒子的最小半径r min =L 2,根据r =mv qB,可得v max =qB L +3d 2m 、v min =qBL 2m,则v max -v min =3qBd 2m ,故可知B 、C 正确,D 错误.图38165.如图3816所示,左右边界分别为PP ′、QQ ′的匀强磁场的宽度为d ,磁感应强度大小为B ,方向垂直纸面向里.一个质量为m 、电荷量为q 的微观粒子,沿图示方向以速度v 0垂直射入磁场.欲使粒子不能从边界QQ ′射出,粒子入射速度v 0的最大值可能是( )A.Bqd mB.2+2Bqd mC.2-2Bqdm D.2Bqd 2m答案 BC解析 粒子射入磁场后做匀速圆周运动,由r =mv 0qB知,粒子的入射速度v 0越大,r 越大,当粒子的径迹和边界QQ ′相切时,粒子刚好不从QQ ′射出,此时其入射速度v 0应为最大.若粒子带正电,其运动轨迹如图(a)所示(此时圆心为O 点),容易看出R 1sin 45°+d=R 1,将R 1=mv 0qB 代入上式得v 0=2+2Bqd m,B 项正确.若粒子带负电,其运动轨迹如图(b)所示(此时圆心为O ′点),容易看出R 2+R 2cos 45°=d ,将R 2=mv 0qB代入上式得v 0=2-2Bqdm ,C 项正确.图38176.如图3817所示的矩形abcd 范围内有垂直纸面向外的磁感应强度为B 的匀强磁场,且ab 长度为L ,现有比荷为q m的正电离子在a 处沿ab 方向射入磁场,求离子通过磁场后的横向偏移y (设离子刚好从C 点飞出).答案 mv Bq -mv Bq 2-L 2解析 离子作匀速圆周运动从a →c ,易知圆心在图中的O 处,即a 、c 两处速度垂线的交点处.横向偏移y =aO -dO =R -R 2-L 2由Bqv =mv 2R ,得R =mv Bq ,故有y =mv Bq -mv Bq 2-L 2图38187.如图3818所示,分布在半径为r 的圆形区域内的匀强磁场,磁感应强度为B ,方向垂直纸面向里.电量为q 、质量为m 的带正电的粒子从磁场边缘A 点沿圆的半径AO 方向射入磁场,离开磁场时速度方向偏转了60°角.(不计粒子的重力)求:(1)粒子做圆周运动的半径.(2 )粒子的入射速度.答案 (1)3r (2)3Bqr m解析 (1)设带电粒子在匀强磁场中做匀速圆周运动半径为R ,如图所示,∠OO ′A = 30°,由图可知,圆运动的半径R =O ′A =3r(2)根据牛顿运动定律,有:Bqv =m v 2R有:R =mv Bq故粒子的入射速度v =3Bqr m .题组二 带电粒子的运动在科技中的应用图38198.如图3819所示是粒子速度选择器的原理图,如果粒子所具有的速率v =E /B ,那么( )A .带正电粒子必须沿ab 方向从左侧进入场区,才能沿直线通过B .带负电粒子必须沿ba 方向从右侧进入场区,才能沿直线通过C .不论粒子电性如何,沿ab 方向从左侧进入场区,都能沿直线通过D .不论粒子电性如何,沿ba 方向从右侧进入场区,都能沿直线通过答案 AC解析 按四个选项要求让粒子进入,洛伦兹力与电场力等大反向抵消了的就能沿直线匀速通过磁场.图38209.如图3820所示是磁流体发电机原理示意图.A、B极板间的磁场方向垂直于纸面向里.等离子束从左向右进入板间.下述正确的是( )A.A板电势高于B板,负载R中电流向上B.B板电势高于A板,负载R中电流向上C.A板电势高于B板,负载R中电流向下D.B板电势高于A板,负载R中电流向下答案 C解析等离子束指的是含有大量正、负离子,整体呈中性的离子流,进入磁场后,正离子受到向上的洛伦兹力向A板偏,负离子受到向下的洛伦兹力向B板偏.这样正离子聚集在A 板,而负离子聚集在B板,A板电势高于B板,电流方向从A→R→B.图382110.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a和b以及一对磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图3821所示.由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差.在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点间的距离为3.0 mm,血管壁的厚度可忽略,两触点间的电势差为160 μV,磁感应强度的大小为0.040 T.则血流速度的近似值和电极a、b的正负为( ) A.1.3 m/s,a正、b负B.2.7 m/s,a正、b负C.1.3 m/s,a负、b正D.2.7 m/s,a负、b正答案 A解析血液中的粒子在磁场的作用下会在a,b之间形成电势差,当电场给粒子的力与洛伦兹力大小相等时达到稳定状态(与速度选择器原理相似),血流速度v=EB≈1.3 m/s,又由左手定则可得a 为正极,b 为负极,故选A.图382211.质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图3822,离子源S 产生的各种不同正离子束(速度可看作为零),经加速电场加速后垂直进入有界匀强磁场,到达记录它的照相底片P 上,设离子在P 上的位置到入口处S 1的距离为x ,可以判断( )A .若离子束是同位素,则x 越小,离子质量越大B .若离子束是同位素,则x 越小,离子质量越小C .只要x 相同,则离子质量一定相同D .x 越大,则离子的比荷一定越大答案 B解析 由qU =12mv 2 ① qvB =mv 2r ② 解得r =1B2mU q ,又x =2r 故选B.题组三 带电粒子在复合场中的运动图382312.如图3823所示,匀强磁场的方向垂直纸面向里,匀强电场的方向竖直向下,有一正离子恰能以速率v 沿直线从左向右水平飞越此区域.下列说法正确的是( )A .若一电子以速率v 从右向左飞入,则该电子也沿直线运动B .若一电子以速率v 从右向左飞入,则该电子将向上偏转C .若一电子以速率v 从右向左飞入,则该电子将向下偏转D .若一电子以速率v 从左向右飞入,则该电子也沿直线运动答案 BD解析 若电子从右向左飞入,静电力向上,洛伦兹力也向上,所以电子上偏,选项B 正确,A 、C 错误;若电子从左向右飞入,静电力向上,洛伦兹力向下.由题意,对正电荷有qE =Bqv ,会发现q 被约去,说明等号的成立与q 无关,包括q 的大小和正负,所以一旦满足了E =Bv ,对任意不计重力的带电粒子都有静电力大小等于洛伦兹力大小,显然对于电子两者也相等,所以电子从左向右飞入时,将做匀速直线运动,选项D 正确.图382413.一个带电微粒在如图3824所示的正交匀强电场和匀强磁场中的竖直平面内做匀速圆周运动,求:(1)该带电微粒的电性?(2)该带电微粒的旋转方向?(3)若已知圆的半径为r ,电场强度的大小为E ,磁感应强度的大小为B ,重力加速度为g ,则线速度为多少?答案 (1)负电荷 (2)逆时针 (3)gBr E解析 (1)带电粒子在重力场、匀强电场和匀强磁场中做匀速圆周运动,可知,带电粒子受到的重力和电场力是一对平衡力,重力竖直向下,所以电场力竖直向上,与电场方向相反,故可知带电粒子带负电荷.(2)磁场方向向外,洛伦兹力的方向始终指向圆心,由左手定则可判断粒子的旋转方向为逆时针(四指所指的方向与带负电的粒子的运动方向相反).(3)由粒子做匀速圆周运动,得知电场力和重力大小相等,得:mg =qE ①带电粒子在洛伦兹力的作用下做匀速圆周运动的半径为: r =mv qB② ①②联立得:v =gBr E题组四 带电粒子在电场和磁场组合场中的运动图382514.如图3825所示,在x 轴上方有垂直于xy 平面向里的匀强磁场,磁感应强度为B .在x 轴下方有沿y 轴负方向的匀强电场,场强为E ,一质量为m ,电荷量为-q 的粒子从坐标原点O 沿着y 轴正方向射出,射出之后,第三次到达x 轴时,它与点O 的距离为L ,求此粒子射出的速度v 和运动的总路程s .(重力不计)答案 qBL 4m πL 2+qB 2L 216mE解析 由题意知第3次经过x 轴的运动如图所示由几何关系:L =4R设粒子初速度为v ,则有:qvB =m v 2R可得:v =qBL 4m; 设粒子进入电场作减速运动的最大路程为L ′,加速度为a ,则有:v 2=2aL ′qE =ma则电场中的路程:L ′=qB 2L 216mE粒子运动的总路程:s =2πR +2L ′=πL 2+qB 2L 216mE15.如图3826所示,平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成60°角射入磁场,最后从y 轴负半轴上的P 点与y 轴正方向成60°角射出磁场,不计粒子重力,求:图3826(1)粒子在磁场中运动的轨道半径R ;(2)匀强电场的场强大小E .答案 (1)2mv 0qB (2)3-3v 0B 2解析 (1)因为粒子在电场中做类平抛运动,设粒子过N 点时的速度为v ,把速度v 分解如图甲所示甲根据平抛运动的速度关系,粒子在N 点进入磁场时的速度v =v x cos 60°=v 0cos 60°=2v 0. 如图乙所示,乙分别过N 、P 点作速度方向的垂线,相交于Q 点,则Q 是粒子在磁场中做匀速圆周运动的圆心根据牛顿第二定律qvB =mv 2R所以R =mv qB, 代入v =2v 0得粒子的轨道半径R =2mv 0qB(2)粒子在电场中做类平抛运动,设加速度为a,运动时间为t由牛顿第二定律:qE=ma①设沿电场方向的分速度为v y=at②粒子在电场中x轴方向做匀速运动,由图根据粒子在磁场中的运动轨迹可以得出:粒子在x轴方向的位移:R sin 30°+R cos 30°=v0t③又v y=v0tan 60°④由①②③④可以解得E=3-3v0B2.。
专题二、有界磁场

专题二、有界磁场一、单边界磁场1、如下图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xoy 平面并指向纸面外,磁感应强度为B ,一带负电粒子以速度v 0从O 点射入磁场,入射方向在xoy 平面内,与x 轴正向的夹角为θ,若粒子射出磁场的位置与O 点距离为L ,求该粒子的比荷。
2、一电子以速度v 0与x 轴成θ角射入磁感应强度为B 的匀强磁场中,最后落在x 轴的P 点,如下图所示,则OP= ,电子由O 点入射到落到P 点的时间为t= 。
(电子质量为m ,电量为e )3、如图所示,在x 轴上方存在垂直于纸面向里、磁感应强度为B 的匀强磁场,一个不计重力的带电粒子从坐标原点O 以速度v 进入磁场,粒子进入磁场时的速度方向垂直磁场且与x 轴正方向成120°角,若粒子穿过y 轴后在磁场中到x 轴的最大距离为的正负是( )A .3v/2aB ,正电荷B .v/2aB ,正电荷C .3v/2aB ,负电荷D .v/2aB ,负电荷4、如下图所示,在x 轴上方有匀强磁场,磁感应强度为B ,一质量为m ,电荷量为q 的粒子以速度v 0从坐标原点O射入磁场(磁场方向与纸面垂直),v 0与x 轴负方向的夹角为θ(θ<90°),不计重力,粒子在磁场中飞行的时间t 和飞出磁场的坐标为( ) A .t=2(π-θ)m/Bq B .t=θm/Bq C .x=2mv 0sin θ/Bq D .x=mv 0sin θ/Bq5、如图所示,质量为m 、带电量为+q 的小球从小孔S 处无初速度地进入一个区域足够大的匀强磁场中,磁感应强度为B 。
求(1)、这个小球在距离边界AB 垂直距离为多大时,有可能沿水平方向做匀速运动?(2)、小球从进入磁场到做匀速直线运动,重力对小球做了多少功?6、如图所示,在x>0,y>0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xoy 平面向里,大小为B,现有一质量为m ,电荷量为q 的带电粒子,在x 轴上到原点的距离为x 0的P 点,以平行于y 轴的初速度射入此磁场,在磁场的作用下沿垂直于y 轴的方向射出此磁场,不计重力的影响,由这些条件可知( ) A .不能确定粒子通过y 轴时的位置 B .不能确定粒子速度的大小C .不能确定粒子在磁场中运动所经历的时间D .以上三个判断都不对7、如图所示,在第I 象限内有垂直纸面向里的匀强磁场,一对正负电子分别以相同的速率沿与x轴成30°角的方向从原点射入磁场,则正负电子在磁场中运动的时间之比为( ) A .1:2 B .2:1C .1:4D .1:1A SB P yy二、双边界磁场1、如上图所示,一束电子(电荷量为e )以速度v 0垂直射入磁感应强度为B 、宽度为d 的匀强磁场中,穿过磁场时速度方向与入射速度方向的夹角为30°,则电子的质量为 ,穿过磁场的时间是 。
4粒子在有界磁场中的运动(常见题型

4.带电粒子在有界磁场中运动的常考题型1.给定有界磁场(1) 确定入射速度的大小和方向,判定带电粒子出射点或其它例1.如图所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B 。
一带正电的粒子以速度υ0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ。
若粒子射出磁场时的位置与O 点的距离为l ,求该粒子的电量和质量之比q m。
点评:本题给定带电粒子在有界磁场中运动的入射点和出射点, 可以通过作一半径和弦长中垂线来确定圆心,画出轨迹草图求出比荷。
本题也可以倒过来分析,给你比荷求出射点的位置。
在处理这类问题时重点是画出轨迹图,根据几何关系确定轨迹半径。
(2) 确定入射速度的方向,而大小变化,判定粒子的出射范围例2.如图7所示,矩形匀强磁场区域的长为L ,宽为L 2。
磁感应强度为B ,质量为m ,电荷量为e 的电子沿着矩形磁场的上方边界射入磁场,欲使该电子由下方边界穿出磁场,求:电子速率v 的取值范围?点评:本题给定带电粒子在有界磁场中运动的入射速度的方向,由于入射速度的大小发生改变,从而改变了该粒子运动轨迹半径,导致粒子的出射点位置变化。
在处理这类问题时重点是画出临界状态粒子运动的轨迹图,再根据几何关系确定对应的轨迹半径,最后求解临界状态的速率。
(3) 确定入射速度的大小,而方向变化,判定粒子的出射范围例3.如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60 T ,磁场内有一块平面感光板ab ,板面与磁场方向平行,在距ab 的距离l=16 cm 处,有一个点状的α放射源S ,它向各个方向发射α粒子,α粒子的速度都是υ=3.0×106m/s ,已知α粒子的电荷与质量之比q m=5.0×107 C/kg ,现只考虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的长度。
点评:本题给定带电粒子在有界磁场中运动的入射速度的大小,其对应的轨迹半径也就确定了。
磁场高考题汇编精选(2)有界磁场、临界问题

磁场高考题汇编精选(2)有界磁场、临界问题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. (多选)(2011海南卷)空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界。
一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O 点入射。
这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子。
不计重力,下列说法正确的是( )A.入射速度不同的粒子在磁场中的运动时间一定不同B.入射速度相同的粒子在磁场中的运动轨迹一定相同C.在磁场中运动时间相同的粒子,其运动轨迹一定相同D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大2. (2016·全国卷Ⅲ) 平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图1-所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外.一带电粒子的质量为m ,电荷量为q (q >0).粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角.已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O 的距离为( )A.mv 2qBB.3mv qBC.2mv qBD.4mv qB3. (2013·广东·21)(多选)如图6,两个初速度大小相同的同种离子a 和b ,从O 点沿垂直磁场方向进入匀强磁场,最后打到屏P 上,不计重力,下列说法正确的有( )A .a 、b 均带正电B .a 在磁场中飞行的时间比b 的短C .a 在磁场中飞行的路程比b 的短D .a 在P 上的落点与O 点的距离比b 的近4. (多选)(2019•海南)如图,虚线MN 的右侧有方向垂直于纸面向里的匀强磁场,两电荷量相同的粒子P 、Q 从磁场边界的M 点先后射入磁场,在纸面内运动。
有界磁场区域偏转问题汇总

直线线边界平行边界圆形边界磁场径向射入,径向射出结论:对准圆心射入,速度越大,偏转角和圆心角都越小,运动时间越短磁聚焦和磁发散磁发散磁聚焦当磁场圆半径R 与轨迹圆半径r 相等时,平行于切线,聚焦于切点最小面积当粒子圆半径R>磁场圆半径r时,粒子在磁场中运动最长时间为弦长对应时间当粒子圆半径R<磁场圆半径r时,粒子在磁场中运动时磁场圆与轨迹圆的交线为粒子圆的直径时,粒子离开磁场时位置距出发点最远动态圆的半径不变,绕圆上一点旋转,此时动态圆的原心为一半径为R的圆。
对应问题类型为:一群粒子以同一速率沿各个方向入射动态圆的半径发生变化,从圆上一点向外扩张。
这类问题抓住两个要点:①刚好穿出磁场边界的条件是带电粒子在磁场中的运动轨迹与边界相切②不管速率变化还是一定,圆周角越大,对应时间越长粒子与边界的范围问题三角形边界多解性问题正方形边界一、带电粒子在圆形磁场中的运动结论1:对准圆心射入,必定沿着圆心射出结论2:对准圆心射入,速度越大,偏转角和圆心角都越小,运动时间越短。
结论3:运动半径相同(v相同)时,弧长越长对应时间越长。
结论4:磁场圆的半径与轨迹圆的半径相同时,“磁会聚”与“磁扩散”题型一、对准圆心射入例1 电视机的显像管中,电子束的偏转是用磁偏转技术实现的。
电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图所示。
磁场方向垂直于圆面。
磁场区的中心为O,半径为r。
当不加磁场时,电子束将通过O点而打到屏幕的中心M点。
为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度B应为多少?要点提示如图所示例2:在圆形区域的匀强磁场的磁感应强度为B,一群速率不同的质子自A点沿半径方向射入磁场区域,如图所示,已知该质子束中在磁场中发生偏转的最大角度为1060,圆形磁场的区域的半径为R,质子的质量为m,电量为e,不计重力,则该质子束的速率范围是多大?要点提示变1.在圆形区域内有垂直纸面向里的匀强磁场.从磁场边缘A点沿半径方向射人一束速率不同的质子,对这些质子在磁场中的运动情况的分析中,正确的是:A.运动时间越长的,在磁场中通过的距离越长B.运动时间越短的,其速率越大C.磁场中偏转角越小的,运动时间越短D.所有质子在磁场中的运动时间都相等参考答案 BC题型二、偏离圆心射入(定圆旋转法)定圆旋转带电粒子从坐标原点以大小不变而方向变化的速度射入匀强磁场中,把其轨迹连续起来观察可认为是一个半径不变的定圆,根据速度方向的变化以入射点为轴在旋转例1 如图所示,磁感应强度为B的匀强磁场垂直于纸面向里,PQ为该磁场的右边界线,磁场中有一点O到PQ的距离为r。
高三物理粒子在有界磁场中运动试题

高三物理粒子在有界磁场中运动试题1.如图所示,为一正方形边界的匀强磁场区域,磁场边界边长为,三个粒子以相同的速度从点沿方向射入,粒子1从点射出,粒子2从c点射出,粒子3从边垂直于磁场边界射出,不考虑粒子的重力和离子间的相互作用。
根据以上信息,可以确定()A.粒子1带负电,粒子2不带电,粒子3带正电B.粒子1和粒子3的比荷之比为2:1C.粒子1和粒子2在磁场中运动时间之比为4:1D.粒子3的射出位置与点相距【答案】B【解析】由左手定则可判断,粒子1带正电,粒子2不带电,粒子3带负电,选项A 错误;由图可知粒子1运动的半径为,由可知:;粒子3运动的轨道半径为,则,所以,选项B 正确;粒子1在磁场中运动的时间为:;粒子2运动的时间:,所以,选项C 错误;粒子3射出的位置与d点相距:,选项D 错误。
【考点】带电粒子在磁场中的运动。
2.(22分)如图所示,在两块水平金属极板间加有电压U构成偏转电场,一束比荷为带正电的粒子流(重力不计),以速度v=104m/s沿水平方向从金属极板正中间射入两板。
粒子o经电场偏转后进入一具有理想边界的半圆形变化磁场区域,O为圆心,区域直径AB长度为="0." L=1m,AB与水平方向成45°角。
区域内有按如图所示规律作周期性变化的磁场,已知B5T,磁场方向以垂直于纸面向外为正。
粒子经偏转电场后,恰好从下极板边缘O点与水平方向成45°斜向下射入磁场。
求:(1)两金属极板间的电压U是多大?(2)若T=0.5s,求t=0s时刻射人磁场的带电粒子在磁场中运动的时间t和离开磁场的位置。
(3)要使所有带电粒子通过O点后的运动过程中不再从AB两点间越过,求出磁场的变化周期T应满足的条件。
【答案】(1)100V (2),射出点在AB间离O点(3)【解析】(1)粒子在电场中做类平抛运动,从O点射出使速度代入数据得U=100V(2)粒子在磁场中经过半周从OB中穿出,粒子在磁场中运动时间射出点在AB间离O点(3)粒子运动周期,粒子在t=0、….时刻射入时,粒子最可能从AB间射出如图,由几何关系可得临界时要不从AB边界射出,应满足得【考点】本题考查带电粒子在磁场中的运动3.如图所示,带箭头的实线表示电场中电场线的分布情况,一带电粒子在电场中运动轨迹如图中的虚线所示,粒子只受电场力,则正确的说法是A.若粒子是从a点到b点,则带正电B.粒子肯定带负电C.若粒子是从b点到a点,则加速度减小D.若粒子是从b点到a点,则速度减小【答案】BC【解析】做曲线运动物体所受合外力指向曲线内侧,本题中粒子只受电场力,由此可判断电场力向左,根据电场力做功可以判断电势能的高低和动能变化情况,加速度的判断可以根据电场线的疏密进行.A、根据做曲线运动物体所受合外力指向曲线内侧可知与电场线的方向相反,所以不论粒子是从A运动到B,还是从B运动到A,粒子必带负电,故A错误,B正确;C、电场线密的地方电场的强度大,所以粒子在B点受到的电场力大,在B点时的加速度较大.所以粒子是从B运动到A,则其加速度减小,故C正确;D、从B到A过程中电场力与速度方向成锐角,即做正功,动能增大,速度增大,故D错误.故选BC.【考点】带电粒子在电场中的运动4.如图所示,在xOy平面内存在着磁感应强度大小为B的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象限内的磁场方向垂直纸面向外。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有界磁场专题复习一、带电粒子在圆形磁场中的运动例1、圆心为O 、半径为r 的圆形区域中有一个磁感强度为B 、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L 的O '处有一竖直放置的荧屏MN ,今有一质量为m 的电子以速率v 从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P 点,如图1所示,求O 'P 的长度和电子通过磁场所用的时间. 解析 :电子所受重力不计。
它在磁场中做匀速圆周运动,圆心为O ″,半径为R 。
圆弧段轨迹AB 所对的圆心角为θ,电子越出磁场后做速率仍为v 的匀速直线运动,如图2所示,连结OB ,∵△OAO ″≌△OBO ″,又OA ⊥O ″A ,故OB ⊥O ″B ,由于原有BP ⊥O ″B ,可见O 、B 、P 在同一直线上,且∠O 'OP =∠AO ″B =θ,在直角三角形OO'P 中,O 'P =(L +r )tan θ,而)2(tan 1)2tan(2tan 2θθ-=,Rr=)2tan(θ,所以求得R 后就可以求出O 'P 了,电子经过磁场的时间可用t =VRV AB θ=来求得。
由RV m BeV 2=得R=θtan )(.r L OP eB mV += mVeBrR r ==)2tan(θ,2222222)2(tan 1)2tan(2tan rB e V m eBrmV -=-=θθθ 22222,)(2tan )(r B e V m eBrmVr L r L P O -+=+=θ, )2arctan(22222r B e V m eBrmV-=θ)2arctan(22222rB e V m eBrmV eB m V R t -==θ例2、如图2,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一M NO ,图1M NO ,图2放射源S ,可向纸面各个方向射出速度为s m v /102.36⨯=的粒子.已知α粒子质量kg m 271064.6-⨯=,电量C q 19102.3-⨯=,试画出α粒子通过磁场空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角.解析:设粒子在洛仑兹力作用下的轨道半径为R ,由Rv m Bqv 2= 得cm m m Bq mv R 2020.0102.3332.0102.31064.619627==⨯⨯⨯⨯⨯==-- 虽然α粒子进入磁场的速度方向不确定,但粒子进场点是确定的,因此α粒子作圆周运动的圆心必落在以O 为圆心,半径cm R 20=的圆周上,如图2中虚线.由几何关系可知,速度偏转角总等于其轨道圆心角.在半径R 一定的条件下,为使α粒子速度偏转角最大,即轨道圆心角最大,应使其所对弦最长.该弦是偏转轨道圆的弦,同时也是圆形磁场的弦.显然最长弦应为匀强磁场区域圆的直径.即α粒子应从磁场圆直径的A 端射出.如图2,作出磁偏转角ϕ及对应轨道圆心O ',据几何关系得212sin==R r ϕ,得060=ϕ,即α粒子穿过磁场空间的最大偏转角为060. 二、带电粒子在半无界磁场中的运动例3、如图3中虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B 、方向垂直纸面向外的匀强磁场.O是MN上的一点,从O点可以向磁场区域发射电荷量为+q 、质量为m 、速率为v 的粒子,粒子射入磁场时的速度可在纸面内各个方向,已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O点的距离为L,不计重力和粒子间的相互作用.(1)求所考察的粒子在磁场中的轨道半径. (2)求这两个粒子从O点射入磁场的时间间隔. 解析:(1) 粒子的初速度与匀强磁场的方向垂直,在洛仑兹力作用下,做匀速圆周运动.设圆半径为R,则据牛顿第二定律可得:R v m B q v 2= ,解得Bqm vR =(2)如图3所示,以OP 为弦的可以画出两个半径相同的圆,分别表示在P点相遇的两个粒子的轨道,圆心分别为O 1和O 2,在O 处两个圆的切线分别表示两个粒子的射入方向,它们之间的夹角为α,由几何关系知M N. . . . . .. . . . . .∠PO 1Q 1=∠PO 2Q 2=α从O 点射入到相遇,粒子在1的路径为半个圆周加P Q 1弧长等于αR ;粒子在2的路径为半个圆周减P Q 2弧长等于αR .粒子1的运动时间 t 1=21T +v R α 粒子2的运动时间 t 2=21T -vR α两个粒子射入的时间间隔△t =t 1-t 2=2vR α由几何关系得R cos21α=21op =21L ,解得:α=2arccosRL2 故△t =Bqm4.arc cos mv LBq 2例4、如图4所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度TB 2100.1-⨯=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy 平面内向各个方向发射速率s m v /100.14⨯=的带正电的粒子,粒子的质量为kg m 25106.1-⨯=,电量为C q 18106.1-⨯=,求带电粒子能打到y 轴上的范围.解析:带电粒子在磁场中运动时有RvmBqv 2=,则cm m Bq mv R 101.0106.1100.1100.1106.1182425==⨯⨯⨯⨯⨯⨯==---.如图15所示,当带电粒子打到y 轴上方的A 点与P 连线正好为其圆轨迹的直径时,A 点既为粒子能打到y 轴上方的最高点.因cmR Op 10==,cmR AP 202==,则cm OP AP OA 31022=-=.当带电粒子的圆轨迹正好与y 轴下方相切于B点时,B点既为粒子能打到y 轴下方的最低点,易得cm R OB 10==.图4o cm x /cmy /p ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯∙cm/综上,带电粒子能打到y 轴上的范围为:cm y cm 31010≤≤-.三、带电粒子在长方形磁场中的运动例5、如图5,长为L 间距为d 的水平两极板间,有垂直于纸面向里的匀强磁场,磁感强度为B ,两板不带电,现有质量为m ,电量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件. 解析:如图4,设粒子以速率1v 运动时,粒子正好打在左极板边缘(图4中轨迹1),则其圆轨迹半径为41d R =,又由1211R v m Bqv =得m Bqdv 41=,则粒子入射速率小于1v 时可不打在板上.设粒子以速率2v 运动时,粒子正好打在右极板边缘(图4中轨迹2),由图可得22222)2(d R L R -+=,则其圆轨迹半径为d d L R 44222+=,又由2222R v m Bqv =得md d L Bq v 4)4(222+=,则粒子入射速率大于2v 时可不打在板上.综上,要粒子不打在板上,其入射速率应满足:m Bqd v 4<或mdd L Bq v 4)4(22+>.例6、长为L 的水平极板间,有垂直纸面向内的匀强磁场,如图4所示,磁感强度为B ,板间距离也为L ,板不带电,现有质量为m ,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度VA .使粒子的速度V <BqL /4m ;B .使粒子的速度V >5BqL /4m ;C .使粒子的速度V >BqL /m ;D .使粒子速度BqL /4m <V <5BqL /4m 解析:由左手定则判得粒子在磁场中间向上偏,而作匀速圆+q 图6图5⨯⨯⨯⨯⨯⨯⨯⨯→∙d Lv图4v 2v周运动,很明显,圆周运动的半径大于某值r 1时粒子可以从极板右边穿出,而半径小于某值r 2时粒子可从极板的左边穿出,现在问题归结为求粒子能在右边穿出时r 的最小值r 1以及粒子在左边穿出时r 的最大值r2粒子擦着板从右边穿出时,圆心在Or 12=L 2+(r 1-L /2)2得r 1=5L /4,又由于r 1=mV 1/Bq 得V 1=5BqL /4m ,∴V >5BqL /4m 时粒子能从右边穿出。
粒子擦着上板从左边穿出时,圆心在O '点,有r 2=L /4,又由r 2=mV 2/Bq =L /4得V 2=BqL /4m∴V 2<BqL /4m 时粒子能从左边穿出。
综上可得正确答案是A 、B 。
四、带电粒子在“三角形磁场区域”中的运动例7、在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B 的匀强磁场,有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图5所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从AC间什么范围内射出.解析:如图6所示,设粒子速率为1v 时,其圆轨迹正好与AC边相切于E点.由图知,在E AO 1∆中,11R E O =,113R a A O -=,由AO E O 11030cos =得11323R a R -=,解得a R )32(31-=,则a R a A O AE )332(23211-=-==.又由1211R vm Bqv =得m aqB m BqR v )32(311-==,则要粒子能从AC间离开磁场,其速率应大于1v .如图7所示,设粒子速率为2v 时,其圆轨迹正好与BC边相切于F点,与AC相交于G点.易知A点即为粒子轨迹的圆心,则a AG AD R 32===.又由2222R v m Bqv =得m aqBv 32=,则要粒子能从AC间离开磁场,其速率应小于图7DB图6D1oA等于2v .综上,要粒子能从AC间离开磁场,粒子速率应满足maqBv m aqB 3)32(3≤<-. 粒子从距A点a a 3~)332(-的EG 间射出. 五、带电粒子在“宽度一定的无限长磁场区域”中的运动例8、如图11所示,A 、B 为水平放置的足够长的平行板,板间距离为m d 2100.1-⨯=,A 板中央有一电子源P ,在纸面内能向各个方向发射速度在s m /102.3~07⨯范围内的电子,Q为P 点正上方B 板上的一点,若垂直纸面加一匀强磁场,磁感应强度T B 3101.9-⨯=,已知电子的质量kg m 31101.9-⨯=,电子电量C e 19106.1-⨯=,不计电子的重力和电子间相互作用力,且电子打到板上均被吸收,并转移到大地.求:(1)沿P Q方向射出的电子击中A 、B 两板上的范围.(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表示)与电子速度的大小v 之间应满足的关系及各自相应的取值范围.解析:如图12所示,沿PQ方向射出的电子最大轨迹半径由rvmBev 2=可得Be m v r m m =,代入数据解得d m r m 21022=⨯=-.该电子运动轨迹圆心在A板上H处,恰能击中B板M处.随着电子速度的减少,电子轨迹半径也逐渐减小.击中B板的电子与Q点最远处相切于N点,此时电子的轨迹半径为d ,并恰能落在A板上H处.所以电子能击中B板MN区域和A板PH区域.在∆MFH中,有d dd MF HM FH 3)2(2222-=-=,s m d PF QM /1068.2)32(3-⨯=-==, m d QN 2101-⨯==,m d PH 21022-⨯==.电子能击中B板Q点右侧与Q点相距m m 23101~1068.2--⨯⨯的范围.电子能击中A板P点右侧与P点相距m 2102~0-⨯的范围.(2)如图13所示,要使P点发出的电子能击中Q点,则有Be mv r =,2sin dr =θ.图13P解得6108sin ⨯=θv .v 取最大速度s m /102.37⨯时,有41sin =θ,41arcsin min =θ;v 取最小速度时有2max πθ=,s m v /1086min ⨯=.所以电子速度与θ之间应满足6108sin ⨯=θv ,且]2,41[a r c s i n πθ∈,]/102.3,/108[76s m s m v ⨯⨯∈六、带电粒子在相反方向的两个有界磁场中的运动例9、如图9所示,空间分布着有理想边界的匀强电场和匀强磁场.左侧匀强电场的场强大小为E 、方向水平向右,电场宽度为L ;中间区域匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.一个质量为m 、电量为q 、不计重力的带正电的粒子从电场的左边缘的O 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O 点,然后重复上述运动过程.求:(1) 中间磁场区域的宽度d ;(2) 带电粒子从O 点开始运动到第一次回到O 点所用时间t.解析:(1)带电粒子在电场中加速,由动能定理,可得: 221mV qEL = 带电粒子在磁场中偏转,由牛顿第二定律,可得:RV m BqV 2=由以上两式,可得qmELB R 21=.可见在两磁场区粒子运动半径相同,如图11所示,三段圆弧的圆心组成的三角形ΔO 1O 2O 3是等边三角形,其边长为2R .所以中间磁场区域的宽度为qmELB R d 62160sin 0==(2)在电场中BB图9图14 o cm x /cm y /p ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯∙图11qEmLqE mV a V t 22221===, 在中间磁场中运动时间qB mT t 3232π==在右侧磁场中运动时间qBmT t 35653π==, 则粒子第一次回到O 点的所用时间为qBmqE mL t t t t 3722321π+=++=. 七、带电粒子在环形或有孔磁场中的运动例10、核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。