2015年最新中考数学_三角形专题(精品)

合集下载

2015届安徽中考数学总复习课件:第33讲 锐角三角函数和解直角三角形

2015届安徽中考数学总复习课件:第33讲 锐角三角函数和解直角三角形

要点梳理 5.直角三角形的边角关系在现实生活中有着广泛的 应用,它经常涉及测量、工程、航海、航空等,其中 包括了一些概念,一定要根据题意明白其中的含义才 能正确解题. (1)铅垂线:重力线方向的直线;
要点梳理
(2)水平线:与铅垂线垂直的直线 ,一般情况下 ,地平面 上的两点确定的直线我们认为是水平线;
(3)仰角:向上看时,视线与水平线的夹角;
(4)俯角:向下看时,视线与水平线的夹角;
(5)坡角:坡面与水平面的夹角;
要点梳理
(6)坡度:坡面的铅直高度与水平宽度的比叫做坡度 (或坡 比),一般情况下,我们用 h 表示坡的铅直高度,用 l 表 h 示坡的水平宽度,用 i 表示坡度,即 i= l =tanα,显然, 坡度越大,坡角就越大,坡面也就越陡;
3. (2014· 毕节)如图是以△ABC 的边 AB 为直径的半圆 O, 点 C 恰好在半圆上, 过 C 作 CD⊥AB 交 AB 于 D.已知 cos 3 ∠ACD=5,BC=4,则 AC 的长为( D ) A.1 20 B. 3 C.3 16 D. 3
4.(2014· 丽水 )如图 ,河坝横断面迎水坡 AB 的坡比是 1∶ 3(坡比是坡面的铅直高度 BC 与水平宽度 AC 之比),
sin(90°-?)=__cosα__; cos(90°-?)=__sinα__.
函数的增减性:(0°<?<90°)
(1)sinα,tanα的值都随 ?__增大而增大__;
(2)cosα随 ?__增大而减小__.
要点梳理
4.解直角三角形的概念、方法及应用: 解直角三角形:由直角三角形中除直角外的已知元素 ,求出所有未
三角函数值)转化为旧知识(求直角三角形的边长),因
此不可避免地用到勾股定理.若原题没有图形,可以

2015年辽宁省地区中考数学总复习课件 第20讲 三角形与全等三角形

2015年辽宁省地区中考数学总复习课件 第20讲  三角形与全等三角形

1.(2013·铁岭)如果三角形的两边长分别是方程x2-8x +15=0的两个根,那么连接这个三角形三边的中点,得 到的三角形的周长可能是(A) A.5.5 B.5 C.4.5 D.4 2.(2014·营口)如图,在△ABC中,点D,E分别是边 AB,AC的中点,∠B=50°,将△ABC沿DE折叠,点A 的对应点是A′,则∠AEA′的度数是(B) A.145° B.152° C.158° D.160°
角,∴∠DEC=∠A+∠B=90°+32°=
122°.同理∠BDC=∠C+∠DEC=21°+ 122°=143°≠148°,∴这个零件不合格 【点评】 有关求三角形角的度数的问题,首先要明确所求的 角和哪些三角形有密切联系,若没有直接联系,可添加辅助线 构建“桥梁”.
2.(1)(2013·宁夏)如图,△ABC中,∠ACB= 90°,沿CD折叠△CBD,使点B恰好落在AC边 上的点E处,若∠A=22°,则∠BDC等于(C) A.44° B.60° C.67° D.77°
(2)如图,P是△ABC内一点,延长BP交AC于点D,用“> ”表示∠BPC,∠BDC,∠BAC之间的关系.
解:∵∠BPC是△PCD的外角 ,∴∠BPC>∠BDC,同理 ∠BDC>∠BAC,∴∠BPC> ∠BDC>∠BAC
三角形的内角、外角的性质
【例 2】 (1)(2014· 赤峰 ) 如图 , 把一块含有 30°角 (∠A = 30°) 的直角三角板 ABC 的直角顶点放在矩形桌面 CDEF 的一个顶点 C处,桌面的另一个顶点 F与三角板斜边相交于 点F,如果∠1=40°,那么∠AFE=(D)
度,将它们首尾连接后,能摆成三角形的一组是(D)
A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,4

2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第20课时 直角三角形与勾股定理

2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第20课时 直角三角形与勾股定理

考点聚焦
归类探究
回归教材
第20课时┃ 直角三角形与勾股定理
解 析 由勾股定理的逆定理,可知只要验证两小边的平方和 是否等于最长边的平方即可. A项,42+52=41≠62,不可以构成直角三角形,故本选项 错误. B项,1.52+22=6.25=2.52,可以构成直角三角形,故本 选项正确.
C项,22+32=13≠42,不可以构成直角三角形,故本选项 错误. D项,12+( 2 )2=3≠32,不可以构成直角三角形,故本选 项错误.
第20课时 直角三角形与勾股定理
第20课时┃ 直角三角形与勾股定理
考 点 聚 焦
考点1 直角三角形的概念、性质与判定 直角
斜边的一半 斜边的一半
考点聚焦
归类探究
回归教材
第20课时┃ 直角三角形与勾股定理
考点2
勾股定理及逆定理
a2+b2=c2
考点聚焦
归类探究
回归教材
第20课时┃ 直角三角形与勾股定理 考点3 命题、定义、定理、公理
考点聚焦
归类探究
回归教材
第20课时┃ 直角三角形与勾股定理
方法点析 判断三个正数能不能构成直角三角形的三边长的主要方法是 看两个较小的数的平方和是否等于最大数的平方.
考点聚焦
归类探究
回归教材
第20课时┃ 直角三角形与勾股定理
回 归 教 材
勾股定理与面积问题 教材母题——人教版八下P29T13 如图20-4,分别以等腰Rt△ACD的边AD,AC,CD为直径画 半圆.求证:所得两个月形图案AGCE和DHCF的面积之和(图中 阴影部分)等于Rt△ACD的面积.
考点聚焦
归类探究
回归教材
第20课时┃ 直角三角形与勾股定理

2015年广西中考数学总复习课件第21课时 全等三角形(共57张PPT)

2015年广西中考数学总复习课件第21课时 全等三角形(共57张PPT)

图4-21-3 第21课时 全等三角形
7 . 如 图 4 - 21 - 4 , AC = BC , AC⊥OA , BC⊥OB , 则 判 断
△AOC≌△BOC的依据是________ . HL
图4-21-4
第21课时
全等三角形
8 .如图 4 - 21 - 5 ,已知四边形 ABCD 中,AB∥CD,AD∥BC,
△ABD与△CDB全等吗?为什么? 全等,理由略
图4-21-5
第21课时
全等三角形
┃考向互动探究┃
类型题展
► 类型 全等三角形的判定
例1如图4-21-6,点B在AE上,点D在AC上,AB=AD.请你添 加一个适当的条件,使△ABC≌△ADE.(只能添加一个)
(1)你添加的条件是________.
(2)添加条件后,请说明△ABC≌△ADE的理由.
,∠ACB=∠DFE,BC=EF,要使△ABC≌△DEF,还需添加一个条
CA=FD(答案不唯一) .(只需写出一个) 件,这个条件可以是____________________
图4-21-8 第21课时 全等三角形
易错题探究 例1 如图4-21-9,已知∠BAE=∠CAF,AE=AF,AM=AN.
第21课时
全等三角形
图4-21-6
第21课时
全等三角形
[ 答案 ] (1)∠ABC=∠ ADE( 或∠ EBC =∠ CDE ,或∠C =∠E ,
或AC=AE,或EB=CD) (2)选∠C=∠E为条件. 理由:在△ABC和△ADE中, ∵∠A=∠A,∠C=∠E,AB=AD, ∴△ABC≌△ADE(AAS). [考点] 全等三角形的判定,开放题. 第21课时 全等三角形
求证:∠E=∠F.

解直角三角形的应用(1)解析

解直角三角形的应用(1)解析

初2015级重庆中考数学专题复习——解直角三角形的应用(1)一.解答题(共30小题)1.(2014•山西)如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)2.(2014•烟台)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.3.(2014•莱芜)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)4.(2014•宿迁)如图是某通道的侧面示意图,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6m.(1)求FM的长;(2)连接AF,若sin∠FAM=,求AM的长.5.(2014•广安)为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB长60米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为:1,求休闲平台DE的长是多少米?(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G,H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?6.(2014•镇江)如图,小明从点A处出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,sinα=,然后又沿着坡度为i=1:4的斜坡向上走了1千米达到点C.问小明从A点到点C上升的高度CD是多少千米(结果保留根号)?7.(2014•常德)如图,A,B,C表示修建在一座山上的三个缆车站的位置,AB,BC表示连接缆车站的钢缆.已知A,B,C所处位置的海拔AA1,BB1,CC1分别为160米,400米,1000米,钢缆AB,BC分别与水平线AA2,BB2所成的夹角为30°,45°,求钢缆AB 和BC的总长度.(结果精确到1米)8.(2014•三明)如图,在山坡上植树,已知山坡的倾斜角α是20°,小明种植的两棵树间的坡面距离AB是6米,要求相邻两棵树间的水平距离AC在5.3~5.7米范围内,问小明种植的这两棵树是否符合这个要求?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)9.(2014•巴中)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:≈1.414,≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比).10.(2014•仙桃)如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).11.(2014•兰州)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).12.(2014•赤峰)位于赤峰市宁城的“大明塔”是我国辽代的佛塔,距今已有1千多年的历史.如图,王强同学为测量大明塔的高度,在地面的点E处测得塔基BC上端C的仰角为30°,他又沿BE方向走了26米,到达点F处,测得塔顶端A的仰角为52°,已知塔基是以OB为半径的圆内接正八边形,B点在正八边形的一个顶点上,塔基半径OB=18米,塔基高BC=11米,求大明塔的高OA(结果保留到整数,≈1.73,tan52°≈1.28).13.(2014•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D 点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).14.(2014•遵义)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)15.(2014•辽阳)数学活动课上老师让学生以小组为单位测量学校旗杆AB的高度,如图所示,“希望小组”在教学楼一楼地面D处测得旗杆顶部仰角为60°,在教学楼三楼地面C处测得旗杆顶部仰角为30°,已知旗杆底部于教学楼一楼地面在同一水平线上,每层楼高为3米,求旗杆AB高度.16.(2014•盘锦)如图,折线ABC是一个路灯的示意图,AB垂直于地面,线段AB与线段BC所成的角∠ABC=120°,在地面上距离A点8米的点E处,测得点B的仰角是45°,点C的仰角是60°,点E、D、A在一条直线上.求点C到地面的距离CD.(,精确到0.1米)17.(2014•鞍山)如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B 处,此时测得塔尖D的仰角∠DBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米?(结果精确到个位)(参考数据:sin25.6°≈0.4,cos25.6°≈0.9,tan25.6°≈0.5,sin61.4°≈0.9,cos61.4°≈0.5,tan61.4°≈1.8)18.(2014•恩施州)热气球探测器显示,热气球在点A处看到某小山底部点C的俯角为30°,后垂直上升一定高度至点B,看到点C的俯角为60°,热气球与小山的水平距离为1800米,如图,求热气球垂直上升的高度AB(结果精确到1米,参考数据≈1.732).19.(2014•桂林)中国“蛟龙”号深潜器目前最大深潜极限为7062.68米.某天该深潜器在海面下1800米的A点处作业(如图),测得正前方海底沉船C的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B点,此时测得海底沉船C的俯角为60°.(1)沉船C是否在“蛟龙”号深潜极限范围内?并说明理由;(2)由于海流原因,“蛟龙”号需在B点处马上上浮,若平均垂直上浮速度为2000米/时,求“蛟龙”号上浮回到海面的时间.(参考数据:≈1.414,≈1.732)20.(2014•营口)如图,王老师站在湖边度假村的景点A处,观察到一只水鸟由岸边D处飞向湖中小岛C处,点A到DC所在水平面的距离AB是15米,观测水鸟在点D和点C处时的俯角分别为53°和11°,求C、D两点之间距离.(精确到0.1.参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin11°≈0.19,cos11°≈0.98,tan11°≈0.19)21.(2015•徐州模拟)甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.22.(2014•邵阳)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C 处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)23.(2014•荆州)钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B 处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.(参考数据:cos59°≈0.52,sin46°≈0.72)24.(2014•丹东)如图,禁渔期间,我渔政船在A处发现正北方向B处有一艘可疑船只,测得A、B两处距离为99海里,可疑船只正沿南偏东53°方向航行.我渔政船迅速沿北偏东27°方向前去拦截,2小时后刚好在C处将可疑船只拦截.求该可疑船只航行的速度.(参考数据:sin27°≈,cos27°≈,tan27°≈,sin53°≈,cos53°≈,tan53°≈)25.(2014•呼和浩特)如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果用非特殊角的三角函数及根式表示即可)26.(2014•锦州)如图,位于A处的海上救援中心获悉:在其北偏东68°方向的B处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30°相距20海里的C处救生船,并通知救生船,遇险船在它的正东方向B处,现救生船沿着航线CB前往B处救援,若救生船的速度为20海里/时,请问:救生船到达B处大约需要多长时间?(结果精确到0.1小时:参考数据:sin38°≈0.62,cos38°≈0.79,sin22°≈0.37,cos22°≈0.93,sin37°≈0.60,cos37°≈0.80)27.(2014•本溪)某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B 两船发出紧急求救信号,此时B船位于A船的北偏西72°方向,距A船24海里的海域,C 船位于A船的北偏东33°方向,同时又位于B船的北偏东78°方向.(1)求∠ABC的度数;(2)A船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时).(参考数据:≈1.414,≈1.732)28.(2014•张家界)如图:我渔政310船在南海海面上沿正东方向匀速航行,在A点观测到我渔船C在北偏东60°方向的我国某传统渔场捕鱼作业.若渔政310船航向不变,航行半小时后到达B点,观测到我渔船C在东北方向上.问:渔政310船再按原航向航行多长时间,离渔船C的距离最近?(渔船C捕鱼时移动距离忽略不计,结果不取近似值.)29.(2014•资阳)如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B 处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C 的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.30.(2014•徐州)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:≈1.414,≈1.732)初2015级重庆中考数学专题复习——解直角三角形的应用(1)参考答案与试题解析一.解答题(共30小题)1.(2014•山西)如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)==10002.(2014•烟台)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.ACD=米,ACD=•(米)BD=OD=OA+AD=3+3.(2014•莱芜)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)=18米,4.(2014•宿迁)如图是某通道的侧面示意图,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6m.(1)求FM的长;(2)连接AF,若sin∠FAM=,求AM的长.,求出×=3m,AM==18185.(2014•广安)为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB长60米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为:1,求休闲平台DE的长是多少米?(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G,H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?米,米,BDF=30×的坡比为=EF=1010)米;,即=x=30+21,30+216.(2014•镇江)如图,小明从点A处出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,sinα=,然后又沿着坡度为i=1:4的斜坡向上走了1千米达到点C.问小明从A点到点C上升的高度CD是多少千米(结果保留根号)?=,×=0.25x=+升高了(+7.(2014•常德)如图,A,B,C表示修建在一座山上的三个缆车站的位置,AB,BC表示连接缆车站的钢缆.已知A,B,C所处位置的海拔AA1,BB1,CC1分别为160米,400米,1000米,钢缆AB,BC分别与水平线AA2,BB2所成的夹角为30°,45°,求钢缆AB 和BC的总长度.(结果精确到1米)=480=6008.(2014•三明)如图,在山坡上植树,已知山坡的倾斜角α是20°,小明种植的两棵树间的坡面距离AB是6米,要求相邻两棵树间的水平距离AC在5.3~5.7米范围内,问小明种植的这两棵树是否符合这个要求?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)9.(2014•巴中)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:≈1.414,≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比).中,,D=2010.(2014•仙桃)如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).=,DBF==,BF=CE=3,+1+111.(2014•兰州)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).CAH=×CD=2CED=CE=12.(2014•赤峰)位于赤峰市宁城的“大明塔”是我国辽代的佛塔,距今已有1千多年的历史.如图,王强同学为测量大明塔的高度,在地面的点E处测得塔基BC上端C的仰角为30°,他又沿BE方向走了26米,到达点F处,测得塔顶端A的仰角为52°,已知塔基是以OB为半径的圆内接正八边形,B点在正八边形的一个顶点上,塔基半径OB=18米,塔基高BC=11米,求大明塔的高OA(结果保留到整数,≈1.73,tan52°≈1.28).EB==1113.(2014•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D 点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).×=202014.(2014•遵义)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比):i==tanEF=米,25+1025+10)米,35+1035+1015.(2014•辽阳)数学活动课上老师让学生以小组为单位测量学校旗杆AB的高度,如图所示,“希望小组”在教学楼一楼地面D处测得旗杆顶部仰角为60°,在教学楼三楼地面C处测得旗杆顶部仰角为30°,已知旗杆底部于教学楼一楼地面在同一水平线上,每层楼高为3米,求旗杆AB高度.CE=x AD=CE=BE=xxAD=×16.(2014•盘锦)如图,折线ABC是一个路灯的示意图,AB垂直于地面,线段AB与线段BC所成的角∠ABC=120°,在地面上距离A点8米的点E处,测得点B的仰角是45°,点C的仰角是60°,点E、D、A在一条直线上.求点C到地面的距离CD.(,精确到0.1米)=x=2﹣2+8=217.(2014•鞍山)如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B 处,此时测得塔尖D的仰角∠DBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米?(结果精确到个位)(参考数据:sin25.6°≈0.4,cos25.6°≈0.9,tan25.6°≈0.5,sin61.4°≈0.9,cos61.4°≈0.5,tan61.4°≈1.8)=0.5=18.(2014•恩施州)热气球探测器显示,热气球在点A处看到某小山底部点C的俯角为30°,后垂直上升一定高度至点B,看到点C的俯角为60°,热气球与小山的水平距离为1800米,如图,求热气球垂直上升的高度AB(结果精确到1米,参考数据≈1.732).=,AD=600==,19.(2014•桂林)中国“蛟龙”号深潜器目前最大深潜极限为7062.68米.某天该深潜器在海面下1800米的A点处作业(如图),测得正前方海底沉船C的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B点,此时测得海底沉船C的俯角为60°.(1)沉船C是否在“蛟龙”号深潜极限范围内?并说明理由;(2)由于海流原因,“蛟龙”号需在B点处马上上浮,若平均垂直上浮速度为2000米/时,求“蛟龙”号上浮回到海面的时间.(参考数据:≈1.414,≈1.732)xx=200020.(2014•营口)如图,王老师站在湖边度假村的景点A处,观察到一只水鸟由岸边D处飞向湖中小岛C处,点A到DC所在水平面的距离AB是15米,观测水鸟在点D和点C处时的俯角分别为53°和11°,求C、D两点之间距离.(精确到0.1.参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin11°≈0.19,cos11°≈0.98,tan11°≈0.19)=tan53=tan1121.(2015•徐州模拟)甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.海里,BC=15AC=AD+CD=15+15的时间为+1的时间为1=海里,的速度为=522.(2014•邵阳)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C 处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)AC=40≈AC=40≈=5040=(小时)23.(2014•荆州)钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B 处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.(参考数据:cos59°≈0.52,sin46°≈0.72)中,=cos=≈中,=24.(2014•丹东)如图,禁渔期间,我渔政船在A处发现正北方向B处有一艘可疑船只,测得A、B两处距离为99海里,可疑船只正沿南偏东53°方向航行.我渔政船迅速沿北偏东27°方向前去拦截,2小时后刚好在C处将可疑船只拦截.求该可疑船只航行的速度.(参考数据:sin27°≈,cos27°≈,tan27°≈,sin53°≈,cos53°≈,tan53°≈),再根据x=(,°≈x°≈x====4525.(2014•呼和浩特)如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果用非特殊角的三角函数及根式表示即可)=,PB=PB=80cos2526.(2014•锦州)如图,位于A处的海上救援中心获悉:在其北偏东68°方向的B处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30°相距20海里的C处救生船,并通知救生船,遇险船在它的正东方向B处,现救生船沿着航线CB前往B处救援,若救生船的速度为20海里/时,请问:救生船到达B处大约需要多长时间?(结果精确到0.1小时:参考数据:sin38°≈0.62,cos38°≈0.79,sin22°≈0.37,cos22°≈0.93,sin37°≈0.60,cos37°≈0.80)CD=10,再解AB=AC=10AD=CD=10≈27.(2014•本溪)某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B 两船发出紧急求救信号,此时B船位于A船的北偏西72°方向,距A船24海里的海域,C 船位于A船的北偏东33°方向,同时又位于B船的北偏东78°方向.(1)求∠ABC的度数;(2)A船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时).(参考数据:≈1.414,≈1.732)AB=12,==12≈28.(2014•张家界)如图:我渔政310船在南海海面上沿正东方向匀速航行,在A点观测到我渔船C在北偏东60°方向的我国某传统渔场捕鱼作业.若渔政310船航向不变,航行半小时后到达B点,观测到我渔船C在东北方向上.问:渔政310船再按原航向航行多长时间,离渔船C的距离最近?(渔船C捕鱼时移动距离忽略不计,结果不取近似值.)ACD=,x﹣小时,则=,,﹣t=t=船再按原航向航行29.(2014•资阳)如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B 处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C 的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.BD==,得出方程ABD=,即,BD=x,所以x+x=4230.(2014•徐州)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:≈1.414,≈1.732),=100≈100。

2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第19课时 等腰三角形(共32张PPT)

2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第19课时 等腰三角形(共32张PPT)

失分盲点 分类讨论防漏解 (1)遇到等腰三角形的问题时,注意边有腰与底之分,角 有底角和顶角之分; (2)遇到高线的问题要考虑高在形内和形外两种情况.
考点聚焦 归探究四
等边三角形的判定与性质的综合应用
命题角度: 等边三角形的判定与性质的综合.
考点聚焦
归类探究
回归教材
第19课时┃ 等腰三角形
例4 [2014· 温州] 如图19-3,在等边三角形ABC中,点 D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE, 交BC的延长线于点F. (1)求∠F的度数; (2)若CD=2,求DF的长.
图19-3
考点聚焦
归类探究
回归教材
第19课时┃ 等腰三角形
考点聚焦
归类探究
回归教材
第19课时┃ 等腰三角形
探究二
等腰三角形的判定
命题角度: 等腰三角形的判定.
考点聚焦
归类探究
回归教材
第19课时┃ 等腰三角形
例2 [2014· 襄阳] 如图19-2,在△ABC中,点D,E分 别在边AC,AB上,BD与CE交于点O,给出下列三个条件: ①∠EBO=∠DCO;②BE=CD;③OB=OC. (1)上述三个条件中,由哪两个条件可以判定△ABC是等 腰三角形(用序号写出所有成立的情形)? (2)请选择(1)中的一种情形,写出证明过程.
解:(1)∵△ABC为等边三角形, ∴∠A=∠B=∠ACB=60°. ∵DE∥AB, ∴∠EDF=∠B=60°,∠DEC=∠A=60°. ∵EF⊥DE, ∴∠DEF=90°, ∴∠F=180°-∠DEF-∠EDF=30°.
考点聚焦
归类探究
回归教材
第19课时┃ 等腰三角形
(2)∵∠DEC=60°,∠DEF=90°, ∴∠CEF=30°=∠F, ∴CE=CF. 又∵∠EDF=∠CED=∠ACB=60°, ∴△CDE为等边三角形, ∴CD=CE, ∴DF=DC+CF=DC+CE=2CD. ∵CD=2, ∴DF=4.

中考数学:三角形四边形求角度专项复习题(含答案)

中考数学:三角形四边形求角度专项复习题(含答案)

中考数学复习非圆几何求角度1、【基础题】(2015呼和浩特)如左下图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B. 100°C. 110°D. 120°2、【基础题】(2015)如右上图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B. 110°C. 115°D.120°3、【基础题】(2015)如右图,在△A BC中,∠C=31°,∠A BC的平分线BD交A C于点D,如果DE垂直平分BC,那么∠A= °.4、【综合Ⅰ】在△ABC中,∠A:∠B:∠C=1:2:3,求△ABC各角的度数.5、【综合Ⅰ】(2015)如左下图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A. 15°B. 17.5°C. 20°D. 22.5°6、【综合Ⅱ】(2015)如右上图,△ABC中,CD是边AB上的高,且AD CD CD BD.(1)求证:△ACD ∽△CBD;(2)求∠ACB的大小.7、【综合Ⅲ】如左下图,点O是△ABC一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于_______8、【基础题】(2015)右上图是由射线AB、BC、CD、DE、EA,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____.9、【综合Ⅱ】(2015)如左下图,平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,则∠3+∠1-∠2=°10、【基础题】(2015)如右上图,□ABCD中,对角线AC与BD交于点O,∠DAC=42º,∠CBD=23º,则∠COD的度数是()A.61º B.63º C.65º D.67º11、【综合Ⅱ】如右图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数为.12、【综合Ⅱ】(2010襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:113、【综合Ⅲ】如左下图,在矩形ABCD中,AC与BD相交于一点O,AE平分∠BAD,若∠EAO=15°,求∠BOE的度数.14、【综合Ⅱ】(2015)如右上图,已知点E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=______度.15、【综合Ⅱ】(2015黄冈)如左下图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.16、【综合Ⅲ】(2015)如右上图,等腰直角三角形BDC的顶点D在等边三角形ABC的部,∠BDC=90°,连接AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是度.17、【综合Ⅲ】(2014)如图,在△ABC 中,AB =AC ,且D 为BC 上一点,CD =AD ,AB =BD ,则∠B 的度数为( )A .30°B .36°C .40°D .45°18、【综合Ⅲ】(2015襄阳)在□ABCD 中,AD=BD ,BE 是AD 边上的高,∠EBD=20°,则∠A 的度数为 .19、【提高题】如左下图,等边△ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 的度数是 ( )A. 45°B. 60°C. 75°D. 80°20、【提高题】(2015)如右上图,在△ABC 中,∠B=40°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC= 度。

【名师面对面】2015中考数学总复习 第5章 第20讲 直角三角形课件

【名师面对面】2015中考数学总复习 第5章 第20讲 直角三角形课件

2.(2014· 荆门)如图,已知圆柱底面的周长为 4 dm,圆柱高为 2 dm,在圆柱的侧面上,过点 A 和点 C 嵌有一圈金属丝,则 这圈金属丝的周长最小为( A ) A.4 2 dm C.2 5 dm B.2 2 dm D.4 5 dm
3.(2014·东营)如图,有两棵树,一棵高12米,另
°.利用比例关系,转化为方程解决,是解决问题的好思路.
勾股定理及其逆定理
1.(2014·十堰)如图,在四边形ABCD中,
AD∥BC,DE⊥BC,垂足为点E,连结AC交DE于
点F,点G为AF的中点,∠ACD=2∠ACB.若DG=
3,EC=1,求DE的长.
【解析】根据直角三角形斜边上的中线的性质可得DG=AG, 得出CD=DG后,在Rt△CED中根据勾股定理即可求解.
第20讲 直角三角形
1.了解直角三角形的概念,掌握直角三角形的
性质定理.掌握有两个角互余的三角形是直角三
角形.
2.掌握勾股定理及其逆定理,并能用来解决一
些简单的实际问题.
1.直角三角形的判定和性质的应用,以及运用勾 股定理及其逆定理来解决实际问题都是中考的重点, 在选择题、填空题、解答题中均有出现. 2.直角三角形是最常见的图形之一,可单独成题
4. (2014· 凉山)已知一个直角三角形的两边的长分别是3 和 4, . 则第三边长为 5 或 7
5.如图,在边长为1的小正方形 组成的网格中,△ABC的三个顶点
在格点上,请按要求完成下列各题:
(1)画线段AD∥BC且使AD=BC, 连结CD;
(2)线段AC的长为 2 5
,CD的
长为____ 5 ,AD的长为 5 ; (3)△ACD为 直角 三角形,四边 形ABCD的面积为 10 ; (4)若E为BC中点,则tan∠CAE的 1 值是____ 2 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4321D CBA三角形的基础概念【考点链接】三角形中的主要线段:1.___________________________________叫三角形的中位线. 2.中位线的性质:____________________________________________. 3.三角形的中线、高线、角平分线都是____________.(线段、射线、直线) 4.三角形的内角和为180,外角和为360, 5.三角形的外角等于与他不相邻的两内角之和【典例精析】例1 如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°. 求∠DAC 的度数.例2 如图,已知D 、E 分别是△ABC 的边BC 和边AC 的中点,连接DE 、AD ,若S ABC △=24cm 2,求△DEC 的面积.例 3 如图,在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,求DE DF +的长.提示:面积法等腰三角形与直角三角形【考点链接】一.等腰三角形的性质与判定: 1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________.DAD C B E二.等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.三.直角三角形的性质与判定:1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________.【典例精析】例1 如图,等腰三角形ABC中,AB=AC,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.例2 (06包头)《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”.•一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”,•测得该车从北偏西60°的A点行驶到北偏西30°的B点,所用时间为1.5秒.(1)试求该车从A点到B的平均速度;(2)试说明该车是否超过限速.全等三角形【考点链接】1.全等三角形:____________、______________的三角形叫全等三角形.2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.3. 全等三角形的性质:全等三角形___________,____________.4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.5. 全等变换只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换.全等变换包括以下三种:①平移变换:把图形沿某条直线平行移动的变换叫做平移变换.如图1,把ABC ∆沿直线BC 移动到C B A '''∆和C B A ''''''∆位置就是平移变换.②对称变换:将图形沿某直线翻折180,这种变换叫做对称变换.如图2,将A B C ∆翻折180到ABD ∆位置的变换就是对称变换.③旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换.如图3,将ABC ∆绕过A 点旋转180到ADE ∆的位置,就是旋转变换.这里我们应该知道,无论是平移变换,对称变换还是旋转变换,变换前后的两个图形全等,具有全等的所有性质.图1 图2 图3【典例精析】例1 已知:在梯形ABCD 中,AB//CD ,E 是BC 的中点,直线AE 与DC 的延长线交于点F. 求证:AB=CF.例2 (06重庆)如图所示,A 、D 、F 、B 在同一直线上,AD=BF ,AE=BC ,且AE ∥BC .求证:(1)△AEF ≌△BCD ;(2)EF ∥CD .相似三角形【课前热身】1.两个相似三角形对应边上中线的比等于3:2,则对应边上的高的比为______,周长之比为________,面积之比为_________.2.若两个相似三角形的周长的比为4:5,且周长之和为45,则这两个三角形的周长分别为__________. 3.如图,在△ABC 中,已知∠ADE=∠B ,则下列等式成立的是( )A .AD AE AB AC = B .AEADBC BD = C .DE AE BC AB = D .DEADBCAC= 4.在△ABC 与△A′B ′C ′中,有下列条件: (1)''''AB BC A B B C =;(2)''''BC ACB C A C =;(3)∠A=∠A′;(4)∠C=∠C′. 如果从中任取两个条件组成一组,那么能判断△ABC ∽△A′B ′C ′的共有多少组( ) A .1 B .2 C .3 D .4【考点链接】一、相似三角形的定义相似多边形:各角相等、各边对应成比例的多边形叫做相似多边形。

相似三角形:三边对应成_________,三个角对应________的两个三角形叫做相似三角形.二、相似三角形的判定方法1. 若DE ∥BC (A 型和X 型)则______________.2. 射影定理:若CD 为Rt △ABC 斜边上的高(双直角图形)则Rt △ABC ∽Rt △ACD ∽Rt △CBD 且AC 2=________,CD 2=_______,BC 2=__ ____.3. 两个角对应相等的两个三角形__________.4. 两边对应成_________且夹角相等的两个三角形相似.5. 三边对应成比例的两个三角形___________. 三、相似三角形的性质1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用k 表示.3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.四、位似三角形1.什么叫位似图形?如果两个图形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

2.位似图形的性质位似图形上的任意一对对应点到位似中心的距离之比等于位似比 对应点连线都交于位似中心,对应线段平行或在一条直线上 3.利用位似可以把一个图形放大或缩小 4.位似变换的步骤:①确定位似中心,位似中心的位置可随意选择;②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不唯一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形。

【典例精析】例1 如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,•要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,•这个正方形零件的边长是多少?例2. 在平面直角坐标系中, △ABC 三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以原点O 为位似中心,相似比为2,将△ABC 放大.【中考演练】1.如图,若△ABC ∽△DEF ,则∠D 的度数为______________.2. 在Rt ABC ∆中, C ∠为直角, AB CD ⊥于点D ,5,3==AB BC , 写出其中的一对相似三角形是 _ 和 _ ; 并写出它的面积比_____.(第1题) (第2题) (第3题) 3. 如图,在△ABC 中,若DE ∥BC,AD DB =12,DE =4cm,则BC 的长为 ( ) A.8cm B.12cm C.11cm D.10cm 4. 如图,已知E 是矩形ABCD 的边CD 上一点,BF AE ⊥于F ,试证明ABF EAD △∽△.锐角三角函数【课前热身】1.在△ABC 中,∠C =90°,BC =2,sinA=23,则AC 的长是( ) A.3 C .45D 2.Rt ∆ABC 中,∠C=︒90,∠A ∶∠B=1∶2,则sinA 的值( )A .21 B .22 C .23 D .1 3.如图,在平面直角坐标系中,已知点A (3,0点B (0,-4),则cos OAB ∠ 等于_______.4.︒+︒30sin 130cos =____________.【考点链接】1.sin α,cos α,tan α定义sin α=____,cos α=_______,tan α=______ . 2.特殊角三角函数值Cα ab c【典例精析】例1 计算:4sin3060︒.解直角三角形及其应用1. 解直角三角形的应用仰角、俯角:如图1,在我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.图12.坡度、坡角:如图2,我们通常把坡面的铅直高度h 和水平宽度l 的比叫做坡度(或坡比),用字母i 表示,即lh i =. 坡面与水平面的夹角叫坡角.坡度与坡角(若用α表示)的关系:αtan =i .坡角越大,坡度也越大,坡面越陡.图2 图33.方向角:如图3,平面上,过观测点O 作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从O 点出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.例如,图中“北偏东30”是一个方向角,又如“西北”即指正西方向与正北方向所夹直角的平分线,此时的方向角为“北偏西 45”(或“西偏北45” ).【典例精析】例1 (08十堰) 海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.【中考演练】1.(07乌兰察布)升国旗时,某同学站在离旗杆24m处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m,则旗杆高度约为_______. 1.73,结果精确到0.1m)2.(06哈尔滨)如图,在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°.已知测角仪器高CE=1.5米,CD=30米,求塔高AB.(保留根号)。

相关文档
最新文档