信息论与编码总复习
信息论与编码复习重点整理(1页版)

第1章 概论1. 信号(适合信道传输的物理量)、信息(抽象的意识/知识,是系统传输、转换、处理的对象)和消息(信息的载体)定义;相互关系:(1信号携带消息,是消息的运载工具(2信号携带信息但不是信息本身(3同一信息可用不同的信号来表示(4同一信号也可表示不同的信息。
2. 通信的系统模型及目的:提高信息系统可靠性、有效性和安全性,以达到系统最优化.第2章 信源及信息量1. 单符号离散信源数学模型2. 自信息量定义:一随机事件发生某一结果时带来的信息量I(xi)=- log2P(xi)、单位:bit 、物理意义:确定事件信息量为0;0概率事件发生信息量巨大、性质:I(xi)非负;P(xi)=1时I(xi)=0;P(xi)=0时I(xi)无穷;I(xi)单调递减;I(xi)是随机变量。
3. 联合自信息量:I(xiyi)=- log2P(xiyj) 物理意义:两独立事件同时发生的信息量=各自发生的信息量的和、条件自信息量:I(xi/yi)=- log2P(xi/yj);物理意义:特定条件下(yj 已定)随机事件xi 所带来的信息量。
三者关系:I(xi/yi)= I(xi)+ I(yi/xi)= I(yi)+ I(xi/yi)4. 熵:定义(信源中离散消息自信息量的数学期望)、单位(比特/符号)、物理意义(输出消息后每个离散消息提供的平均信息量;输出消息前信源的平均不确定度;变量的随机性)、计算:(H(X)=-∑P(xi)log2 P(xi)) 1)连续熵和离散的区别:离散熵是非负的2)离散信源当且仅当各消息P 相等时信息熵最大H (X )=log 2 n 。
3)连续信源的最大熵:定义域内的极值.5.条件熵H(Y/X) = -∑∑P(xiyj) log2P(yj/xi),H (X /Y )= -∑∑P(xiyj) log2P(xi/yj) 、物理意义:信道疑义度H(X/Y):信宿收到Y 后,信源X 仍存在的不确定度,有噪信道传输引起信息量的损失,也称损失熵。
《信息论和编码技术》复习提纲复习题

《信息论和编码技术》复习提纲复习题《信息论与编码技术》复习提纲复习题纲第0章绪论题纲:I.什么是信息?II.什么是信息论?III.什么是信息的通信模型?IV.什么是信息的测度?V.自信息量的定义、含义、性质需掌握的问题:1.信息的定义是什么?(广义信息、狭义信息——Shannon信息、概率信息)2.Shannon信息论中信息的三要素是什么?3.通信系统模型图是什么?每一部分的作用的是什么?4.什么是信息测度?5.什么是样本空间、概率空间、先验概率、自信息、后验概率、互信息?6.自信息的大小如何计算?单位是什么?含义是什么(是对什么量的度量)?第1章信息论基础㈠《离散信源》题纲:I.信源的定义、分类II.离散信源的数学模型III.熵的定义、含义、性质,联合熵、条件熵IV.离散无记忆信源的特性、熵V.离散有记忆信源的熵、平均符号熵、极限熵VI.马尔科夫信源的定义、状态转移图VII.信源的相对信息率和冗余度需掌握的问题:1.信源的定义、分类是什么?2.离散信源的数学模型是什么?3.信息熵的表达式是什么?信息熵的单位是什么?信息熵的含义是什么?信息熵的性质是什么?4.单符号离散信源最大熵是多少?信源概率如何分布时能达到?5.信源的码率和信息率是什么,如何计算?6.什么是离散无记忆信源?什么是离散有记忆信源?7.离散无记忆信源的数学模型如何描述?信息熵、平均符号熵如何计算?8.离散有记忆多符号离散平稳信源的平均符号熵、极限熵、条件熵(N阶熵)的计算、关系和性质是什么?9.什么是马尔科夫信源?马尔科夫信源的数学模型是什么?马尔科夫信源满足的2个条件是什么?10.马尔科夫信源的状态、状态转移是什么?如何绘制马尔科夫信源状态转移图?11.马尔科夫信源的稳态概率、稳态符号概率、稳态信息熵如何计算?12.信源的相对信息率和冗余度是什么?如何计算?㈡《离散信道》题纲:I.信道的数学模型及分类II.典型离散信道的数学模型III.先验熵和后验熵IV.互信息的定义、性质V.平均互信息的定义、含义、性质、维拉图VI.信道容量的定义VII.特殊离散信道的信道容量需掌握的问题:1.信道的定义是什么?信道如何分类?信道的数学模型是2.二元对称信道和二元删除信道的信道传输概率矩阵是什么?3.对称信道的信道传输概率矩阵有什么特点?4.根据信道的转移特性图,写出信道传输概率矩阵。
信息论与编码复习整理1

信息论与编码1.根据信息论的各种编码定理和通信系统指标,编码问题可分解为几类,分别是什么?答:3类,分别是:信源编码,信道编码,和加密编码。
2.对于一个一般的通信系统,试给出其系统模型框图,并结合此图,解释数据处理定理。
答:通信系统模型如下:数据处理定理为:串联信道的输入输出X 、Y 、Z 组成一个马尔可夫链,且有,。
说明经数据处理后,一般只会增加信息的损失。
3.什么是平均自信息量与平均互信息,比较一下这两个概念的异同?答:平均自信息为:表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息:表示从Y 获得的关于每个X 的平均信息量,也表示发X 前后Y 的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
4.简述最大离散熵定理。
对于一个有m 个符号的离散信源,其最大熵是多少?答:最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
最大熵值为。
5.熵的性质什么?答:非负性,对称性,确定性,香农辅助定理,最大熵定理。
6.解释信息传输率、信道容量、最佳输入分布的概念,说明平均互信息与信源的概率分布、信道的传递概率间分别是什么关系?答:信息传输率R 指信道中平均每个符号所能传送的信息量。
信道容量是一个信道所能达到的最大信息传输率。
信息传输率达到信道容量时所对应的输入概率分布称为最佳输入概率分布。
平均互信息是信源概率分布的∩型凸函数,是信道传递概率的U 型凸函数。
7.信道疑义度的概念和物理含义?答:概念:)|(log )()|(j i j i jib a p b a p Y XH ∑∑-=物理含义:输出端收到全部输出符号Y 以后,对输入X 尚存在的平均不确定程度。
8.写出香农公式,并说明其物理意义。
当信道带宽为5000Hz ,信噪比为30dB 时求信道容量。
答:香农公式为 ,它是高斯加性白噪声信道在单位时 间内的信道容量,其值取决于信噪比和带宽。
由得,则9.解释无失真变长信源编码定理?答:只要,当N 足够长时,一定存在一种无失真编码。
信息论与编码(网信10)复习

I(X;Y),其中I(X;Y)表示输入和输出之间的互信息量。
约束条件
03
离散信道容量的计算需要考虑输入概率分布的约束条
件。
连续信道容量
定义
连续信道容量是指连续信道在给定输入概率 密度函数和功率限制条件下,能够传输的最 大信息量。
计算方法
使用香农公式计算连续信道容量,公式为C = max∫ 熵(y|x)dF(x),其中熵(y|x)表示条件熵,F(x)表示输入 概率密度函数。
04
纠错编码
奇偶校验码
定义
奇偶校验码是一种简单的错误检测码,通过在数据位之外添加校验位,使得整个 码字中1的个数为奇数(奇校验)或偶数(偶校验)。
原理
奇偶校验码通过在数据位之外添加一个校验位,使得整个码字中1的个数满足特 定的规则(奇数或偶数)。在接收端,对接收到的码字进行同样的计算,并与发 送端的规则进行比较,如果规则不满足,则认为发生了错误。
数字通信系统广泛应用于电话通信、移动通信、卫星通信等领域,为人们提供了快速、可靠、安全的通 信服务。
网络安全
网络安全是信息论与编码的一个重要应用方向,通过信息编码和加密技术保护网络 通信中的数据安全。
常见的网络安全技术包括对称加密、非对称加密、哈希函数等,它们能够提供数据 加密、身份认证和完整性保护等功能。
循环码
优点
纠错能力强,且具有高效的编码和解 码算法。
缺点
实现较为复杂,且对硬件要求较高。
05
信息论与编码的应用
数据压缩
01
数据压缩是信息论与编码的重要应用之一,通过去除数据中的冗余和 无用的信息,将数据压缩成更小的体积,以便于存储和传输。
02
常见的数据压缩算法包括哈夫曼编码、算术编码、LZ77和LZ78等, 这些算法利用数据的统计特性来达到压缩效果。
信息论与编码复习

1、通信系统模型的组成,及各部分的功能。
答:信源,产生消息的源,消息可以是文字,语言,图像。
可以离散,可以连续。
随机发生。
编码器,信源编码器:对信源输出进行变换(消去冗余,压缩),提高信息传输的有效性。
信道编码器:对信源编码输出变换(加入冗余),提高抗干扰能力,提高信息传输的可靠性。
调制器:将信道编码输出变成适合信道传输的方式信道,信号从发端传到收端的介质干扰源,系统各部分引入的干扰,包括衰落,多径,码间干扰,非线性失真,加性噪声译码器,编码器的逆变换信宿,信息的接收者2、消息,信号,信息三者之间的关系答:关系:信息---可以认为是具体的物理信号、数学描述的消息的内涵,即信号具体载荷的内容、消息描述的含义。
信号---则是抽象信息在物理层表达的外延;消息---则是抽象信息在数学层表达的外延。
3、信源的分类答:分类:单消息(符号)信源:离散信源;连续变量信源。
平稳信源。
无/有记忆信源。
马尔可夫信源。
随机波形信源。
离散信源:信源可能输出的消息数是有限的或可数的,而且每次只输出其中一个消息。
可以用一维离散型随机变量X来描述这个信源输出的消息。
这个随机变量X的样本空间就是符号集A;而X的概率分布就是各消息出现的先验概率,信源的概率空间必定是一个完备集。
连续变量信源:数据取值是连续的,但又是随机的。
可用一维的连续型随机变量X来描述这些消息。
这种信源称为连续信源,其数学模型是连续型的概率空间:4、自信息的含义:当事件ai发生以前,表示事件ai发生的不确定性,当事件ai发生以后表示事件ai所含有(所提供)的信息量。
5、互信息含义:信源发送消息ai,而由于干扰,在接收端收到的为消息bj ,此时获得的信息量——互信息,即最初的不确定性减去尚存在的不确定性。
6、离散单符号信源熵的物理含义:熵是随机变量的随机性的描述。
熵是信源输出消息前随机变量平均不确定性的描述。
信源熵H(X)是表示信源输出后每个消息/符号所提供的平均信息量。
信息论与编码复习重点整理(1页版)

1第1章 概论1. 信号(适合信道传输的物理量)、信息(抽象的意识/知识,是系统传输、转换、处理的对象)和消息(信息的载体)定义;相互关系:(1信号携带消息,是消息的运载工具(2信号携带信息但不是信息本身(3同一信息可用不同的信号来表示(4同一信号也可表示不同的信息。
2. 通信的系统模型及目的:提高信息系统可靠性、有效性和安全性,以达到系统最优化.第2章 信源及信息量1. 单符号离散信源数学模型2. 自信息量定义:一随机事件发生某一结果时带来的信息量I(xi)=-log2P(xi)、单位:bit 、物理意义:确定事件信息量为0;0概率事件发生信息量巨大、性质:I(xi)非负;P(xi)=1时I(xi)=0;P(xi)=0时I(xi)无穷;I(xi)单调递减;I(xi)是随机变量。
3. 联合自信息量:I(xiyi)=- log2P(xiyj) 物理意义:两独立事件同时发生的信息量=各自发生的信息量的和、条件自信息量:I(xi/yi)=- log2P(xi/yj);物理意义:特定条件下(yj 已定)随机事件xi 所带来的信息量。
三者关系:I(xi/yi)= I(xi)+ I(yi/xi)= I(yi)+ I(xi/yi)4. 熵:定义(信源中离散消息自信息量的数学期望)、单位(比特/符号)、物理意义(输出消息后每个离散消息提供的平均信息量;输出消息前信源的平均不确定度;变量的随机性)、计算:(H(X)=-∑P(xi)log2 P(xi)) 1)连续熵和离散的区别:离散熵是非负的2)离散信源当且仅当各消息P相等时信息熵最大H (X )=log 2 n 。
3)连续信源的最大熵:定义域内的极值. 5.条件熵H(Y/X) = -∑∑P(xiyj) log2P(yj/xi),H (X /Y )= -∑∑P(xiyj) log2P(xi/yj) 、物理意义:信道疑义度H(X/Y):信宿收到Y 后,信源X 仍存在的不确定度,有噪信道传输引起信息量的损失,也称损失熵。
信息论与编码复习

信息论与编码复习
去年考点(部分):
简答题:香农第一定理P106、香农第二定理P141
计算题:马尔可夫信源P37、香农编码P110、霍夫曼编码P111、费诺编码P115、平均错误概率P131(例6.3)、例5.10。
重点:
第二章:本章为基础性内容,主要是理解专业词语的含义,记住公式,可参考笔记。
第三章:
重点3.3节,特别是马尔可夫信源P37~P40,会画状态转移图,会求状态转移概率矩阵(例3.5 P38、例3.6 P40)。
第四章:
各种信道容量的计算P58(例4.1、4.2、4.3)、离散对称信道的判别和信道容量计算P61~P64。
第五章:
定长码、码的分类P91、定长码及定长编码定理P94、编码效率P97、Kraft和McMillan不等式、唯一可译码存在条件P100、编码效率及剩余度P108、变长码编码(例 5.5 P108、例5.6 P110、例5.7 P112、例5.8 P115、例5.9 P116)。
第六章:
最大后验概率译码准则、极大似然译码规则P131、平均错误概率P131(例6.3 P131)、编码效率P150、线性分组码P150(例6.6 、6.7、6.8 P154、例5.10 P161)。
信息论与编码总复习

VS
奇偶校验位
奇偶校验位是添加到数据中的一个额外位 ,用于检测数据中的错误。根据数据的二 进制位数,可以选择奇校验或偶校验。
05
编码的应用
数据压缩
1 2 3
数据压缩
数据压缩是编码技术的重要应用之一,通过去除 数据中的冗余信息,减少数据的存储空间和传输 时间,提高数据传输效率。
压缩算法
常用的数据压缩算法包括哈夫曼编码、算术编码、 LZ77和LZ78等,这些算法通过不同的方式实现 数据的压缩和解压缩。
互信息与条件互信息
互信息的定义
互信息是两个随机变量之间的相关性度量。对于两个随机变量$X$和$Y$,其互信息定义为$I(X;Y) = sum_{x,y} P(X=x,Y=y) log_2 frac{P(X=x,Y=y)}{P(X=x)P(Y=y)}$。
条件互信息的定义
条件互信息是给定一个随机变量条件下,另一个随机变量的不确定性减少的量度。对于两个随机变量$X$ 和$Y$以及第三个随机变量$Z$,其条件互信息定义为$I(X;Y|Z) = sum_{x,y,z} P(X=x,Y=y,Z=z) log_2 frac{P(X=x,Y=y|Z=z)}{P(X=x|Z=z)P(Y=y|Z=z)}$。
压缩比与效率
数据压缩比和压缩效率是衡量数据压缩算法性能 的重要指标,不同的应用场景需要选择合适的压 缩算法以满足需求。
加密通信
加密通信
编码技术在加密通信中发挥着重要作用,通过将明文转换为密文, 保护数据的机密性和完整性。
加密算法
常见的加密算法包括对称加密和公钥加密,这些算法利用数学函数 和密钥对数据进行加密和解密。
纠错码与检错码
纠错码不仅能够检测错误,还能够纠 正错误,而检错码只能检测错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“信息论与编码”总复习
1.消息、信号、信息的含义、定义及区别。
信息是指各个事物运动的状态及状态变化的方式。
消息是指包含信息的语言,文字和图像等。
信号是消息的物理体现。
消息是信息的数学载体、信号是信息的物理载体
信号:具体的、物理的
消息:具体的、非物理的
信息:非具体的、非物理的
同一信息,可以采用不同形式的物理量来载荷,也可以采用不同的数学描述方式。
同样,同一类型信号或消息也可以代表不同内容的信息
2.信息的特征与分类。
1接收者在收到信息之前,对其内容是未知的,所以信息是新知识,新内容;
2信息是能使认识主体对某一事物的未知性或不确定性减少的有用知识;
3信息可以产生,也可以消失,同时信息可以被携带,被存储及处理;
4信息是可以量度的,信息量有多少的差别。
3.狭义信息论、广义信息论、一般信息论研究的领域。
狭义信息论:信息论是在信息可以量度的基础上,对如何有效,可靠地传递信息进行研究的科学。
它涉及信息量度,信息特性,信息传输速率,信道容量,干扰对信息传输的影响等方面的知识。
广义信息论:信息是物质的普遍属性,所谓物质系统的信息是指它所属的物理系统在同一切其他物质系统全面相互作用(或联系)过程中,以质、能和波动的形式所呈现的结构、状态和历史。
包含通信的全部统计问题的研究,除了香农信息论之外,还包括信号设计,噪声理论,信号的检测与估值等。
概率信息:信息表征信源的不定度,但它不等同于不定度,而是为了消除一定的不定度必须获得与此不定度相等的信息量
4.信息论的起源、历史与发展。
⏹1924年,Nyquist提出信息传输理论;
⏹1928年,Hartly提出信息量关系;
⏹1932年,Morse发明电报编码;
⏹1946年,柯切尼柯夫提出信号检测理论;
⏹1948年,Shannon提出信息论,“通信中的数学理论”—现代信息论的开创性的权
威论文,为信息论的创立作出了独特的贡献。
5.通信系统的物理模型(主要框图),各单元(方框)的主要功能及要解决的主要问题。
信源的核心问题是它包含的信息到底有多少,怎样将信息定量地表示出来,即如何确定信息量。
信宿需要研究的问题是能收到或提取多少信息。
信道的问题主要是它能够传送多少信息,即信道容量的多少。
6.通信的目的?要解决的最基本问题?通信有效性的概念。
提高通信有效性的最根本途径?通信可靠性的概念。
提高通信可靠性的最根本途径?通信安全性的概念,提高通信安全性的最根本途径?
通信系统的性能指标主要是有效性,可靠性,安全性和经济性。
通信系统优化就是使这些指标达到最佳。
从提高通信系统的有效性意义上说,信源编码器的主要指标是它的编码效率,即理论上所需的码率与实际达到的码率之比。
提高通信有效性的最根本途径是信源编码。
减少冗余。
提高可靠性:信道编码。
增加冗余。
提高安全性:加密编码。
7.随机事件的不确定度和它的自信息量之间的关系及区别?单符号离散信源的数学模型,自信息量、条件自信息量、联合自信息量的含义?
信源符号不确定度:具有某种概率的信源符号在发出之前,存在不确定度,不确定度表征该符号的特性。
符号的不确定度在数量上等于它的自信息量,两者的单位相同,但含义不同:
•不确定度是信源符号固有的,不管符号是否发出;
•自信息量是信源符号发出后给予收信者的;
•为了消除该符号的不确定度,接受者需要获得信息量。
自信息量
条件自信息量:
联合自信息量:
8.信息量的性质?含义?分别从输入端、输出端和系统总体来理解互信息量的含义。
自信息量指的是该符号出现后,提供给收信者的信息量。
9. 各种熵(信源熵,条件熵,联合熵(共熵),等)的含义及其关系。
信源熵:
条件熵:
疑义度:
噪声熵:
联合熵:
10. 信源熵的基本性质与定理及其理解?
•熵的性质
对称性
非负性
确定性
香农辅助定理
最大熵定理
条件熵小于无条件熵
信源熵和平均自信息量两者在数值上是相等的,但含义并不同。
信源熵表征信源的平均不确定度,平均自信息量是消除信源不确定度所需要的信息的量度。
信源熵是在平均意义上来表征信源的总体特性,它是信源X的函数,而X是指随机变量的整体(包括概率空间)。
信源给定,概率空间就给定,信源熵就是一个确定值。
小结:信源熵H(X)的三种物理含义:
表示信源输出后,每个离散消息所提供的平均信息量。
表示信源输出前,信源的平均不确定度。
反映了变量X的随机性。
11. 平均互信息量的定义及物理意义?疑义度及噪声熵?
12. 平均互信息量的性质及理解?
13. 平均互信息量关于信源概率和信道转移概率的凸性定理。
14. 最大离散熵定理及理解。
16. 数据处理定理及其含义。
17. 信源的种类(详细分类)?各举出几个例子。
按时间和幅度分类:
离散信源单符号离散信源文字,数字,数据等
离散序列信源
连续信源连续幅度信源话音,图像,图形等
随机波形信源
按符号之间的关系:
无记忆信源发出单个符号的无记忆信源
发出符号序列的无记忆信源
有记忆信源发出符号序列的有记忆信源
发出符号序列的马尔可夫信源
18. 离散平稳信源的定义,平均符号熵,极限熵的定义,含义与理解。
信源所发符号序列的概率分布与时间的起点无关,这种信源我们称之为多符号离散平稳信源。
19.马尔可夫信源的定义,含义及其极限熵?
当信源的记忆长度为m+1时,该时该发出的符号与前m个符号有关联性,而与更前面的符号无关。
马尔可夫链极限熵:
为了使马尔可夫链最后达到稳定,成功之路遍历的马尔可夫链,还必须满足两个条件:
平稳信源的概率分布特性具有时间推移不变性,而齐次马氏链只要求转移概率具有推移不变性,因此一般情况下平稳包含齐次,但齐次不包含平稳。
20. 信源的冗余度的定义和含义?为什么有些信源有冗余度?冗余度的计算。
冗余度,表示给定信源在实际发出消息时所包含的多余信息。
它来自两个方面,一是信源符号间的相关性;二是信源符号分布的不均匀性.
21. 连续信源的熵的定义?
连续信源的不确定度应为无穷大,是相对熵,或叫差熵。
在取两熵之间的差时才具有信息的所有特性。
22. 几种特殊连续信源的熵。
幅度连续的单个符号信源熵
波形信源熵
24. 信源输出值受限的最大连续熵定理。
限峰功率最大熵定理:对于定义域为有限的随机变量X,当它是均匀分布时,具有最
大熵。
25. 信源输出的平均功率受限的最大连续熵定理。
限平均功率最大熵定理:对于相关矩阵一定随机变量X,当它是正态分布时具有最大
熵。
H c(X) = 1/2 ln()
28. Shannon第一定理—离散无失真信源编码定理(定长和变长)及含义?
克劳夫特不等式只是用来说明唯一可译码是否存在,并不能作为唯一可译码的判据。
29. 信道的数学模型和分类?
30. 信息传输速率R的定义?信道转移概率、信道矩阵和信道容量C的定义?几种离散无噪信道的C?
31. 强对称,对称,准对称信道的含义及其C?
式中,m为信道输出符号集中符号的数目。
强对称信道:
或:
32. 离散信道容量的一般计算方法及其步骤?
33.连续信道,连续信道的C的定义。
连续单符号加性信道:多维无记忆加性连续信道:
34. 香农公式的含义?
由香农公式得到的值是其信道的下限值。
35 Shannon第二定理(信道编码定理)及其含义?
35. 对信源编码器有些什么基本要求?编码效率的定义?如何提高编码效率?
36. 什么是最佳编码?说出Shannon、Fano和Huffman编码的基本方法和主要特点。
37. 理解Huffman编码是最佳编码?38. 游程编码相关定义与步骤?
39. 算术编码(非分组码)相关定义与步骤?
40.简要说明下面几种译码准则:(1)最优译码准则;(2)最大似然译码准则
BSC信道的最大似然译码可以简化为信道的最大似然译码可以简化为最最小汉明距离译码小汉明距离译码。
41.信源与信道达到匹配的含义以及如何实现?信道剩余度的概念及计算?
42.失真函数、平均失真度的定义及其含义?
失真函数定义:
推广-〉L长序列:平均失真度:
43.信息率失真函数R(D)的定义、性质及其含义?R(D)与C的比较?
对于给定信源,在平均失真不超过失真限度D的条件下,信息率容许压缩的最小值为R(D)。
如果选取对压缩更为有利的编码方案,则压缩的效果可能更好。
但是一旦超过最小互信息这个极限值,就是R(D)的数值,那么失真就要超过失真限度。
如果需要压缩的信息率更大,则可容忍的平均失真就要大。
信息率失真函数R(D)性质:
44.Shannon第三定理及其含义?
45.常用哪些差错控制的方法?主要特点?
46.纠错编码的分类(从不同的角度)?。